M. Weingarten, A. Lockwood, S. Hwo, and M. Kirschner, A protein factor essential for microtubule assembly., Proceedings of the National Academy of Sciences, vol.72, issue.5, pp.1858-1862, 1975.
DOI : 10.1073/pnas.72.5.1858

D. Cleveland, S. Hwo, and M. Kirschner, Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly, Journal of Molecular Biology, vol.116, issue.2, pp.227-247, 1977.
DOI : 10.1016/0022-2836(77)90214-5

D. Cleveland, S. Hwo, and M. Kirschner, Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin, Journal of Molecular Biology, vol.116, issue.2, pp.207-225, 1977.
DOI : 10.1016/0022-2836(77)90213-3

D. Drubin and M. Kirschner, Tau protein function in living cells, The Journal of Cell Biology, vol.103, issue.6, pp.2739-2746, 1986.
DOI : 10.1083/jcb.103.6.2739

M. Goedert, M. Spillantini, R. Jakes, D. Rutherford, and R. Crowther, Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease, Neuron, vol.3, issue.4, pp.519-526, 1989.
DOI : 10.1016/0896-6273(89)90210-9

A. Himmler, Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family., Molecular and Cellular Biology, vol.9, issue.4, pp.1389-1396, 1989.
DOI : 10.1128/MCB.9.4.1389

J. Trojanowski, T. Schuck, M. Schmidt, and V. Lee, Distribution of tau proteins in the normal human central and peripheral nervous system., Journal of Histochemistry & Cytochemistry, vol.37, issue.2, pp.209-215, 1989.
DOI : 10.1177/37.2.2492045

L. Binder, A. Frankfurter, and L. Rebhun, The distribution of tau in the mammalian central nervous system, The Journal of Cell Biology, vol.101, issue.4, pp.1371-1378, 1895.
DOI : 10.1083/jcb.101.4.1371

J. Bryan, B. Nagle, and K. Doenges, Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein., Proceedings of the National Academy of Sciences, vol.72, issue.9, pp.3570-3574, 1975.
DOI : 10.1073/pnas.72.9.3570

V. Corces, R. Manso, J. De-la-torre, J. Avila, A. Nasr et al., Effects of DNA on microtubule assembly, Eur J Biochem, vol.1105, pp.7-16, 1980.

V. Corces, J. Salas, M. Salas, and J. Avila, Binding of Microtubule Proteins to DNA: Specificity of the Interaction, European Journal of Biochemistry, vol.74, issue.2, pp.473-479, 1978.
DOI : 10.1101/SQB.1974.038.01.087

G. Multhaup, O. Huber, L. Buée, and M. Galas, Amyloid Precursor Protein (APP) Metabolites APP Intracellular Fragment (AICD), A??42, and Tau in Nuclear Roles, Journal of Biological Chemistry, vol.4, issue.39, pp.23515-23522, 2015.
DOI : 10.1016/S1570-9639(02)00538-1

M. Maina, Y. Hilaly, and L. Serpell, Nuclear tau and its potential role in alzheimer's disease, Biomolecules, vol.6, pp.2-20, 2016.

S. Selden and T. Pollard, Interaction of Actin Filaments with Microtubules Is Mediated by Microtubule-Associated Proteins and Regulated by Phosphorylation, Annals of the New York Academy of Sciences, vol.246, issue.1 Dynamic Aspec, pp.803-812, 1986.
DOI : 10.1021/bi00552a027

J. Brion, A. Couck, E. Passareiro, and J. Flament-durand, Neurofibrillary Tangles and Alzheimer???s Disease, European Neurology, vol.40, issue.3, pp.89-96, 1985.
DOI : 10.1159/000007969

I. Grundke-iqbal, K. Iqbal, M. Quinlan, Y. Tung, M. Zaidi et al., ) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments, J Biol Chem, vol.261, issue.13, pp.6084-6089, 1986.

C. Wischik, M. Novak, P. Edwards, A. Klug, W. Tichelaar et al., Structural characterization of the core of the paired helical filament of Alzheimer disease., Proceedings of the National Academy of Sciences, vol.85, issue.13, pp.4884-4888, 1988.
DOI : 10.1073/pnas.85.13.4884

C. Wischik, M. Novak, H. Thøgersen, P. Edwards, M. Runswick et al., Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease., Proceedings of the National Academy of Sciences, vol.85, issue.12, pp.4506-4510, 1988.
DOI : 10.1073/pnas.85.12.4506

M. Goedert, C. Wischik, R. Crowther, J. Walker, and A. Klug, Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau., Proceedings of the National Academy of Sciences, vol.85, issue.11, pp.4051-4055, 1988.
DOI : 10.1073/pnas.85.11.4051

C. Masters, G. Simms, N. Weinman, G. Multhaup, B. Mcdonald et al., Amyloid plaque core protein in Alzheimer disease and Down syndrome., Proceedings of the National Academy of Sciences, vol.82, issue.12, pp.4245-4249, 1985.
DOI : 10.1073/pnas.82.12.4245

G. Glenner and C. Wong, Alzheimer's disease and Down's syndrome: Sharing of a unique cerebrovascular amyloid fibril protein, Biochemical and Biophysical Research Communications, vol.122, issue.3, pp.1131-1135, 1984.
DOI : 10.1016/0006-291X(84)91209-9

