S. Anders, P. T. Pyl, and W. Huber, HTSeq--a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.13, issue.1, pp.166-169, 2015.
DOI : 10.1093/bioinformatics/btp616

L. Tissier, Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential, Cell Stem Cell, vol.13, pp.433-445, 2013.

K. Aoki, Y. Tamai, S. Horiike, M. Oshima, and M. M. Taketo, Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/??716 Cdx2 +/??? compound mutant mice, Nature Genetics, vol.253, issue.4, pp.323-330, 2003.
DOI : 10.1016/S0012-1606(02)00020-9

J. M. Bae, T. H. Lee, N. Cho, T. Kim, and G. H. Kang, Loss of CDX2 expression is associated with poor prognosis in colorectal cancer patients, World Journal of Gastroenterology, vol.21, issue.5, pp.1457-1467, 2015.
DOI : 10.1002/pmic.201300377

R. Bahri, I. S. Pateras, O. D. Orlando, D. A. Goyeneche-patino, M. Campbell et al., IL-15 suppresses colitis-associated colon carcinogenesis by inducing antitumor immunity, OncoImmunology, vol.25, issue.9, 2015.
DOI : 10.1016/j.ccr.2014.02.019

URL : http://europepmc.org/articles/pmc4570106?pdf=render

C. Balbinot, M. Vanier, O. Armant, A. Nair, J. Penichon et al., Fine-tuning and autoregulation of the intestinal determinant and tumor suppressor homeobox gene CDX2 by alternative splicing, Cell Death and Differentiation, vol.210, issue.12, pp.2173-2186, 2017.
DOI : 10.1006/dbio.1999.9270

N. Barker, R. A. Ridgway, J. H. Van-es, M. Van-de-wetering, H. Begthel et al., Crypt stem cells as the cells-of-origin of intestinal cancer, Nature, vol.104, issue.7229, pp.608-611, 2009.
DOI : 10.1038/nature07602

P. Bastide, C. Darido, J. Pannequin, R. Kist, S. Robine et al., Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium, The Journal of Cell Biology, vol.14, issue.4, pp.635-648, 2007.
DOI : 10.1126/science.286.5437.113

URL : https://hal.archives-ouvertes.fr/hal-00267010

E. Becht, A. De-reyniès, N. A. Giraldo, C. Pilati, B. Buttard et al., Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy, Clinical Cancer Research, vol.22, issue.16, pp.4057-4066, 2016.
DOI : 10.1158/1078-0432.CCR-15-2879

F. Beck, K. Chawengsaksophak, P. Waring, R. J. Playford, and J. B. Furness, Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice, Proc. Natl. Acad. Sci. USA, pp.7318-7323, 1999.
DOI : 10.1002/bies.950171211

C. Bonhomme, I. Duluc, E. Martin, K. Chawengsaksophak, M. Chenard et al., The Cdx2 homeobox gene has a tumour suppressor function in the distal colon in addition to a homeotic role during gut development, Gut, vol.52, issue.10, pp.1465-1471, 2003.
DOI : 10.1136/gut.52.10.1465

A. Calon, I. Gross, B. Lhermitte, E. Martin, F. Beck et al., Different effects of the Cdx1 and Cdx2 homeobox genes in a murine model of intestinal inflammation, Gut, vol.56, issue.12, pp.1688-1695125542, 2007.
DOI : 10.1136/gut.2007.125542

E. Chun, S. Lavoie, M. Michaud, C. A. Gallini, J. Kim et al., CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function, Cell Reports, vol.12, issue.2, pp.244-257, 2015.
DOI : 10.1016/j.celrep.2015.06.024

S. Colnot, M. Niwa-kawakita, G. Hamard, C. Godard, S. Le-plenier et al., Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers, Laboratory Investigation, vol.61, issue.12, pp.1619-1630, 2004.
DOI : 10.1002/hep.20286

P. Dalerba, D. Sahoo, S. Paik, X. Guo, G. Yothers et al., CDX2 as a Prognostic Biomarker in Stage II and Stage III Colon Cancer, New England Journal of Medicine, vol.374, issue.3, pp.211-222, 2016.
DOI : 10.1056/NEJMoa1506597

P. De-santa-barbara, N. Bonneaud, B. Boizet, M. Desclozeaux, B. Moniot et al., Direct Interaction of SRY-Related Protein SOX9 and Steroidogenic Factor 1 Regulates Transcription of the Human Anti-M??llerian Hormone Gene, Molecular and Cellular Biology, vol.18, issue.11, pp.6653-6665, 1998.
DOI : 10.1128/MCB.18.11.6653

D. Sousa, E. Melo, F. , X. Wang, M. Jansen et al., Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions, Nat. Med, vol.19, pp.614-6183174, 2013.

