D. Heymann and F. Rédini, Bone sarcomas: pathogenesis and new therapeutic approaches, IBMS BoneKEy, vol.8, issue.9, pp.402-414, 2011.
DOI : 10.1138/20110531

P. Picci, Osteosarcoma (osteogenic sarcoma), Orphanet J. Rare Dis, vol.26, 2007.

K. Ando, M. F. Heymann, V. Stresing, K. Mori, F. Redini et al., Current Therapeutic Strategies and Novel Approaches in Osteosarcoma, Cancers, vol.2012, issue.2, pp.591-616, 2013.
DOI : 10.1155/2012/523432

URL : https://doi.org/10.3390/cancers5020591

G. Rosen, M. L. Murphy, A. G. Huvos, M. Gutierrez, and R. C. Marcove, Chemotherapy,en bloc resection, and prosthetic bone replacement in the treatment of osteogenic sarcoma, Cancer, vol.32, issue.1, pp.1-11, 1976.
DOI : 10.1002/1097-0142(197601)37:1<1::AID-CNCR2820370102>3.0.CO;2-3

M. P. Link, A. M. Goorin, M. Horowitz, W. H. Meyer, J. Belasco et al., Adjuvant chemotherapy of high-grade osteosarcoma of the extremity. Updated results of the multi-institutional osteosarcoma study, Clin. Orthop, vol.270, pp.8-14, 1991.

A. J. Provisor, L. J. Ettinger, J. B. Nachman, M. D. Krailo, J. T. Makley et al., Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the Children's Cancer Group., Journal of Clinical Oncology, vol.15, issue.1, pp.76-84, 1997.
DOI : 10.1200/JCO.1997.15.1.76

T. Man, P. H. Rao, and C. C. Lau, Genomic and proteomic profiling of osteosarcoma Bone Cancer: progression and therapeutic approaches, pp.181-192, 2010.
DOI : 10.1016/b978-0-12-374895-9.00015-3

URL : http://doi.org/10.1016/b978-0-12-374895-9.00015-3

D. Heymann and F. Rédini, Targeted therapies for bone sarcomas, BoneKEy Reports, vol.2
DOI : 10.1038/bonekey.2013.112

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817966/pdf

B. Ory, G. Moriceau, F. Rédini, and D. , mTOR Inhibitors (Rapamycin and its Derivatives) and Nitrogen Containing Bisphosphonates: Bi-Functional Compounds for the Treatment of Bone Tumours, Current Medicinal Chemistry, vol.14, issue.13, pp.1381-1387, 2007.
DOI : 10.2174/092986707780831159

B. Vanhaesebroeck, J. Guillermet-guibert, M. Graupera, and B. Bilanges, The emerging mechanisms of isoform-specific PI3K signalling, Nature Reviews Molecular Cell Biology, vol.11, issue.5, pp.329-341, 2010.
DOI : 10.1128/MCB.10.12.6742

O. Vadas, J. E. Burke, X. Zhang, A. Berndt, and R. L. Williams, Structural Basis for Activation and Inhibition of Class I Phosphoinositide 3-Kinases, Science Signaling, vol.2, issue.195, 2011.
DOI : 10.1126/science.1208071

F. Janku, J. J. Wheler, A. Naing, V. M. Stepanek, G. S. Falchook et al., <i>PIK3CA</i> Mutations in Advanced Cancers: Characteristics and Outcomes, PIK3CA mutations in advanced cancers: characteristics and outcomes, pp.1566-1575, 2012.
DOI : 10.18632/oncotarget.716

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681495/pdf

A. Chène, K. De-pover, D. Schoemaker, D. Fabbro, M. Gabriel et al., Identification and characterization of NVP- BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity, Mol. Cancer Ther, vol.7, pp.1851-1863, 2008.

H. Eng, M. Wu, O. Song, and . Dorigo, Dual targeting of phosphoinositide 3-kinase and mammalian target of rapamycin using NVP-BEZ235 as a novel therapeutic approach in human ovarian carcinoma, Clin. Cancer Res, vol.17, pp.2373-2384, 2011.

A. C. Faber, D. Li, Y. Song, M. C. Liang, B. Y. Yeap et al., Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition, Proc. Natl
DOI : 10.1016/j.bcp.2006.08.009

A. P. Bhatt, P. M. Bhende, S. H. Sin, D. Roy, D. P. Dittmer et al., Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas, Blood, vol.115, issue.22, pp.4455-4463, 2010.
DOI : 10.1182/blood-2009-10-251082

M. Manara, G. Nicoletti, D. Zambelli, S. Ventura, C. Guerzoni et al., NVP-BEZ235 as a New Therapeutic Option for Sarcomas, Clinical Cancer Research, vol.16, issue.2, pp.530-540, 2010.
DOI : 10.1158/1078-0432.CCR-09-0816

V. Lanzano, V. Stivani, S. M. Grosso, C. Maira, K. García-echeverría et al., High metastatic efficiency of human sarcoma cells in Rag2/gc double knockout mice provides a powerful test system for antimetastatic targeted therapy

B. Klein, S. Pals, R. Masse, J. Lafuma, M. Morin et al., Jasmin, Studies of bone and soft-tissue tumours induced in rats with radioactive cerium chloride

K. Kamijo, T. Koshino, M. Uesugi, H. Nitto, and T. Saito, Inhibition of lung metastasis of osteosarcoma cell line POS-1 transplanted into mice by thigh ligation, Cancer Letters, vol.188, issue.1-2, pp.213-219, 2002.
DOI : 10.1016/S0304-3835(02)00433-0

M. J. Joliat, S. Umeda, B. L. Lyons, M. A. Lynes, and L. D. Shultz, Establishment and characterization of a new osteogenic cell line (MOS-J) from a spontaneous C57BL/6J mouse osteosarcoma, In Vivo, vol.16, pp.223-228, 2002.

