C. Stiller, A. Craft, and I. Corazziari, Survival of children with bone sarcoma in Europe since 1978, European Journal of Cancer, vol.37, issue.6, pp.760-766, 2001.
DOI : 10.1016/S0959-8049(01)00004-1

E. The and . Group, Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Annals Oncol, vol.23, pp.100-109, 2012.

D. Heymann, Bone cancer : primary bone cancer an bone metastases. 2 nd Edition, 2014.

D. Heymann and F. Redini, Bone sarcomas: pathogenesis and new therapeutic approaches, IBMS BoneKEy, vol.8, issue.9, pp.402-41410, 1138.
DOI : 10.1138/20110531

F. Deschaseaux, L. Sensébé, and D. Heymann, Mechanisms of bone repair and regeneration, Trends in Molecular Medicine, vol.15, issue.9, pp.417-446, 2009.
DOI : 10.1016/j.molmed.2009.07.002

C. Panaroni, Y. Tzeng, H. Saeed, and J. Wu, Mesenchymal Progenitors and the Osteoblast Lineage in Bone Marrow Hematopoietic Niches, Current Osteoporosis Reports, vol.117, issue.6, pp.22-32, 2014.
DOI : 10.1172/JCI31581

P. Garg, M. Mazur, A. Buck, M. Wandtke, J. Liu et al., Prospective Review of Mesenchymal Stem Cells Differentiation into Osteoblasts, Orthopaedic Surgery, vol.84, issue.1, pp.13-19, 2017.
DOI : 10.2106/00004623-200212000-00001

A. Mohseny and P. Hogendoorn, Concise Review: Mesenchymal Tumors: When Stem Cells Go Mad, STEM CELLS, vol.70, issue.3, pp.397-403, 2011.
DOI : 10.1158/0008-5472.CAN-10-1305

URL : http://onlinelibrary.wiley.com/doi/10.1002/stem.596/pdf

E. Wagner, G. Luther, G. Zhu, Q. Luo, Q. Shi et al., Defective Osteogenic Differentiation in the Development of Osteosarcoma, Sarcoma, vol.242, issue.4885, pp.325238-325248, 2011.
DOI : 10.1126/science.3201241

X. Tang, X. Lu, W. Guo, T. Ren, H. Zhao et al., Different expression of Sox9 and Runx2 between chondrosarcoma and dedifferentiated chondrosarcoma cell line, European Journal of Cancer Prevention, vol.19, issue.6, pp.466-71, 2010.
DOI : 10.1097/CEJ.0b013e32833d942f

C. De-andrea, C. Reijnders, H. Kroon, D. De-jong, P. Hogendoorn et al., Secondary peripheral chondrosarcoma evolving from osteochondroma as a result of outgrowth of cells with functional EXT, Oncogene, vol.56, issue.9, pp.1095-104, 2012.
DOI : 10.1038/onc.2010.135

T. Delattre, O. Zucman, J. Melot, T. Garau, X. Zucker et al., The Ewing Family of Tumors -- A Subgroup of Small-Round-Cell Tumors Defined by Specific Chimeric Transcripts, New England Journal of Medicine, vol.331, issue.5, pp.294-303, 1056.
DOI : 10.1056/NEJM199408043310503

F. Tirode, K. Laud-duval, A. Prieur, B. Delorme, P. Charbord et al., Mesenchymal Stem Cell Features of Ewing Tumors, Cancer Cell, vol.11, issue.5, 2007.
DOI : 10.1016/j.ccr.2007.02.027

C. Von-levetzow, X. Jiang, Y. Gwye, G. Von-levetzow, L. Hung et al., Modeling Initiation of Ewing Sarcoma in Human Neural Crest Cells, PLoS ONE, vol.5, issue.4, 2011.
DOI : 10.1371/journal.pone.0019305.s004