M. Egeblad, E. S. Nakasone, and Z. Werb, Tumors as Organs: Complex Tissues that Interface with the Entire Organism, Developmental Cell, vol.18, issue.6, pp.884-901, 2010.
DOI : 10.1016/j.devcel.2010.05.012

I. Gross, I. Duluc, T. Benameur, A. Calon, E. Martin et al., The intestine-specific homeobox gene Cdx2 decreases mobility and antagonizes dissemination of colon cancer cells, Oncogene, vol.13, issue.1, pp.107-115, 2008.
DOI : 10.1038/sj.bjc.6690068

J. Guinney, R. Dienstmann, X. Wang, A. De-reyniès, A. Schlicker et al., The consensus molecular subtypes of colorectal cancer, Nature Medicine, vol.228, issue.11, pp.1350-1356, 2015.
DOI : 10.1186/gb-2004-5-10-r80

A. Hryniuk, S. Grainger, J. G. Savory, and D. Lohnes, Cdx1 and Cdx2 Function as Tumor Suppressors, Journal of Biological Chemistry, vol.1775, issue.48, pp.33343-33354, 2014.
DOI : 10.1053/gast.2000.16507

URL : http://www.jbc.org/content/289/48/33343.full.pdf

H. Ireland, R. Kemp, C. Houghton, L. Howard, A. R. Clarke et al., Inducible cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of ??-catenin, Gastroenterology, vol.126, issue.5, pp.1236-1246, 2004.
DOI : 10.1053/j.gastro.2004.03.020

S. M. Karam, C. Tomasetto, and M. Rio, Trefoil factor 1 is required for the commitment programme of mouse oxyntic epithelial progenitors, Gut, vol.53, issue.10, pp.1408-1415031963, 2003.
DOI : 10.1136/gut.2003.031963

J. H. Kim, K. Kim, Y. Rhee, J. M. Bae, N. Cho et al., Gastric-type expression signature in serrated pathway???associated colorectal tumors, Human Pathology, vol.46, issue.5, pp.643-656, 2015.
DOI : 10.1016/j.humpath.2015.01.003

W. Liu, H. Li, S. Hong, G. P. Piszczek, W. Chen et al., Olfactomedin 4 deletion induces colon adenocarcinoma in Apc Min/+ mice, Oncogene, vol.32, issue.40, pp.5237-5247, 2016.
DOI : 10.1016/j.immuni.2010.03.003

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, vol.14, issue.12, p.550, 2014.
DOI : 10.1186/gb-2013-14-4-r36

P. Lu, V. M. Weaver, and Z. Werb, The extracellular matrix: A dynamic niche in cancer progression, The Journal of Cell Biology, vol.62, issue.4, pp.395-406, 2012.
DOI : 10.1002/1097-0142(19950215)75:4<1010::AID-CNCR2820750417>3.0.CO;2-O

A. Lujambio, L. Akkari, J. Simon, D. Grace, D. F. Tschaharganeh et al., Non-Cell-Autonomous Tumor Suppression by p53, Cell, vol.153, issue.2, pp.449-460, 2013.
DOI : 10.1016/j.cell.2013.03.020

URL : https://doi.org/10.1016/j.cell.2013.03.020

A. Marusyk, D. P. Tabassum, P. M. Altrock, V. Almendro, F. Michor et al., Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity, Nature, vol.25, issue.7520, pp.54-58, 2014.
DOI : 10.1093/bioinformatics/btp184

M. Matsuda, K. Sentani, T. Noguchi, T. Hinoi, M. Okajima et al., Immunohistochemical analysis of colorectal cancer with gastric phenotype: Claudin-18 is associated with poor prognosis, Pathology International, vol.158, issue.10, pp.673-680, 2010.
DOI : 10.1016/S0002-9440(10)64075-8

M. Mescher, P. Jeong, S. K. Knapp, M. Rübsam, M. Saynisch et al., The epidermal polarity protein Par3 is a non???cell autonomous suppressor of malignant melanoma, The Journal of Experimental Medicine, vol.4, issue.2, pp.339-358, 2017.
DOI : 10.1158/1078-0432.CCR-10-1343

J. Muñoz, D. E. Stange, A. G. Schepers, M. Van-de-wetering, B. Koo et al., The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ???+4??? cell markers, The EMBO Journal, vol.457, issue.14, pp.3079-3091, 2012.
DOI : 10.1038/nature07589

N. Platet, I. Hinkel, L. Richert, D. Murdamoothoo, A. Moufok-sadoun et al., The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton, Cancer Letters, vol.386, pp.57-64, 2017.
DOI : 10.1016/j.canlet.2016.10.040

C. Prévostel, C. Rammah-bouazza, H. Trauchessec, L. Canterel-thouennon, M. Busson et al., SOX9 is an atypical intestinal tumor suppressor controlling the oncogenic Wnt/ß-catenin signaling, Oncotarget, vol.7, pp.82228-82243, 2016.