B. Gouin, D. Pitard, F. Heymann, and . Redini, Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: blockade of the vicious cycle between tumor cell proliferation and bone resorption, Cancer Res, vol.67, pp.7308-7318, 2007.

Y. X. Zhang, J. G. Van-oosterwijk, E. Sicinska, S. Moss, S. P. Remillard et al., Functional Profiling of Receptor Tyrosine Kinases and Downstream Signaling in Human Chondrosarcomas Identifies Pathways for Rational Targeted Therapy, Clinical Cancer Research, vol.19, issue.14, pp.3796-3807, 2013.
DOI : 10.1158/1078-0432.CCR-12-3647

. Heymann, The Bone Niche of Chondrosarcoma: A Sanctuary for Drug Resistance, Tumour Growth and also a Source of New Therapeutic Targets, Sarcoma, p.932451, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00667904

S. Wullschleger, R. Loewith, and M. N. Hall, TOR Signaling in Growth and Metabolism, Cell, vol.124, issue.3, pp.471-484, 2006.
DOI : 10.1016/j.cell.2006.01.016

URL : https://doi.org/10.1016/j.cell.2006.01.016

B. Fallica, J. S. Maffei, S. Villa, G. Makin, and M. Zaman, Alteration of Cellular Behavior and Response to PI3K Pathway Inhibition by Culture in 3D Collagen Gels, PLoS ONE, vol.7, issue.10, p.48024
DOI : 10.1371/journal.pone.0048024.g011

C. Ma, Q. Xiao, B. Fan, and . Ma, MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma, PLoS One, vol.8, p.53906, 2013.

K. Wang, Y. Zhuang, C. Liu, and Y. Li, Inhibition of c-Met activation sensitizes osteosarcoma cells to cisplatin via suppression of the PI3K???Akt signaling, Archives of Biochemistry and Biophysics, vol.526, issue.1, pp.52638-52681, 2012.
DOI : 10.1016/j.abb.2012.07.003

M. Tsubaki, T. Satou, T. Itoh, M. Imano, M. Ogaki et al., Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920- induced blockade of the Ras

Y. Fukaya, N. Ishiguro, T. Senga, Y. Ichigotani, Y. Sohara et al., A role for PI3K-Akt signaling in pulmonary metastatic nodule formation of the osteosarcoma cell line, LM8, Oncology Reports, pp.14-847, 2005.
DOI : 10.3892/or.14.4.847

K. Kontzoglou, V. Palla, G. Karaolanis, I. Karaiskos, I. Alexiou et al., Correlation between Ki67 and Breast Cancer Prognosis, Oncology, vol.57, issue.4, pp.219-225, 2013.
DOI : 10.1016/j.ejso.2007.11.009

J. M. Guinebretière and J. C. Sabourin, Ki-67, marker of proliferation, Ann. Pathol, vol.17, pp.25-30, 1997.

T. Jiang, J. Zhuang, H. Duan, Y. Luo, Q. Zeng et al., CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis, Blood, vol.120, issue.11, pp.2330-2339, 2012.
DOI : 10.1182/blood-2012-01-406108

C. R. Schnell, F. Stauffer, P. R. Allegrini, T. O-'reilly, P. M. Mcsheehy et al., Effects of the Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235 on the Tumor Vasculature: Implications for Clinical Imaging, Cancer Research, vol.68, issue.16, pp.6598-6607, 2008.
DOI : 10.1158/0008-5472.CAN-08-1044

P. Hadji, R. Coleman, and M. Gnant, Bone effects of mammalian target of rapamycin (mTOR) inhibition with everolimus, Critical Reviews in Oncology/Hematology, vol.87, issue.2, pp.101-111, 2013.
DOI : 10.1016/j.critrevonc.2013.05.015

S. K. Martin, S. Fittre, L. F. Bon, J. J. Drew, S. Gronthos et al., NVP-235, a dual pan class I PI3K and mTOR inhibitor, promotes osteogenic differentiation in human mesenchymal stromal cells, J. Bone Miner. Res, pp.25-2126, 2010.

. Canalis, Skeletal overexpression of noggin results in osteopenia and reduced bone formation, Endocrinology, vol.144, pp.1972-1978, 2003.

E. Canalis, L. J. Brunet, K. Parker, and S. Zanotti, Conditional Inactivation of Noggin in the Postnatal Skeleton Causes Osteopenia, Endocrinology, vol.153, issue.4, pp.1616-1626, 2012.
DOI : 10.1210/en.2011-1604