I. Grundke-iqbal, K. Iqbal, Y. Tung, M. Quinlan, H. Wisniewski et al., Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology., Proceedings of the National Academy of Sciences, vol.83, issue.13, pp.4913-4917, 1986.
DOI : 10.1073/pnas.83.13.4913

M. Derisbourg, C. Leghay, G. Chiappetta, F. Fernandez-gomez, C. Laurent et al., Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms, Scientific Reports, vol.38, issue.21, p.9659, 2015.
DOI : 10.1093/nar/gkp964

Y. Wang and E. Mandelkow, Tau in physiology and pathology, Nature Reviews Neuroscience, vol.576, issue.1, pp.22-35, 2015.
DOI : 10.1016/j.febslet.2004.09.011

K. Iqbal, F. Liu, and C. Gong, Tau and neurodegenerative disease: the story so far, Nature Reviews Neurology, vol.6, issue.1, pp.15-27, 2016.
DOI : 10.1074/jbc.M802645200

T. Guo, W. Noble, and D. Hanger, Roles of tau protein in health and disease, Acta Neuropathologica, vol.9, issue.431, pp.665-704, 2017.
DOI : 10.1186/1742-2094-9-47

M. Spillantini, M. Goedert, R. Crowther, J. Murrell, M. Farlow et al., Familial multiple system tauopathy with presenile dementia: A disease with abundant neuronal and glial tau filaments, Proceedings of the National Academy of Sciences, vol.55, issue.1, pp.4113-4118, 1997.
DOI : 10.1097/00005072-199601000-00006

S. Lopes, J. Vaz-silva, V. Pinto, C. Dalla, N. Kokras et al., Tau protein is essential for stress-induced brain pathology, Proceedings of the National Academy of Sciences, vol.5, issue.1, pp.3755-3763, 2016.
DOI : 10.3389/fneur.2014.00026

K. Vossel, M. Tartaglia, H. Nygaard, A. Zeman, and B. Miller, Epileptic activity in Alzheimer's disease: causes and clinical relevance, The Lancet Neurology, vol.16, issue.4, pp.311-322, 2017.
DOI : 10.1016/S1474-4422(17)30044-3

Y. Li, H. Sun, Z. Chen, H. Xu, G. Bu et al., Implications of GABAergic Neurotransmission in Alzheimer???s Disease, Frontiers in Aging Neuroscience, vol.41, p.31, 2016.
DOI : 10.1001/archneur.1984.04210080010005

A. Andreadis, W. Brown, and K. Kosik, Structure and novel exons of the human .tau. gene, Biochemistry, vol.31, issue.43, pp.10626-10633, 1992.
DOI : 10.1021/bi00158a027

A. Andreadis, Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1739, issue.2-3, pp.91-103, 2005.
DOI : 10.1016/j.bbadis.2004.08.010

G. Lee, N. Cowan, and M. Kirschner, The primary structure and heterogeneity of tau protein from mouse brain, Science, vol.239, issue.4837, pp.285-288, 1988.
DOI : 10.1126/science.3122323

M. Goedert, M. Spillantini, M. Potier, J. Ulrich, and R. Crowther, Cloning and sequencing of the cDNA encoding an isoform of microtubuleassociated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain, EMBO J, vol.8, pp.393-399, 1989.

M. Goedert and R. Jakes, Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization, EMBO J, vol.9, pp.4225-4230, 1990.

J. Hanes, N. Zilka, M. Bartkova, M. Caletkova, D. Dobrota et al., Rat tau proteome consists of six tau isoforms: implication for animal models of human tauopathies, Journal of Neurochemistry, vol.15, issue.Pt. 2, pp.1167-1176, 2009.
DOI : 10.1016/j.bbadis.2004.06.020

T. Bullmann, M. Holzer, H. Mori, and T. Arendt, Pattern of tau isoforms expression during development in vivo, International Journal of Developmental Neuroscience, vol.27, issue.6, pp.591-597, 2009.
DOI : 10.1016/j.ijdevneu.2009.06.001

H. Zempel, F. Dennissen, Y. Kumar, J. Luedtke, J. Biernat et al., Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture, Journal of Biological Chemistry, vol.1523, issue.29, pp.12192-12207, 2017.
DOI : 10.1523/JNEUROSCI.4674-06.2007

M. Sealey, E. Vourkou, C. Cowan, T. Bossing, S. Quraishe et al., Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy, Neurobiology of Disease, vol.105, pp.74-83, 2017.
DOI : 10.1016/j.nbd.2017.05.003

N. Malmanche, P. Dourlen, M. Gistelinck, F. Demiautte, N. Link et al., Developmental Expression of 4-Repeat-Tau Induces Neuronal Aneuploidy in Drosophila Tauopathy Models, Scientific Reports, vol.236, pp.1-14, 2016.
DOI : 10.1002/dvdy.21265

D. Trabzuni, S. Wray, J. Vandrovcova, A. Ramasamy, R. Walker et al., MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies, Human Molecular Genetics, vol.21, issue.18, pp.4094-4103, 2012.
DOI : 10.1093/hmg/dds238

A. Boutajangout, A. Boom, K. Leroy, and J. Brion, Expression of tau mRNA and soluble tau isoforms in affected and non-affected brain areas in Alzheimer's disease, FEBS Letters, vol.129, issue.1-2, pp.183-189, 2004.
DOI : 10.1016/0022-510X(94)00249-N

C. Liu and J. Götz, Profiling murine tau with 0N, 1N and 2N isoformspecific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus, PLoS One, vol.8, 2013.

