D. L. Garbers, D. Koesling, and G. Schultz, Guanylyl cyclase receptors., Molecular Biology of the Cell, vol.5, issue.1, pp.1-5, 1994.
DOI : 10.1091/mbc.5.1.1

M. Bhattacharya, A. Babwah, and S. Ferguson, Small GTP-binding protein-coupled receptors: Figure 1, Biochemical Society Transactions, vol.32, issue.6, pp.1040-1084, 2004.
DOI : 10.1042/BST0321040

URL : http://www.biochemsoctrans.org/content/ppbiost/32/6/1040.full.pdf

S. Li, A. Wong, and F. Liu, Ligand-gated ion channel interacting proteins and their role in neuroprotection, Frontiers in Cellular Neuroscience, vol.25, p.125, 2014.
DOI : 10.1523/JNEUROSCI.5099-04.2005

URL : http://journal.frontiersin.org/article/10.3389/fncel.2014.00125/pdf

C. Liongue and A. Ward, Evolution of Class I cytokine receptors, BMC Evolutionary Biology, vol.7, issue.1, p.120, 2007.
DOI : 10.1186/1471-2148-7-120

URL : https://bmcevolbiol.biomedcentral.com/track/pdf/10.1186/1471-2148-7-120?site=bmcevolbiol.biomedcentral.com

J. Langer, E. Cutrone, and S. Kotenko, The Class II cytokine receptor (CRF2) family: overview and patterns of receptor???ligand interactions, Cytokine & Growth Factor Reviews, vol.15, issue.1, pp.33-48, 2004.
DOI : 10.1016/j.cytogfr.2003.10.001

W. Liao, J. Lin, and W. Leonard, IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation, Current Opinion in Immunology, vol.23, issue.5, pp.598-604, 2011.
DOI : 10.1016/j.coi.2011.08.003

F. Blanchard, L. Duplomb, M. Baud-'huin, and B. Brounais, The dual role of IL-6-type cytokines on bone remodeling and bone tumors, Cytokine & Growth Factor Reviews, vol.20, issue.1, pp.19-28, 2009.
DOI : 10.1016/j.cytogfr.2008.11.004

D. Heymann and . Ed, Bone Cancer, Primary bone cancers and bone metastases, 2 nd Ed, 2014.

D. Robins, Y. Wu, and S. Lin, The protein tyrosine kinase family of the human genome, Oncogene, vol.19, issue.49, pp.5548-57, 2000.
DOI : 10.1016/S1074-7613(00)80189-2

P. Blume-jensen and T. Hunter, Oncogenic kinase signalling, Nature, vol.411, issue.6835, pp.355-65, 2001.
DOI : 10.1038/35077225

I. Arkin, Structural aspects of oligomerization taking place between the transmembrane ??-helices of bitopic membrane proteins, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1565, issue.2, pp.347-63, 2002.
DOI : 10.1016/S0005-2736(02)00580-1

T. Moriki, H. Maruyama, and I. Maruyama, Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain11Edited by B. Holland, Journal of Molecular Biology, vol.311, issue.5, pp.1011-1037, 2001.
DOI : 10.1006/jmbi.2001.4923

S. Hubbard and J. Till, Protein Tyrosine Kinase Structure and Function, Annual Review of Biochemistry, vol.69, issue.1, pp.373-98, 2000.
DOI : 10.1146/annurev.biochem.69.1.373

M. Lemmon and J. Schlessinger, Cell Signaling by Receptor Tyrosine Kinases, Cell, vol.141, issue.7, pp.1117-1151, 2010.
DOI : 10.1016/j.cell.2010.06.011

URL : https://doi.org/10.1016/j.cell.2010.06.011

H. Ogiso, R. Ishitani, O. Nureki, S. Fukai, M. Yamanaka et al., Crystal Structure of the Complex of Human Epidermal Growth Factor and Receptor Extracellular Domains, Cell, vol.110, issue.6, pp.775-87, 2002.
DOI : 10.1016/S0092-8674(02)00963-7

R. Bradshaw, R. Chalkley, J. Biarc, and A. Burlingame, Receptor tyrosine kinase signaling mechanisms: Devolving TrkA responses with phosphoproteomics, Advances in Biological Regulation, vol.53, issue.1, pp.87-96, 2013.
DOI : 10.1016/j.jbior.2012.10.006

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577974/pdf

S. Hubbard, Autoinhibitory mechanisms in receptor tyrosine kinases, Frontiers in Bioscience, vol.7, issue.4, pp.330-370, 2002.
DOI : 10.2741/A778