M. Tanaka, Y. Yamazaki, Y. Kanno, K. Igarashi, K. Aisaki et al., Ewing???s sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors, Journal of Clinical Investigation, vol.124, issue.7, 2014.
DOI : 10.1172/JCI72399DS1

N. Riggi, L. Cironi, P. Provero, M. Suva, K. Kaloulis et al., Development of Ewing's Sarcoma from Primary Bone Marrow???Derived Mesenchymal Progenitor Cells, Cancer Research, vol.65, issue.24, pp.11459-11468, 2005.
DOI : 10.1158/0008-5472.CAN-05-1696

Ö. Uluçkan, A. Segaliny, S. Botter, J. Santiago, and A. Mutsaers, Preclinical mouse models of osteosarcoma, BoneKEy Reports, vol.4, 2015.
DOI : 10.1038/bonekey.2015.37

S. Botter, M. Arlt, and B. Fuchs, Mammalian models of bone sarcomas, Bone Cancer, pp.349-364, 2015.
DOI : 10.1016/B978-0-12-416721-6.00030-3

A. Cleton-jansen, Zebrafish models for studying bone cancers: mutants, transgenic fish and embryos, Bone Cancer, pp.365-370, 2015.
DOI : 10.1016/B978-0-12-416721-6.00031-5

C. Walkley, Modeling osteosarcoma: in vitro and in vivo approaches, Bone Cancer, pp.195-204, 2015.
DOI : 10.1016/B978-0-12-416721-6.00017-0

R. Hoffman, Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts, Nature Reviews Cancer, vol.111, issue.8, pp.451-452, 2015.
DOI : 10.1016/S0092-8674(02)01229-1

A. Llombart-bosch, I. Machado, S. Navarro, F. Bertoni, P. Bacchini et al., Histological heterogeneity of Ewing???s sarcoma/PNET: an immunohistochemical analysis of 415 genetically confirmed cases with clinical support, Virchows Archiv, vol.255, issue.5, pp.397-411, 2009.
DOI : 10.4161/cc.8.9.8307

N. Zhang, H. Liu, G. Yue, Y. Zhang, J. You et al., Molecular heterogeneity of Ewing sarcoma as detected by ion torrent sequencing. PLoS One, 2016.

C. Bühnemann, S. Li, H. Yu, B. White, H. Schäfer et al., Quantification of the Heterogeneity of Prognostic Cellular Biomarkers in Ewing Sarcoma Using Automated Image and Random Survival Forest Analysis, PLoS ONE, vol.4, issue.9, 2014.
DOI : 10.1371/journal.pone.0107105.s004

N. Sheffield, G. Pierron, J. Klughammer, P. Datlinger, A. Schönegger et al., DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma, Nature Medicine, vol.9, issue.3, pp.386-395, 2017.
DOI : 10.1016/S0893-6080(00)00026-5

J. Bovée, P. Hogendoorn, J. Wunder, and B. Alman, Cartilage tumours and bone development: molecular pathology and possible therapeutic targets, Nature Reviews Cancer, vol.9, issue.7, pp.481-489, 1038.
DOI : 10.1186/1476-4598-9-17

C. Fletcher, J. Bridge, P. Hogendoorn, and F. Mertens, Who Classification of Tumours of Soft Tissue and Bone. Fourth Edition, IARC Ed, 2013.

F. Speetjens, Y. De-jong, H. Gelderblom, and J. Bovée, Molecular oncogenesis of chondrosarcoma, Current Opinion in Oncology, vol.28, issue.4, pp.314-336, 2016.
DOI : 10.1097/CCO.0000000000000300

O. Neal, L. Ackerman, and L. , Chondrosarcoma of bone, 3<551::AID-CNCR2820050317>3.0.CO, pp.551-77, 1952.

D. Meijer, D. De-jong, T. Pansuriya, B. Van-den-akker, P. Picci et al., Genetic characterization of mesenchymal, clear cell, and dedifferentiated chondrosarcoma, Genes, Chromosomes and Cancer, vol.51, issue.10, pp.899-909, 2012.
DOI : 10.1002/gcc.20937