D. Dickson, N. Kouri, M. Murray, and K. Josephs, Neuropathology of Frontotemporal Lobar Degeneration-Tau (FTLD-Tau), Journal of Molecular Neuroscience, vol.51, issue.Suppl 3, pp.384-389, 2011.
DOI : 10.1002/ana.10222

M. Iovino, S. Agathou, A. Gonzalez-rueda, D. C. Velasco-herrera, M. Borroni et al., mutations, Brain, vol.138, issue.11, pp.3345-3359, 2015.
DOI : 10.1093/brain/awv222

A. Fuster-matanzo, M. Llorens-martín, J. Jurado-arjona, J. Avila, and F. Hernández, Tau Protein and Adult Hippocampal Neurogenesis, Frontiers in Neuroscience, vol.6, p.104, 2012.
DOI : 10.3389/fnins.2012.00104

D. Drubin, D. Caput, and M. Kirschner, Studies on the expression of the microtubule-associated protein, tau, during mouse brain development, with newly isolated complementary DNA probes, The Journal of Cell Biology, vol.98, issue.3, pp.1090-1097, 1984.
DOI : 10.1083/jcb.98.3.1090

S. Papasozomenos and L. Binder, Phosphorylation determines two distinct species of tau in the central nervous system, Cell Motility and the Cytoskeleton, vol.83, issue.3, pp.210-226, 1987.
DOI : 10.1177/18.5.315

A. Sultan, F. Nesslany, M. Violet, S. Bégard, A. Loyens et al., Nuclear Tau, a Key Player in Neuronal DNA Protection, Journal of Biological Chemistry, vol.259, issue.6, pp.4566-4575, 2011.
DOI : 10.1016/j.neurobiolaging.2005.10.019

M. Black, T. Slaughter, S. Moshiach, M. Obrocka, and I. Fischer, Tau is enriched on dynamic microtubules in the distal region of growing axons, J Neurosci, vol.16, pp.3601-3619, 1996.

M. Hinrichs, A. Jalal, B. Brenner, E. Mandelkow, S. Kumar et al., Tau Protein Diffuses along the Microtubule Lattice, Journal of Biological Chemistry, vol.12, issue.46, pp.38559-38568, 2012.
DOI : 10.1038/nn.2314

S. Khatoon, I. Grundke-iqbal, and K. Iqbal, Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains, FEBS Letters, vol.5, issue.1, pp.80-84, 1994.
DOI : 10.1111/j.1365-2559.1981.tb01818.x

J. Mandell and G. Banker, A spatial gradient of tau protein phosphorylation in nascent axons, J Neurosci, vol.16, pp.5727-5740, 1996.

C. Sayas, E. Tortosa, F. Bollati, S. Ramírez-ríos, I. Arnal et al., Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells, Journal of Neurochemistry, vol.111, issue.Pt 10, pp.653-667, 2015.
DOI : 10.1016/0165-0173(90)90013-E

S. Ramirez-rios, E. Denarier, E. Prezel, and A. Vinit, Tau antagonizes end-binding protein tracking at microtubule ends through a phosphorylation-dependent mechanism, Molecular Biology of the Cell, vol.186, issue.3, pp.2924-2934, 2016.
DOI : 10.1083/jcb.200901036

URL : https://hal.archives-ouvertes.fr/hal-01478521

Y. Ivashko-pachima, C. Sayas, A. Malishkevich, and I. Gozes, ADNP/NAP dramatically increase microtubule end-binding protein???Tau interaction: a novel avenue for protection against tauopathy, Molecular Psychiatry, vol.16, issue.9, pp.1335-1344, 2017.
DOI : 10.1038/nrm4084

C. Sayas and J. Ávila, Crosstalk between axonal classical microtubuleassociated proteins and end binding proteins during axon extension: possible implications in neurodegeneration, J Alz Dis, vol.40, issue.1, pp.17-22, 2014.

N. Hirokawa, T. Funakoshi, R. Sato-harada, and Y. Kanai, Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons, The Journal of Cell Biology, vol.132, issue.4, pp.667-679, 1996.
DOI : 10.1083/jcb.132.4.667

X. Li, Y. Kumar, H. Zempel, E. Mandelkow, J. Biernat et al., Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration, The EMBO Journal, vol.30, issue.23, pp.4825-4837, 2011.
DOI : 10.1523/JNEUROSCI.2357-10.2010

P. Sohn, T. Tracy, H. Son, Y. Zhou, R. Leite et al., Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment, Molecular Neurodegeneration, vol.117, issue.Pt 6, p.47, 2016.
DOI : 10.1242/jcs.01531

R. Brandt, J. Léger, and L. , Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain, The Journal of Cell Biology, vol.131, issue.5, pp.1327-1340, 1995.
DOI : 10.1083/jcb.131.5.1327

A. Gauthier-kemper, C. Weissmann, N. Golovyashkina, Z. Sebö-lemke, G. Drewes et al., The frontotemporal dementia mutation R406W blocks tau???s interaction with the membrane in an annexin A2???dependent manner, The Journal of Cell Biology, vol.1, issue.4, pp.647-661, 2011.
DOI : 10.1523/JNEUROSCI.0797-04.2004