S. Hubbard and W. Miller, Receptor tyrosine kinases: mechanisms of activation and signaling, Current Opinion in Cell Biology, vol.19, issue.2, pp.117-140, 2007.
DOI : 10.1016/j.ceb.2007.02.010

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536775/pdf

Y. Liu and L. Rohrschneider, The gift of Gab, FEBS Letters, vol.276, issue.1-3, pp.1-7, 2002.
DOI : 10.1074/jbc.M002633200

C. Choudhary and M. Mann, Decoding signalling networks by mass spectrometry-based proteomics, Nature Reviews Molecular Cell Biology, vol.8, issue.6, pp.427-466, 2010.
DOI : 10.1074/mcp.M600380-MCP200

B. Cseh, E. Doma, and M. Baccarini, ???RAF??? neighborhood: Protein-protein interaction in the Raf/Mek/Erk pathway, FEBS Letters, vol.22, issue.15, pp.2398-406, 2014.
DOI : 10.1097/CMR.0b013e3283541541

R. Jr and R. Erk1, MAP kinases: Structure, function, and regulation, Pharmacol Res, vol.66, issue.2, pp.105-148, 2012.

M. Raman, W. Chen, and M. Cobb, Differential regulation and properties of MAPKs, Oncogene, vol.24, issue.22, pp.3100-112, 2007.
DOI : 10.1016/j.str.2006.04.006

URL : http://www.nature.com/onc/journal/v26/n22/pdf/1210392a.pdf

M. Cargnello and P. Et-roux, Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases, Microbiology and Molecular Biology Reviews, vol.75, issue.1, pp.50-83, 2011.
DOI : 10.1128/MMBR.00031-10

G. Song, G. Ouyang, and S. Bao, The activation of Akt/PKB signaling pathway and cell survival, Journal of Cellular and Molecular Medicine, vol.95, issue.1, pp.59-71, 2005.
DOI : 10.1016/j.bcp.2004.05.033

R. Ralston and J. Bishop, The product of the protooncogene c-src is modified during the cellular response to platelet-derived growth factor., Proceedings of the National Academy of Sciences, vol.82, issue.23, pp.7845-7894, 1985.
DOI : 10.1073/pnas.82.23.7845

P. Bromann, H. Korkaya, and S. Courtneidge, The interplay between Src family kinases and receptor tyrosine kinases, Oncogene, vol.23, issue.48, pp.7957-68, 2004.
DOI : 10.1074/jbc.M102219200

URL : http://www.nature.com/onc/journal/v23/n48/pdf/1208079a.pdf

J. Biscardi, M. Maa, D. Tice, M. Cox, T. Leu et al., Is Associated with Modulation of Receptor Function, Journal of Biological Chemistry, vol.10, issue.12, pp.8335-8378, 1999.
DOI : 10.1074/jbc.270.26.15591

L. Moro, L. Dolce, S. Cabodi, E. Bergatto, E. Erba et al., Integrin-induced Epidermal Growth Factor (EGF) Receptor Activation Requires c-Src and p130Cas and Leads to Phosphorylation of Specific EGF Receptor Tyrosines, Journal of Biological Chemistry, vol.3, issue.11, pp.9405-9414, 2002.
DOI : 10.1016/S0955-0674(99)80069-6

T. Goi, M. Shipitsin, Z. Lu, D. Foster, S. Klinz et al., An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity, The EMBO Journal, vol.96, issue.4, pp.623-653, 2000.
DOI : 10.1128/MCB.18.5.2486

URL : http://emboj.embopress.org/content/embojnl/19/4/623.full.pdf

T. Livio, A. Berlotti, and P. Comoglio, MET signaling : principles and functions in development, organ regeneration and cancer, Nature Rev Mol Cell Biol, vol.11, pp.834-848, 2010.