M. Amary, K. Bacsi, F. Maggiani, S. Damato, D. Halai et al., IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours, The Journal of Pathology, vol.6, issue.3, pp.334-377, 2011.
DOI : 10.1371/journal.pgen.1000991

P. Tarpey, S. Behjati, S. Cooke, V. Loo, P. Wedge et al., Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma, Nature Genetics, vol.26, issue.8, pp.923-929, 2013.
DOI : 10.1093/bioinformatics/btq330

G. Ottaviani and N. Jaffe, The Etiology of Osteosarcoma, Cancer Treat Res, vol.152, pp.15-32, 2009.
DOI : 10.1007/978-1-4419-0284-9_2

F. Fiorenza, A. Abudu, R. Grimer, S. Carter, R. Tillman et al., Risk factors for survival and local control in chondrosarcoma of bone, The Journal of Bone and Joint Surgery, vol.84, issue.1, pp.93-102, 2002.
DOI : 10.1302/0301-620X.84B1.11942

Z. Wang, C. Ovitt, A. Grigoriadis, U. Möhle-steinlein, U. Rüther et al., Bone and haematopoietic defects in mice lacking c-fos, Nature, vol.360, issue.6406, pp.741-745, 1038.
DOI : 10.1038/360741a0

Z. Wang, J. Liang, K. Schellander, E. Wagner, and A. Grigoriadis, c-fosinduced osteosarcoma formation in transgenic mice: cooperativity with c-jun and the role of endogenous c-fos, Cancer Res, vol.55, pp.6244-62451, 1995.

H. Correa, Li???Fraumeni Syndrome, Journal of Pediatric Genetics, vol.05, issue.02, pp.84-92, 2016.
DOI : 10.1055/s-0036-1579759

K. Bailey, M. Airik, M. Krook, E. Pedersen, and E. Lawlor, Micro-Environmental Stress Induces Src-Dependent Activation of Invadopodia and Cell Migration in Ewing Sarcoma, Neoplasia, vol.18, issue.8, 2016.
DOI : 10.1016/j.neo.2016.06.008

A. Lissat, M. Joerschke, D. Shinde, T. Braunschweig, A. Meier et al., IL6 secreted by Ewing sarcoma tumor microenvironment confers anti-apoptotic and cell-disseminating paracrine responses in Ewing sarcoma cells, BMC Cancer, vol.86, issue.1, pp.552-562, 2015.
DOI : 10.1002/path.4256

S. Paget, THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST., The Lancet, vol.133, issue.3421, pp.571-574
DOI : 10.1016/S0140-6736(00)49915-0

Y. Wittrant, S. Théoleyre, C. Chipoy, M. Padrines, F. Blanchard et al., OPG: new therapeutic targets in bone tumours and associated osteolysis, Biochim Biophys Acta, vol.1704, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00669006

G. Odri, S. Dumoucel, G. Picarda, S. Battaglia, F. Lamoureux et al., Zoledronic Acid as a New Adjuvant Therapeutic Strategy for Ewing's Sarcoma Patients, Cancer Research, vol.70, issue.19, pp.7610-7619, 1158.
DOI : 10.1158/0008-5472.CAN-09-4272

URL : http://cancerres.aacrjournals.org/content/canres/70/19/7610.full.pdf

G. Moriceau, B. Ory, L. Mitrofan, C. Riganti, F. Blanchard et al., Zoledronic Acid Potentiates mTOR Inhibition and Abolishes the Resistance of Osteosarcoma Cells to RAD001 (Everolimus): Pivotal Role of the Prenylation Process, Cancer Research, vol.70, issue.24, pp.10329-10368, 1158.
DOI : 10.1158/0008-5472.CAN-10-0578