T. Maas, J. Eidenmüller, and R. Brandt, Interaction of Tau with the Neural Membrane Cortex Is Regulated by Phosphorylation at Sites That Are Modified in Paired Helical Filaments, Journal of Biological Chemistry, vol.258, issue.21, pp.15733-15740, 2000.
DOI : 10.1038/369488a0

Z. Mansuroglu, H. Benhelli-mokrani, V. Marcato, A. Sultan, M. Violet et al., Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin, Scientific Reports, vol.2, issue.1, p.33047, 2016.
DOI : 10.1186/2051-5960-2-14

M. Luo, S. Tse, J. Memmott, and A. Andreadis, Novel isoforms of tau that lack the microtubule-binding domain, Journal of Neurochemistry, vol.90, issue.2, pp.340-351, 2004.
DOI : 10.1111/j.1471-4159.2004.02508.x

D. Cross, J. Muñoz, P. Hernández, and R. Maccioni, Nuclear and cytoplasmic tau proteins from human nonneuronal cells share common structural and functional features with brain tau, Journal of Cellular Biochemistry, vol.124, issue.2, pp.305-317, 2000.
DOI : 10.1042/bj2690061

I. Georgieff, R. Liem, D. Couchie, C. Mavilia, J. Nunez et al., Expression of high molecular weight tau in the central and peripheral nervous systems, J Cell Sci, vol.105, pp.729-737, 1993.

J. Nunez and I. Fischer, Microtubule-associated proteins (MAPs) in the peripheral nervous system during development and regeneration, Journal of Molecular Neuroscience, vol.83, issue.3, pp.207-222, 1997.
DOI : 10.1091/mbc.4.5.445

M. Goedert, M. Spillantini, and R. Crowther, Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system., Proceedings of the National Academy of Sciences, vol.89, issue.5, pp.1983-1987, 1992.
DOI : 10.1073/pnas.89.5.1983

Y. Wang, P. Loomis, R. Zinkowski, and L. Binder, A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau, The Journal of Cell Biology, vol.121, issue.2, pp.257-267, 1993.
DOI : 10.1083/jcb.121.2.257

J. Ashman, E. Hall, J. Eveleth, and K. Boekelheide, Tau, the Neuronal Heat-Stable Microtubule-Associated Protein, is also Present in the Cross-Linked Microtubule Network of the Testicular Spermatid Manchette1, Biology of Reproduction, vol.46, issue.1, pp.120-129, 1992.
DOI : 10.1095/biolreprod46.1.120

J. Sigala, F. Jumeau, M. Caillet-boudin, N. Sergeant, C. Ballot et al., Immuno-detection of tau microtubuleassociated protein in human sperm and testis, Asian J Androl, vol.16, pp.927-928, 2014.

H. Inoue, Y. Hiradate, Y. Shirakata, K. Kanai, K. Kosaka et al., Site-specific phosphorylation of Tau protein is associated with deacetylation of microtubules in mouse spermatogenic cells during meiosis, FEBS Letters, vol.286, issue.11, pp.2003-2008, 2014.
DOI : 10.1074/jbc.M110.199976

M. Violet, L. Delattre, M. Tardivel, A. Sultan, A. Chauderlier et al., A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions, Frontiers in Cellular Neuroscience, vol.17, p.84, 2014.
DOI : 10.1091/mbc.e06-03-0177

M. Violet, A. Chauderlier, L. Delattre, M. Tardivel, M. Chouala et al., Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo, Neurobiology of Disease, vol.82, pp.540-551, 2015.
DOI : 10.1016/j.nbd.2015.09.003

B. Samra and E. , A role for Tau protein in maintaining ribosomal DNA stability and cytidine deaminase-deficient cell survival, Nature Communications, vol.406, issue.Pt B, p.693, 2017.
DOI : 10.1007/s00216-014-7711-1

M. Fernandez-nogales, J. Cabrera, M. Santos-galindo, J. Hoozemans, I. Ferrer et al., Huntington's disease is a four-repeat tauopathy with tau nuclear rods, Nature Medicine, vol.114, issue.8, pp.881-885, 2014.
DOI : 10.1016/S0092-8674(00)80623-6

B. Frost, F. Bardai, and M. Feany, Lamin Dysfunction Mediates Neurodegeneration in Tauopathies, Current Biology, vol.26, issue.1, pp.129-136, 2016.
DOI : 10.1016/j.cub.2015.11.039

A. Granic, J. Padmanabhan, M. Norden, and H. Potter, Alzheimer A?? Peptide Induces Chromosome Mis-Segregation and Aneuploidy, Including Trisomy 21: Requirement for Tau and APP, Molecular Biology of the Cell, vol.21, issue.4, pp.511-520, 2010.
DOI : 10.1091/mbc.E09-10-0850

G. Rossi, D. Conconi, E. Panzeri, S. Redaelli, E. Piccoli et al., Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome, J Alz Dis, vol.33, pp.969-982, 2013.