M. Freeman, Feedback control of intercellular signalling in development, Nature, vol.183, issue.6810, pp.313-319, 2000.
DOI : 10.1006/jtbi.1996.0233

I. Amit, A. Citri, T. Shay, Y. Lu, M. Katz et al., A module of negative feedback regulators defines growth factor signaling, Nature Genetics, vol.104, issue.4, pp.503-512, 2007.
DOI : 10.1128/MCB.13.11.7180

S. Santos, P. Verveer, and P. Bastiaens, Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate, Nature Cell Biology, vol.55, issue.3, pp.324-354, 2007.
DOI : 10.1038/43686

I. Dikic and S. Giordano, Negative receptor signalling, Current Opinion in Cell Biology, vol.15, issue.2, pp.128-163, 2003.
DOI : 10.1016/S0955-0674(03)00004-8

M. Marmor and Y. Yarden, Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases, Oncogene, vol.23, issue.11, pp.2057-70, 2004.
DOI : 10.1038/sj.onc.1202326

X. Jiang, F. Huang, A. Marusyk, and A. Sorkin, Grb2 Regulates Internalization of EGF Receptors through Clathrin-coated Pits, Molecular Biology of the Cell, vol.14, issue.3, pp.858-70, 2003.
DOI : 10.1091/mbc.E02-08-0532

URL : http://www.molbiolcell.org/content/14/3/858.full.pdf

Z. Lu, G. Jiang, P. Jensen, and T. Hunter, Epidermal Growth Factor-Induced Tumor Cell Invasion and Metastasis Initiated by Dephosphorylation and Downregulation of Focal Adhesion Kinase, Molecular and Cellular Biology, vol.21, issue.12, pp.4016-4047, 2001.
DOI : 10.1128/MCB.21.12.4016-4031.2001

L. Petti, P. Irusta, and D. Dimaio, Oncogenic activation of the PDGF????? receptor by the transmembrane domain of p185neu*, Oncogene, vol.16, issue.7, pp.843-51, 1998.
DOI : 10.1038/sj.onc.1201590

S. Meshinchi and F. Appelbaum, Structural and Functional Alterations of FLT3 in Acute Myeloid Leukemia, Clinical Cancer Research, vol.15, issue.13, pp.4263-4272, 2009.
DOI : 10.1158/1078-0432.CCR-08-1123

C. Antonescu, The GIST paradigm: lessons for other kinase-driven cancers, The Journal of Pathology, vol.23, issue.2, pp.251-61, 2011.
DOI : 10.1200/JCO.2005.07.088

URL : http://onlinelibrary.wiley.com/doi/10.1002/path.2798/pdf

T. Lynch, D. Bell, R. Sordella, S. Gurubhagavatula, R. Okimoto et al., Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non???Small-Cell Lung Cancer to Gefitinib, New England Journal of Medicine, vol.350, issue.21, pp.2129-2168, 2004.
DOI : 10.1056/NEJMoa040938

R. Bose, S. Kavuri, A. Searleman, W. Shen, D. Shen et al., Activating HER2 Mutations in HER2 Gene Amplification Negative Breast Cancer, Cancer Discovery, vol.3, issue.2, pp.224-261, 2013.
DOI : 10.1158/2159-8290.CD-12-0349

URL : http://cancerdiscovery.aacrjournals.org/content/candisc/3/2/224.full.pdf

H. Nakajima, Y. Ishikawa, M. Furuya, T. Sano, Y. Ohno et al., Protein expression, gene amplification, and mutational analysis of EGFR in triple-negative breast cancer, Breast Cancer, vol.127, issue.17, pp.66-74, 2014.
DOI : 10.1007/s10549-010-1012-y

C. Peraldo-neia, G. Migliardi, M. Mello-grand, F. Montemurro, R. Segir et al., Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer, BMC Cancer, vol.12, issue.31, p.31, 2011.
DOI : 10.1158/1078-0432.CCR-05-1692

URL : https://bmccancer.biomedcentral.com/track/pdf/10.1186/1471-2407-11-31?site=bmccancer.biomedcentral.com

M. Fu, W. Zhang, L. Shan, J. Song, D. Shang et al., Mutation status of somatic EGFR and KRAS genes in Chinese patients with prostate cancer (PCa), Virchows Archiv, vol.7, issue.24, pp.575-81, 2014.
DOI : 10.1186/1748-717X-7-66

P. Marie, Signaling Pathways Affecting Skeletal Health, Current Osteoporosis Reports, vol.17, issue.6, pp.190-198, 2012.
DOI : 10.1038/nm.2489

P. Marie, Fibroblast growth factor signaling controlling bone formation: An update, Gene, vol.498, issue.1, pp.1-4, 2012.
DOI : 10.1016/j.gene.2012.01.086

J. Dai and A. Rabie, VEGF: an Essential Mediator of Both Angiogenesis and Endochondral Ossification, Journal of Dental Research, vol.86, issue.10, pp.937-50, 2007.
DOI : 10.1615/JLongTermEffMedImplants.v12.i2.70