URL : https://hal.archives-ouvertes.fr/inserm-00667504

G. Moriceau, B. Ory, B. Gobin, F. Verrecchia, F. Gouin et al., Therapeutic Approach of Primary Bone Tumours by Bisphosphonates, Current Pharmaceutical Design, vol.16, issue.27, pp.2981-2988, 2010.
DOI : 10.2174/138161210793563554

URL : https://hal.archives-ouvertes.fr/inserm-00511241

T. Ohba, H. Cole, J. Cates, D. Slosky, H. Haro et al., Bisphosphonates Inhibit Osteosarcoma-Mediated Osteolysis Via Attenuation of Tumor Expression of MCP-1 and RANKL, Journal of Bone and Mineral Research, vol.80, issue.7, pp.1431-1476, 2014.
DOI : 10.1038/labinvest.3780115

F. Lamoureux, P. Richard, Y. Wittrant, S. Battaglia, P. Pilet et al., Therapeutic Relevance of Osteoprotegerin Gene Therapy in Osteosarcoma: Blockade of the Vicious Cycle between Tumor Cell Proliferation and Bone Resorption, Cancer Research, vol.67, issue.15, pp.7308-7326, 1158.
DOI : 10.1158/0008-5472.CAN-06-4130

A. Cassady, A. Evdokiou, S. Sommerville, I. Dickinson, A. Guminski et al., Loss of osteoclasts contributes to development of osteosarcoma pulmonary metastases, Cancer Res, vol.70, pp.7063-72, 2010.

F. Cackowski, J. Anderson, K. Patrene, R. Choksi, S. Shapiro et al., Osteoclasts are important for bone angiogenesis, Blood, vol.115, issue.1, pp.140-149, 2010.
DOI : 10.1182/blood-2009-08-237628

L. Endo-munoz, A. Evdokiou, and N. Saunders, The role of osteoclasts and tumourassociated macrophages in osteosarcoma metastasis, Biochim Biophys Acta, vol.1826, pp.434-476, 2012.

P. Perrot, J. Rousseau, A. Bouffaut, F. Rédini, E. Cassagnau et al., Safety Concern between Autologous Fat Graft, Mesenchymal Stem Cell and Osteosarcoma Recurrence, PLoS ONE, vol.17, issue.6, 2010.
DOI : 10.1371/journal.pone.0010999.s001

URL : https://hal.archives-ouvertes.fr/inserm-00667931

M. Cortini, A. Massa, S. Avnet, G. Bonuccelli, and N. Baldini, Tumor-Activated Mesenchymal Stromal Cells Promote Osteosarcoma Stemness and Migratory Potential via IL-6 Secretion, PLOS ONE, vol.12, issue.4, 2016.
DOI : 10.1371/journal.pone.0166500.t001

URL : https://doi.org/10.1371/journal.pone.0166500

A. Massa, F. Perut, T. Chano, A. Woloszyk, T. Mitsiadis et al., The effect of extracellular acidosis on the behaviour of mesenchymal stem cells in vitro, European Cells and Materials, vol.33, pp.252-267, 2017.
DOI : 10.22203/eCM.v033a19

S. Avnet, D. Pompo, G. Chano, T. Errani, C. Ibrahim-hashim et al., Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-??B activation, International Journal of Cancer, vol.17, issue.Suppl 5, pp.1331-1345, 2017.
DOI : 10.2174/1389450117666160307143226

M. Tellez-gabriel, C. Charrier, B. Brounais-le-royer, M. Mullard, H. Brown et al., Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip, European Journal of Cell Biology, vol.96, issue.2, pp.110-118, 2017.
DOI : 10.1016/j.ejcb.2017.01.003

URL : https://hal.archives-ouvertes.fr/inserm-01466071

H. Xu, S. Gu, M. Riquelme, S. Burra, D. Callaway et al., Connexin 43 Channels Are Essential for Normal Bone Structure and Osteocyte Viability, Journal of Bone and Mineral Research, vol.292, issue.2, pp.436-484, 2015.
DOI : 10.1152/ajpcell.00611.2005