M. Caillet-boudin, L. Buée, N. Sergeant, and B. Lefebvre, Regulation of human MAPT gene expression, Molecular Neurodegeneration, vol.12, issue.1, p.28, 2015.
DOI : 10.1096/fj.04-1763fje

D. Orozco, S. Tahirovic, K. Rentzsch, B. Schwenk, C. Haass et al., Loss of fused in sarcoma (FUS) promotes pathological Tau splicing, EMBO reports, vol.1, issue.8, pp.759-764, 2012.
DOI : 10.1038/nprot.2006.356

S. Ishigaki, Y. Fujioka, Y. Okada, Y. Riku, T. Udagawa et al., Altered Tau Isoform Ratio Caused by Loss of FUS and SFPQ Function Leads to FTLD-like Phenotypes, Cell Reports, vol.18, issue.5, pp.1118-1131, 2017.
DOI : 10.1016/j.celrep.2017.01.013

P. Smith, C. Delay, J. Girard, P. Lie, E. Planel et al., MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy, Human Molecular Genetics, vol.20, issue.20, pp.4016-4024, 2011.
DOI : 10.1093/hmg/ddr330

I. Santa-maria, F. Hernandez, F. Moreno, and J. Avila, Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-??-peptide aggregation, Neuroscience Letters, vol.429, issue.2-3, pp.91-94, 2007.
DOI : 10.1016/j.neulet.2007.09.068

I. Santa-maria, M. Alaniz, N. Renwick, C. Cela, T. Fulga et al., Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau, Journal of Clinical Investigation, vol.125, issue.2, pp.681-686, 2015.
DOI : 10.1172/JCI78421DS1

T. Kampers, P. Friedhoff, J. Biernat, E. Mandelkow, and E. Mandelkow, RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments, FEBS Letters, vol.100, issue.3, pp.344-349, 1996.
DOI : 10.1073/pnas.85.12.4506

X. Zhang, Y. Lin, N. Eschmann, H. Zhou, J. Rauch et al., RNA stores tau reversibly in complex coacervates, PLOS Biology, vol.29, issue.7, p.2002183, 2017.
DOI : 10.1371/journal.pbio.2002183.s010

S. Alberti and A. Hyman, Are aberrant phase transitions a driver of cellular aging?, BioEssays, vol.112, issue.10, pp.959-968, 2016.
DOI : 10.1073/pnas.1500262112

K. Moschner, F. Sündermann, H. Meyer, D. Graca, A. Appel et al., Isoform Expression and Induce Neuronal Sprouting, Journal of Biological Chemistry, vol.38, issue.24, pp.16814-16825, 2014.
DOI : 10.1523/JNEUROSCI.4933-12.2013

S. Kobayashi, T. Tanaka, Y. Soeda, O. Almeida, and A. Takashima, Local Somatodendritic Translation and Hyperphosphorylation of Tau Protein Triggered by AMPA and NMDA Receptor Stimulation, EBioMedicine, vol.20, pp.120-126, 2017.
DOI : 10.1016/j.ebiom.2017.05.012

P. Ash, T. Vanderweyde, K. Youmans, D. Apicco, and B. Wolozin, Pathological stress granules in Alzheimer???s disease, Brain Research, vol.1584, pp.52-58, 2014.
DOI : 10.1016/j.brainres.2014.05.052

M. Panas, P. Ivanov, and P. Anderson, Mechanistic insights into mammalian stress granule dynamics, The Journal of Cell Biology, vol.17, issue.3, pp.313-323, 2016.
DOI : 10.1242/jcs.090951

T. Vanderweyde, D. Apicco, K. Youmans-kidder, P. Ash, C. Cook et al., Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity, Cell Reports, vol.15, issue.7, pp.1455-1466, 2016.
DOI : 10.1016/j.celrep.2016.04.045

T. Shelkovnikova, P. Dimasi, M. Kukharsky, H. An, A. Quintiero et al., Chronically stressed or stress-preconditioned neurons fail to maintain stress granule assembly, Cell Death and Disease, vol.1523, issue.5, p.2788, 2017.
DOI : 10.1128/MCB.23.22.8233-8245.2003

A. Alonso, T. Zaidi, I. Grundke-iqbal, and K. Iqbal, Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease., Proceedings of the National Academy of Sciences, vol.91, issue.12, pp.5562-5566, 1994.
DOI : 10.1073/pnas.91.12.5562

A. Alonso, I. Grundke-iqbal, and K. Iqbal, Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules, Nature Medicine, vol.39, issue.7, pp.783-787, 1996.
DOI : 10.1016/0169-328X(95)00051-S

A. Alonso, I. Grundke-iqbal, H. Barra, and K. Iqbal, Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau, Proceedings of the National Academy of Sciences, vol.65, issue.2, pp.298-303, 1997.
DOI : 10.1046/j.1471-4159.1995.65020732.x

A. Mudher, D. Shepherd, T. Newman, P. Mildren, J. Jukes et al., GSK-3?? inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila, Molecular Psychiatry, vol.9, issue.Part 14, pp.522-530, 2004.
DOI : 10.1016/S0960-9822(99)80215-2

C. Cowan, F. Chee, D. Shepherd, and A. Mudher, model of tauopathy, Biochemical Society Transactions, vol.38, issue.2, pp.564-570, 2010.
DOI : 10.1042/BST0380564

Q. Ma, X. Zuo, F. Yang, O. Ubeda, D. Gant et al., Loss of MAP Function Leads to Hippocampal Synapse Loss and Deficits in the Morris Water Maze with Aging, Journal of Neuroscience, vol.34, issue.21, pp.7124-7136, 2014.
DOI : 10.1523/JNEUROSCI.3439-13.2014