T. L. Putoczki, S. Thiem, A. Loving, R. A. Busuttil, N. J. Wilson et al., Interleukin-11 Is the Dominant IL-6 Family Cytokine during Gastrointestinal Tumorigenesis and Can Be Targeted Therapeutically, Cancer Cell, vol.24, issue.2, pp.257-271, 2013.
DOI : 10.1016/j.ccr.2013.06.017

B. Renouf, C. Soret, T. Saandi, F. Delalande, E. Martin et al., Cdx2 homeoprotein inhibits non-homologous end joining in colon cancer but not in leukemia cells, Nucleic Acids Research, vol.29, issue.8, pp.3456-3469, 2012.
DOI : 10.1093/nar/29.16.e78

N. Sakamoto, Y. Feng, C. Stolfi, Y. Kurosu, M. Green et al., BRA FV600E cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis, 2017.

R. Salcedo, A. Worschech, M. Cardone, Y. Jones, Z. Gyulai et al., MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18, The Journal of Experimental Medicine, vol.62, issue.8, pp.1625-163620100199, 2010.
DOI : 10.1016/j.ajhg.2008.03.016

S. Schwitalla, A. A. Fingerle, P. Cammareri, T. Nebelsiek, S. I. Göktuna et al., Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties, Cell, vol.152, issue.1-2, pp.25-38, 2013.
DOI : 10.1016/j.cell.2012.12.012

K. Sentani, N. Sakamoto, F. Shimamoto, K. Anami, N. Oue et al., Expression of olfactomedin 4 and claudin-18 in serrated neoplasia of the colorectum: a characteristic pattern is associated with sessile serrated lesion, Histopathology, vol.130, issue.7, pp.1018-1027, 2013.
DOI : 10.1007/s00432-003-0519-6

H. Shaked, L. J. Hofseth, A. Chumanevich, A. A. Chumanevich, J. Wang et al., Chronic epithelial NF-?B activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation, Proc. Natl. Acad. Sci. USA, pp.14007-14012, 2012.
DOI : 10.1073/pnas.1211509109

URL : http://www.pnas.org/content/109/35/14007.full.pdf

I. M. Shih, T. L. Wang, G. Traverso, K. Romans, S. R. Hamilton et al., Top-down morphogenesis of colorectal tumors, Proc. Natl. Acad. Sci. USA, pp.2640-2645, 2001.
DOI : 10.1002/ijc.2910590110

S. Simmini, M. Bialecka, M. Huch, L. Kester, M. Van-de-wetering et al., Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2, Nature Communications, vol.26, p.5728, 2014.
DOI : 10.1093/bioinformatics/btp698

E. J. Stringer, C. A. Pritchard, and F. Beck, initiates histodifferentiation of the midgut endoderm, FEBS Letters, vol.299, issue.17, pp.2555-2560, 2008.
DOI : 10.1016/j.ydbio.2006.08.040

E. J. Stringer, I. Duluc, T. Saandi, I. Davidson, M. Bialecka et al., Cdx2 determines the fate of postnatal intestinal endoderm, Development, vol.139, issue.3, pp.465-474, 2012.
DOI : 10.1242/dev.070722

K. Tong, O. Pellón-cárdenas, V. R. Sirihorachai, B. N. Warder, O. A. Kothari et al., Degree of Tissue Differentiation Dictates Susceptibility to BRAF-Driven Colorectal Cancer, Cell Reports, vol.21, issue.13, pp.3833-3845, 2017.
DOI : 10.1016/j.celrep.2017.11.104

C. Trapnell, L. Pachter, and S. L. Salzberg, TopHat: discovering splice junctions with RNA-Seq, Bioinformatics, vol.18, issue.9, pp.1105-1111, 2009.
DOI : 10.1101/gr.074492.107

M. P. Verzi, H. Shin, H. H. He, R. Sulahian, C. A. Meyer et al., Differentiation-Specific Histone Modifications Reveal Dynamic Chromatin Interactions and Partners for the Intestinal Transcription Factor CDX2, Developmental Cell, vol.19, issue.5, pp.713-726, 2010.
DOI : 10.1016/j.devcel.2010.10.006

M. P. Verzi, H. Shin, L. Ho, X. S. Liu, and R. A. Shivdasani, Essential and Redundant Functions of Caudal Family Proteins in Activating Adult Intestinal Genes, Molecular and Cellular Biology, vol.31, issue.10, pp.2026-2039, 2011.
DOI : 10.1128/MCB.01250-10

Y. Zhang, J. Gao, X. Wang, S. Deng, H. Ye et al., CXCL4 mediates tumor regrowth after chemotherapy by suppression of antitumor immunity, Cancer Biology & Therapy, vol.16, issue.12, pp.1775-1783, 2015.
DOI : 10.1016/j.ejphar.2011.09.174