URL : http://onlinelibrary.wiley.com/doi/10.1002/jbmr.2374/pdf

J. Talbot and F. Verrecchia, Communication intercellulaire et remodelage osseux, Biologie Aujourd'hui, vol.25, issue.2, pp.125-159, 2012.
DOI : 10.1016/S8756-3282(99)00227-6

L. Plotkin, H. Davis, B. Cisterna, and J. Sáez, Connexins and Pannexins in Bone and Skeletal Muscle, Current Osteoporosis Reports, vol.8, issue.Pt 1, pp.326-334, 2017.
DOI : 10.3389/fncel.2014.00405

J. Talbot, R. Brion, G. Picarda, J. Amiaud, J. Chesneau et al., Loss of connexin43 expression in Ewing's sarcoma cells favors the development of the primary tumor and the associated bone osteolysis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1832, issue.4, pp.553-64, 2013.
DOI : 10.1016/j.bbadis.2013.01.001

E. Torreggiani, L. Roncuzzi, F. Perut, N. Zini, and N. Baldini, Multimodal transfer of MDR by exosomes in human osteosarcoma, International Journal of Oncology, vol.49, issue.1, 2016.
DOI : 10.3892/ijo.2016.3509

S. Baglio, T. Lagerweij, M. Pérez-lanzón, X. Ho, N. Léveillé et al., Blocking tumoreducated MSC paracrine activity halts osteosarcoma progression, Clin Cancer Res, 2017.
DOI : 10.1158/1078-0432.ccr-16-2726

D. Heymann, B. Ory, F. Blanchard, M. Heymann, P. Coipeau et al., Enhanced tumor regression and tissue repair when zoledronic acid is combined with ifosfamide in rat osteosarcoma, Bone, vol.37, issue.1, pp.74-86, 2005.
DOI : 10.1016/j.bone.2005.02.020

G. Karsenty and F. Oury, The Central Regulation of Bone Mass, The First Link between Bone Remodeling and Energy Metabolism, The Journal of Clinical Endocrinology & Metabolism, vol.95, issue.11, pp.4795-801, 2010.
DOI : 10.1210/jc.2010-1030

A. Corr, J. Smith, and P. Baldock, Neuronal Control of Bone Remodeling, Toxicologic Pathology, vol.19, issue.7, 2017.
DOI : 10.1016/j.cell.2007.05.038

P. Dimitri and C. Rosen, The Central Nervous System and Bone Metabolism: An Evolving Story, Calcified Tissue International, vol.17, issue.6, pp.476-485, 2017.
DOI : 10.1152/ajpendo.00048.2014

A. Kondo, M. Mogi, Y. Koshihara, and A. Togari, Signal transduction system for interleukin-6 and interleukin-11 synthesis stimulated by epinephrine in human osteoblasts and human osteogenic sarcoma cells, Biochemical Pharmacology, vol.61, issue.3, pp.6-295200544, 2001.
DOI : 10.1016/S0006-2952(00)00544-X

M. Broadhead, P. Choong, and C. Dass, Efficacy of Continuously Administered PEDF-Derived Synthetic Peptides against Osteosarcoma Growth and Metastasis, Journal of Biomedicine and Biotechnology, vol.51, issue.3, pp.230298-230308, 2012.
DOI : 10.1167/iovs.09-4455

F. Punzo, C. Tortora, D. Pinto, D. Manzo, I. Bellini et al., Antiproliferative , pro-apoptotic and anti-invasive effect of EC/EV system in human osteosarcoma, Oncotarget, vol.8, pp.54459-54471, 2017.