URL : https://hal.archives-ouvertes.fr/hal-01542860

M. Morris, P. Hamto, A. Adame, N. Devidze, E. Masliah et al., Age-appropriate cognition and subtle dopamine-independent motor deficits in aged Tau knockout mice, Neurobiology of Aging, vol.34, issue.6, pp.1523-1529, 2013.
DOI : 10.1016/j.neurobiolaging.2012.12.003

S. Lopes, L. Teplytska, J. Vaz-silva, C. Dioli, R. Trindade et al., Tau Deletion Prevents Stress-Induced Dendritic Atrophy in Prefrontal Cortex: Role of Synaptic Mitochondria, Cerebral Cortex, vol.27, issue.4, pp.2580-2591, 2016.
DOI : 10.1093/cercor/bhw057

T. Kimura, D. Whitcomb, J. J. Regan, P. Piers, T. Heo et al., Microtubule-associated protein tau is essential for long-term depression in the hippocampus, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.96, issue.5, p.20130144, 2014.
DOI : 10.1083/jcb.96.5.1374

T. Ahmed, A. Van-der-jeugd, D. Blum, M. Galas, D. Hooge et al., Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion, Neurobiology of Aging, vol.35, issue.11, pp.2474-2478, 2014.
DOI : 10.1016/j.neurobiolaging.2014.05.005

E. Marciniak, A. Leboucher, E. Caron, T. Ahmed, A. Tailleux et al., Tau deletion promotes brain insulin resistance, The Journal of Experimental Medicine, vol.4, issue.8, pp.2257-2269, 2017.
DOI : 10.1096/fj.06-7703com

K. Talbot, H. Wang, H. Kazi, L. Han, K. Bakshi et al., Demonstrated brain insulin resistance in Alzheimer???s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline, Journal of Clinical Investigation, vol.122, issue.4, pp.1316-1338, 2012.
DOI : 10.1172/JCI59903DS1

M. Yarchoan and S. Arnold, Repurposing Diabetes Drugs for Brain Insulin Resistance in Alzheimer Disease, Diabetes, vol.63, issue.7, pp.2253-2261, 2014.
DOI : 10.2337/db14-0287

L. Ittner, Y. Ke, F. Delerue, M. Bi, A. Gladbach et al., Dendritic Function of Tau Mediates Amyloid-?? Toxicity in Alzheimer's Disease Mouse Models, Cell, vol.142, issue.3, pp.387-397, 2010.
DOI : 10.1016/j.cell.2010.06.036

C. Klein, E. Kramer, A. Cardine, B. Schraven, R. Brandt et al., Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau, J Neurosci, vol.22, pp.698-707, 2002.

E. Krämer-albers and R. White, From axon???glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase, Cellular and Molecular Life Sciences, vol.30, issue.Suppl 1, pp.2003-2012, 2011.
DOI : 10.1523/JNEUROSCI.0219-10.2010

I. Sotiropoulos, A. Lopes, V. Pinto, S. Lopes, S. Carlos et al., Selective impact of Tau loss on nociceptive primary afferents and pain sensation, Experimental Neurology, vol.261, pp.486-493, 2014.
DOI : 10.1016/j.expneurol.2014.07.008

A. Harada, K. Oguchi, S. Okabe, J. Kuno, S. Terada et al., Altered microtubule organization in small-calibre axons of mice lacking tau protein, Nature, vol.369, issue.6480, pp.488-491, 1994.
DOI : 10.1038/369488a0

S. Lopes, A. Lopes, V. Pinto, M. Guimares, V. Sardinha et al., Absence of Tau triggers age-dependent sciatic nerve morphofunctional deficits and motor impairment, Aging Cell, vol.105, issue.Pt 1, pp.208-216, 2016.
DOI : 10.1073/pnas.0406361102

P. Lei, S. Ayton, D. Finkelstein, L. Spoerri, G. Ciccotosto et al., Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export, Nature Medicine, vol.114, issue.2, pp.291-295, 2012.
DOI : 10.1046/j.1471-4159.2001.00183.x

A. Gumucio, L. Lannfelt, and L. Nilsson, Lack of exon 10 in the murine tau gene results in mild sensorimotor defects with aging, BMC Neuroscience, vol.14, issue.1, pp.2-25, 2013.
DOI : 10.1016/j.neurobiolaging.2004.12.007

R. Sato-yoshitake, Y. Shiomura, H. Miyasaka, and N. Hirokawa, Microtubule-associated protein 1B: Molecular structure, localization, and phosphorylation-dependent expression in developing neurons, Neuron, vol.3, issue.2, pp.229-238, 1989.
DOI : 10.1016/0896-6273(89)90036-6

I. Georgieff, R. Liem, W. Mellado, J. Nunez, and M. Shelanski, High molecular weight tau: preferential localization in the peripheral nervous system, J Cell Sci, vol.100, pp.55-60, 1991.