J. Otero, J. Stevens, A. Malandra, D. Fredericks, P. Odgren et al., Osteoclast inhibition impairs chondrosarcoma growth and bone destruction, Journal of Orthopaedic Research, vol.3, issue.12, pp.1562-71, 2014.
DOI : 10.1186/2191-219X-3-40

URL : http://onlinelibrary.wiley.com/doi/10.1002/jor.22714/pdf

S. Piperno-neumann, L. Deley, M. Rédini, F. Pacquement, H. Marec-bérard et al., Macrophage infiltration predicts a poor prognosis for human ewing sarcoma, French Sarcoma Group (GSF-GETO) (2016) Zoledronate in, pp.1157-70, 2011.

Y. Inagaki, E. Hookway, K. Williams, A. Hassan, U. Oppermann et al., Dendritic and mast cell involvement in the inflammatory response to primary malignant bone tumours, Clinical Sarcoma Research, vol.157, issue.1, pp.13-23, 2016.
DOI : 10.1016/S0002-9440(10)64850-X

M. Heymann, F. Lezot, and D. Heymann, The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cellular Immunol, in press
URL : https://hal.archives-ouvertes.fr/inserm-01644725

S. Théoleyre, K. Mori, B. Cherrier, N. Passuti, F. Gouin et al., Phenotypic and functional analysis of lymphocytes infiltrating osteolytic tumors: use as a possible therapeutic approach of osteosarcoma, BMC Cancer, vol.17, issue.1, pp.123-133, 2005.
DOI : 10.1080/08880010050034283

M. Meftah, P. Schult, and R. Henshaw, Long-Term Results of Intralesional Curettage and Cryosurgery for Treatment of Low-Grade Chondrosarcoma, The Journal of Bone and Joint Surgery-American Volume, vol.95, issue.15, pp.1358-1364, 2013.
DOI : 10.2106/JBJS.L.00442

R. Riedel, N. Larrier, L. Dodd, D. Kirsch, S. Martinez et al., The Clinical Management of Chondrosarcoma, Current Treatment Options in Oncology, vol.93, issue.5, pp.94-106, 2009.
DOI : 10.1016/j.ijrobp.2006.08.027

M. Heymann, H. Brown, and D. Heymann, Drugs in early clinical development for the treatment of osteosarcoma, Expert Opinion on Investigational Drugs, vol.50, issue.6, 2016.
DOI : 10.1038/srep20944

URL : https://hal.archives-ouvertes.fr/inserm-01466096

P. Meyers, C. Schwartz, M. Krailo, J. Healey, M. Bernstein et al., Osteosarcoma: The Addition of Muramyl Tripeptide to Chemotherapy Improves Overall Survival???A Report From the Children's Oncology Group, Journal of Clinical Oncology, vol.26, issue.4, pp.633-641, 1200.
DOI : 10.1200/JCO.2008.14.0095

F. Redini, G. Odri, G. Picarda, N. Gaspar, M. Heymann et al., Drugs targeting the bone microenvironment: new therapeutic tools in Ewing's sarcoma?, Expert Opinion on Emerging Drugs, vol.126, issue.15, pp.339-52, 2013.
DOI : 10.1097/JTO.0b013e31826aec2b

N. Gaspar, D. Hawkins, U. Dirksen, I. Lewis, S. Ferrari et al., Ewing Sarcoma: Current Management and Future Approaches Through Collaboration, Journal of Clinical Oncology, vol.33, issue.27, pp.3036-3082, 2015.
DOI : 10.1200/JCO.2014.59.5256

M. Xing, F. Yan, S. Yu, and P. Shen, Efficacy and Cardiotoxicity of Liposomal Doxorubicin-Based Chemotherapy in Advanced Breast Cancer: A Meta-Analysis of Ten Randomized Controlled Trials, PLOS ONE, vol.34, issue.7, 2015.
DOI : 10.1371/journal.pone.0133569.s003

M. Kang, J. Wang, M. Makena, J. Lee, N. Paz et al., Activity of MM-398, Nanoliposomal Irinotecan (nal-IRI), in Ewing's Family Tumor Xenografts Is Associated with High Exposure of Tumor to Drug and High SLFN11 Expression, Clinical Cancer Research, vol.21, issue.5, pp.1139-50, 2015.
DOI : 10.1158/1078-0432.CCR-14-1882

T. Mitchison, The proliferation rate paradox in antimitotic chemotherapy, Molecular Biology of the Cell, vol.23, issue.1, pp.10-14, 2012.
DOI : 10.1091/mbc.E10-04-0335

A. Ségaliny, M. Tellez-gabriel, M. Heymann, and D. Heymann, Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers, Journal of Bone Oncology, vol.4, issue.1, 2015.
DOI : 10.1016/j.jbo.2015.01.001

D. Heymann and F. Rédini, Targeted therapies for bone sarcomas, BoneKEy Reports, vol.2, 2013.
DOI : 10.1038/bonekey.2013.112

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817966/pdf

A. Safwat, A. Boysen, A. Lücke, and P. Rossen, Pazopanib in metastatic osteosarcoma: Significant clinical response in three consecutive patients, Acta Oncologica, vol.2, issue.10, 2014.
DOI : 10.1200/JCO.2006.07.3049

S. Attia, S. Okuno, S. Robinson, N. Webber, D. Indelicato et al., Clinical activity of pazopanib in metastatic extraosseous Ewing sarcoma, Rare Tumors, vol.7, issue.2, 2015.
DOI : 10.4081/rt.2015.5992

K. Mross, A. Frost, S. Steinbild, S. Hedbom, M. Büchert et al., A Phase I Dose-Escalation Study of Regorafenib (BAY 73-4506), an Inhibitor of Oncogenic, Angiogenic, and Stromal Kinases, in Patients with Advanced Solid Tumors, Clinical Cancer Research, vol.18, issue.9, pp.2658-67, 1158.
DOI : 10.1158/1078-0432.CCR-11-1900

V. Subbiah, P. Anderson, and E. Rohren, Alpha Emitter Radium 223 in High-Risk Osteosarcoma, JAMA Oncology, vol.1, issue.2, pp.253-255, 2015.
DOI : 10.1001/jamaoncol.2014.289

M. Garnett, E. Edelman, S. Heidorn, C. Greenman, A. Dastur et al., Systematic identification of genomic markers of drug sensitivity in cancer cells, Nature, vol.58, issue.7391, pp.570-575, 1038.
DOI : 10.1101/gr.1239303

E. Choy, J. Butrynski, D. Harmon, J. Morgan, S. George et al., Phase II study of olaparib in patients with refractory Ewing sarcoma following failure of standard chemotherapy, BMC Cancer, vol.10, issue.1, pp.813-823, 2014.
DOI : 10.1016/0197-2456(89)90015-9

A. Van-maldegem, J. Bovée, E. Peterse, P. Hogendoorn, and H. Gelderblom, Ewing sarcoma: The clinical relevance of the insulin-like growth factor 1 and the poly-ADP-ribose-polymerase pathway, European Journal of Cancer, vol.53, 2016.
DOI : 10.1016/j.ejca.2015.09.009

H. Alsaab, S. Sau, R. Alzhrani, K. Tatiparti, K. Bhise et al., PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome, Frontiers in Pharmacology, vol.8, 2017.
DOI : 10.1038/nri2326

N. Pinto, J. Park, E. Murphy, J. Yearley, T. Mcclanahan et al., Patterns of PD-1, PD-L1, and PD-L2 expression in pediatric solid tumors, Pediatric Blood & Cancer, vol.11, issue.5, 2017.
DOI : 10.1016/j.ccr.2007.02.027

S. Paydas, E. Bagir, M. Deveci, and G. Gonlusen, Clinical and prognostic significance of PD-1 and PD-L1 expression in sarcomas, Medical Oncology, vol.8, issue.12, pp.93-103, 2016.
DOI : 10.1097/JTO.0b013e318292be18