F. Nothias, L. Boyne, M. Murray, A. Tessler, and I. Fischer, The expression and distribution of tau proteins and messenger RNA in rat dorsal root ganglion neurons during development and regeneration, Neuroscience, vol.66, issue.3, pp.707-719, 1995.
DOI : 10.1016/0306-4522(94)00598-Y

T. Frappier, I. Georgieff, K. Brown, and M. Shelanski, ?? Regulation of Microtubule-Microtubule Spacing and Bundling, Journal of Neurochemistry, vol.63, issue.6, pp.2288-2294, 1994.
DOI : 10.1046/j.1471-4159.1994.63062288.x

L. Boyne, K. Martin, S. Hockfield, and I. Fischer, Expression and distribution of phosphorylated MAP1B in growing axons of cultured hippocampal neurons, Journal of Neuroscience Research, vol.57, issue.4, pp.439-450, 1995.
DOI : 10.1242/jcs.1991.Supplement_15.9

S. Mondragón-rodríguez, E. Trillaud-doppia, A. Dudilot, C. Bourgeois, M. Lauzon et al., -Methyl-d-aspartate Receptor-dependent Tau Phosphorylation, Journal of Biological Chemistry, vol.12, issue.38, pp.32040-32053, 2012.
DOI : 10.1074/jbc.R109.080895

H. Tai, A. Serrano-pozo, T. Hashimoto, M. Frosch, T. Spires-jones et al., The Synaptic Accumulation of Hyperphosphorylated Tau Oligomers in Alzheimer Disease Is Associated With Dysfunction of the Ubiquitin-Proteasome System, The American Journal of Pathology, vol.181, issue.4, pp.1426-1435, 2012.
DOI : 10.1016/j.ajpath.2012.06.033

M. Frandemiche, D. Seranno, S. Rush, T. Borel, E. Elie et al., Activity-Dependent Tau Protein Translocation to Excitatory Synapse Is Disrupted by Exposure to Amyloid-Beta Oligomers, Journal of Neuroscience, vol.34, issue.17, pp.6084-6097, 2014.
DOI : 10.1523/JNEUROSCI.4261-13.2014

M. Morris, S. Maeda, K. Vossel, and L. Mucke, The Many Faces of Tau, Neuron, vol.70, issue.3, pp.410-426, 2011.
DOI : 10.1016/j.neuron.2011.04.009

P. Regan, T. Piers, J. Yi, D. Kim, S. Huh et al., Tau Phosphorylation at Serine 396 Residue Is Required for Hippocampal LTD, Journal of Neuroscience, vol.35, issue.12, pp.4804-4812, 2015.
DOI : 10.1523/JNEUROSCI.2842-14.2015

T. Fulga, I. Elson-schwab, V. Khurana, M. Steinhilb, T. Spires et al., Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo, Nature Cell Biology, vol.117, issue.2, pp.139-148, 2007.
DOI : 10.1172/JCI28769

C. Dillon and Y. Goda, THE ACTIN CYTOSKELETON: Integrating Form and Function at the Synapse, Annual Review of Neuroscience, vol.28, issue.1, pp.25-55, 2005.
DOI : 10.1146/annurev.neuro.28.061604.135757

J. Harris, A. Koyama, S. Maeda, K. Ho, N. Devidze et al., Human P301L-Mutant Tau Expression in Mouse Entorhinal-Hippocampal Network Causes Tau Aggregation and Presynaptic Pathology but No Cognitive Deficits, PLoS ONE, vol.7, issue.9, p.45881, 2012.
DOI : 10.1371/journal.pone.0045881.s003

B. Hoover, M. Reed, J. Su, R. Penrod, L. Kotilinek et al., Tau Mislocalization to Dendritic Spines Mediates Synaptic Dysfunction Independently of Neurodegeneration, Neuron, vol.68, issue.6, pp.1067-1081, 2010.
DOI : 10.1016/j.neuron.2010.11.030

H. Kornau, L. Schenker, M. Kennedy, and P. Seeburg, Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95, Science, vol.269, issue.5231, pp.1737-1740, 1995.
DOI : 10.1126/science.7569905

G. Lee, S. Newman, D. Gard, H. Band, and G. Panchamoorthy, Tau interacts with src-family non-receptor tyrosine kinases, J Cell Sci, vol.111, pp.3167-3177, 1998.

C. Reynolds, C. Garwood, S. Wray, C. Price, S. Kellie et al., Phosphorylation Regulates Tau Interactions with Src Homology 3 Domains of Phosphatidylinositol 3-Kinase, Phospholipase C??1, Grb2, and Src Family Kinases, Journal of Biological Chemistry, vol.63, issue.26, pp.18177-18186, 2008.
DOI : 10.1016/0896-6273(94)90264-X

C. Trepanier, M. Jackson, and J. Macdonald, Regulation of NMDA receptors by the tyrosine kinase Fyn, FEBS Journal, vol.8, issue.Pt 2, pp.12-19, 2012.
DOI : 10.1038/nn1503

A. Usardi, A. Pooler, A. Seereeram, C. Reynolds, P. Derkinderen et al., Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau, FEBS Journal, vol.103, issue.Pt 21, pp.2927-2937, 2011.
DOI : 10.1111/j.1471-4159.2007.04930.x

A. Pooler, A. Usardi, C. Evans, K. Philpott, W. Noble et al., Dynamic association of tau with neuronal membranes is regulated by phosphorylation, Neurobiology of Aging, vol.33, issue.2, pp.431-458, 2012.
DOI : 10.1016/j.neurobiolaging.2011.01.005

K. Bhaskar, S. Yen, and G. Lee, Disease-related Modifications in Tau Affect the Interaction between Fyn and Tau, Journal of Biological Chemistry, vol.22, issue.42, pp.35119-35125, 2005.
DOI : 10.1023/A:1006807105059

M. Rapoport, H. Dawson, L. Binder, M. Vitek, and A. Ferreira, Tau is essential to ??-amyloid-induced neurotoxicity, Proceedings of the National Academy of Sciences, vol.21, issue.13, pp.6364-6369, 2002.
DOI : 10.1007/s004410050019

E. Roberson, K. Scearce-levie, J. Palop, F. Yan, I. Cheng et al., Reducing Endogenous Tau Ameliorates Amyloid ??-Induced Deficits in an Alzheimer's Disease Mouse Model, Science, vol.316, issue.5825, pp.750-754, 2007.
DOI : 10.1126/science.1141736

O. Shipton, J. Leitz, J. Dworzak, C. Acton, E. Tunbridge et al., Tau Protein Is Required for Amyloid ??-Induced Impairment of Hippocampal Long-Term Potentiation, Journal of Neuroscience, vol.31, issue.5, pp.1688-1692, 2011.
DOI : 10.1523/JNEUROSCI.2610-10.2011

E. Roberson, B. Halabisky, J. Yoo, J. Yao, J. Chin et al., Amyloid-??/Fyn-Induced Synaptic, Network, and Cognitive Impairments Depend on Tau Levels in Multiple Mouse Models of Alzheimer's Disease, Journal of Neuroscience, vol.31, issue.2, pp.700-711, 2011.
DOI : 10.1523/JNEUROSCI.4152-10.2011

T. Kimura, T. Fukuda, J. Park, M. Murayama, T. Mizoroki et al., Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau, The EMBO Journal, vol.8, issue.24, pp.5143-5152, 2007.
DOI : 10.1038/nn1477

P. Merino-serrais, R. Benavides-piccione, L. Blazquez-llorca, A. Kastanauskaite, A. Rábano et al., The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer???s disease, Brain, vol.136, issue.6, pp.1913-1928, 2013.
DOI : 10.1093/brain/awt088

H. Zempel, E. Thies, E. Mandelkow, and E. Mandelkow, A?? Oligomers Cause Localized Ca2+ Elevation, Missorting of Endogenous Tau into Dendrites, Tau Phosphorylation, and Destruction of Microtubules and Spines, Journal of Neuroscience, vol.30, issue.36, pp.11938-11950, 2010.
DOI : 10.1523/JNEUROSCI.2357-10.2010

E. Miller, P. Teravskis, B. Dummer, X. Zhao, R. Huganir et al., Tau phosphorylation and tau mislocalization mediate soluble A?? oligomer-induced AMPA glutamate receptor signaling deficits, European Journal of Neuroscience, vol.44, issue.Suppl 1, pp.1214-1224, 2014.
DOI : 10.1016/j.neuron.2004.11.011

H. Tsushima, M. Emanuele, A. Polenghi, A. Esposito, M. Vassalli et al., HDAC6 and RhoA are novel players in Abeta-driven disruption of neuronal polarity, Nature Communications, vol.98, p.7781, 2015.
DOI : 10.1016/j.bpj.2009.11.041

M. Salter and L. Kalia, Src kinases: a hub for NMDA receptor regulation, Nature Reviews Neuroscience, vol.69, issue.4, pp.317-328, 2004.
DOI : 10.1074/jbc.M103501200

S. Pinheiro, J. Silva, C. Mota, J. Vaz-silva, A. Veloso et al., Tau Mislocation in Glucocorticoid-Triggered Hippocampal Pathology, Molecular Neurobiology, vol.588, issue.Pt 1, pp.4745-4753, 2015.
DOI : 10.1113/jphysiol.2009.178905

C. Dioli, P. Patrício, R. Trindade, L. Pinto, J. Silva et al., Taudependent suppression of adult neurogenesis in the stressed hippocampus, Mol. Psychiatry In, vol.22, pp.1-91110, 2017.

A. Gheyara, R. Ponnusamy, B. Djukic, R. Craft, K. Ho et al., Tau reduction prevents disease in a mouse model of Dravet syndrome, Annals of Neurology, vol.32, issue.pt 10, pp.443-456, 2014.
DOI : 10.1016/j.neurobiolaging.2010.12.012

R. Rissman, K. Lee, V. W. Sawchenko, P. Alonso, A. Grundke-iqbal et al., Corticotropin-Releasing Factor Receptors Differentially Regulate Stress-Induced Tau Phosphorylation, Journal of Neuroscience, vol.27, issue.24, pp.6552-6562, 2007.
DOI : 10.1523/JNEUROSCI.5173-06.2007

E. Planel, T. Miyasaka, T. Launey, D. Chui, K. Tanemura et al., Alterations in Glucose Metabolism Induce Hypothermia Leading to Tau Hyperphosphorylation through Differential Inhibition of Kinase and Phosphatase Activities: Implications for Alzheimer's Disease, Journal of Neuroscience, vol.24, issue.10, pp.2401-2411, 2004.
DOI : 10.1523/JNEUROSCI.5561-03.2004

J. Van-der-harg, A. Nölle, R. Zwart, A. Boerema, E. Van-haastert et al., The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress, Cell Death and Disease, vol.485, issue.8, p.1393, 2014.
DOI : 10.1177/002215549804600611

T. Arendt, J. Stieler, A. Strijkstra, H. Rüdiger, and J. , Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals, J Neurosci, vol.23, pp.6972-6981, 2003.