J. Shen, G. Cote, E. Choy, P. Yang, D. Harmon et al., Programmed Cell Death Ligand 1 Expression in Osteosarcoma, Cancer Immunology Research, vol.2, issue.7, pp.690-698, 2014.
DOI : 10.1158/2326-6066.CIR-13-0224

Y. Sundara, M. Kostine, A. Cleven, J. Bovée, M. Schilham et al., Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy, Cancer Immunology, Immunotherapy, vol.3, issue.Suppl 3, pp.119-128, 2017.
DOI : 10.1186/s40425-015-0067-z

L. Paoluzzi, A. Cacavio, M. Ghesani, A. Karambelkar, A. Rapkiewicz et al., Response to anti-PD1 therapy with nivolumab in metastatic sarcomas, Clinical Sarcoma Research, vol.29, issue.6, 2016.
DOI : 10.1038/onc.2009.381

K. Dobrenkov, I. Ostrovnaya, J. Gu, I. Cheung, and N. Cheung, Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults, Pediatric Blood & Cancer, vol.18, issue.4, pp.1780-1785, 2016.
DOI : 10.1038/mt.2010.24

R. Bernstein-molho, Y. Kollender, J. Issakov, J. Bickels, S. Dadia et al., Clinical activity of mTOR inhibition in combination with cyclophosphamide in the treatment of recurrent unresectable chondrosarcomas, Cancer Chemotherapy and Pharmacology, vol.24, issue.3, pp.855-860, 2012.
DOI : 10.1097/CCO.0b013e3283528b73

J. Perez, A. Decouvelaere, T. Pointecouteau, D. Pissaloux, J. Michot et al., Inhibition of Chondrosarcoma Growth by mTOR Inhibitor in an In Vivo Syngeneic Rat Model, PLoS ONE, vol.8, issue.6, 2012.
DOI : 10.1371/journal.pone.0032458.s002

M. Kostine, A. Cleven, N. De-miranda, A. Italiano, A. Cleton-jansen et al., Analysis of PD-L1, T-cell infiltrate and HLA expression in chondrosarcoma indicates potential for response to immunotherapy specifically in the dedifferentiated subtype, Modern Pathology, vol.29, issue.9, pp.1028-1065, 2016.
DOI : 10.1097/CJI.0000000000000065

J. Amelio, J. Rockberg, and R. Hernandez, Population-based study of giant cell tumor of bone in Sweden (1983???2011), Cancer Epidemiology, vol.42, pp.82-89, 1983.
DOI : 10.1016/j.canep.2016.03.014

D. Dahlin, R. Cupps, E. Johnson, and . Jr, Giant-cell tumor: A study of 195 cases, 5<1061::AID- CNCR2820250509>3.0.CO, pp.1061-107010, 1970.
DOI : 10.1002/1097-0142(197005)25:5<1061::AID-CNCR2820250509>3.0.CO;2-E

M. Rosario, H. Kim, J. Yun, and I. Han, Surveillance for lung metastasis from giant cell tumor of bone, Journal of Surgical Oncology, vol.37, issue.7, 2017.
DOI : 10.21873/anticanres.11373

N. Renema, B. Navet, M. Heymann, F. Lezot, and D. Heymann, RANK-RANKL signalling in cancer, Bioscience Reports, vol.36, issue.4, pp.366-376, 2016.
DOI : 10.1042/BSR20160150

URL : https://hal.archives-ouvertes.fr/inserm-01644732

F. Gouin, A. Rochwerger, D. Marco, A. Rosset, P. Bonnevialle et al., Adjuvant treatment with zoledronic acid after extensive curettage for giant cell tumours of bone, European Journal of Cancer, vol.50, issue.14, 2014.
DOI : 10.1016/j.ejca.2014.06.003

S. Chawla, R. Henshaw, L. Seeger, E. Choy, J. Blay et al., Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study, The Lancet Oncology, vol.14, issue.9, pp.901-909, 2013.
DOI : 10.1016/S1470-2045(13)70277-8