H. Al-kharobi, R. El-gendy, D. Devine, and J. Beattie, The role of the insulin-like growth factor (IGF) axis in osteogenic and odontogenic differentiation, Cellular and Molecular Life Sciences, vol.8, issue.3, pp.1469-76, 2014.
DOI : 10.1016/j.scr.2011.12.005

N. Sims and T. Martin, Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit, BoneKEy Reports, vol.3, p.481, 2014.
DOI : 10.1038/bonekey.2013.215

D. Heymann, J. Guicheux, F. Gouin, N. Passuti, and G. Daculsi, CYTOKINES, GROWTH FACTORS AND OSTEOCLASTS, Cytokine, vol.10, issue.3, pp.155-68, 1998.
DOI : 10.1006/cyto.1997.0277

C. Clarkin and L. Gerstenfeld, VEGF and bone cell signalling: an essential vessel for communication?, Cell Biochemistry and Function, vol.16, issue.3, pp.1-11, 2013.
DOI : 10.1038/nm.2252

J. Crane and X. Cao, Function of matrix IGF-1 in coupling bone resorption and formation, Journal of Molecular Medicine, vol.17, issue.Suppl 1, pp.107-122, 2014.
DOI : 10.1038/nm.2499

N. Bao, M. Lu, F. Bin, Z. Chang, J. Meng et al., Systematic screen with kinases inhibitors reveals kinases play distinct roles in growth of osteoprogenitor cells, Int J Clin Exp Pathol, vol.6, pp.2082-91, 2013.

O. Sullivan, S. Lin, J. Watson, M. Callon, K. Tong et al., The skeletal effects of the tyrosine kinase inhibitor nilotinib, Bone, vol.49, issue.2, pp.281-289, 2011.
DOI : 10.1016/j.bone.2011.04.014

J. Pinski, A. Weeraratna, A. Uzgare, J. Arnold, S. Denmeade et al., Trk receptor inhibition induces apoptosis of proliferating but not quiescent human osteoblasts, Cancer Res, vol.62, pp.986-995, 2002.

K. Vandyke, S. Fitter, A. Dewar, T. Hughes, and A. Zannettino, Dysregulation of bone remodeling by imatinib mesylate, Blood, vol.115, issue.4, pp.766-74, 2010.
DOI : 10.1182/blood-2009-08-237404

E. Hajj-dib, I. Gallet, M. Mentaverri, R. Sévenet, N. Brazier et al., Imatinib mesylate (Gleevec??) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity, European Journal of Pharmacology, vol.551, issue.1-3, pp.27-33, 2006.
DOI : 10.1016/j.ejphar.2006.09.007

E. Rimondi, P. Secchiero, E. Melloni, V. Grill, and G. Zauli, Sorafenib inhibits in vitro osteoclastogenesis by down-modulating Mcl-1, Investigational New Drugs, vol.25, issue.3, pp.780-786, 2013.
DOI : 10.1038/leu.2011.2

K. Vandyke, A. Dewar, P. Diamond, S. Fitter, C. Schultz et al., The tyrosine kinase inhibitor dasatinib dysregulates bone remodeling through inhibition of osteoclasts in vivo, Journal of Bone and Mineral Research, vol.1117, issue.8, pp.1759-70, 2010.
DOI : 10.1179/his.1997.20.4.307

A. Garcia-gomez, E. Ocio, E. Crusoe, C. Santamaria, P. Hernández-campo et al., Dasatinib as a Bone-Modifying Agent: Anabolic and Anti-Resorptive Effects, PLoS ONE, vol.20, issue.4, p.34914, 2012.
DOI : 10.1371/journal.pone.0034914.g007

URL : https://doi.org/10.1371/journal.pone.0034914

D. Heymann and F. Redini, Bone sarcomas: pathogenesis and new therapeutic approaches, IBMS BoneKEy, vol.8, issue.9, pp.402-414, 2011.
DOI : 10.1138/20110531

D. Heymann and F. Redini, Targeted therapies for bone sarcomas, BoneKEy Reports, vol.2, p.378, 2013.
DOI : 10.1038/bonekey.2013.112

N. Gaspar, D. Giannatale, A. Geoerger, B. Redini, F. Corradini et al., Bone Sarcomas: From Biology to Targeted Therapies, Sarcoma, vol.78, issue.1, 2012.
DOI : 10.1158/0008-5472.CAN-08-3131

URL : https://doi.org/10.1155/2012/301975

A. Rettew, P. Getty, and E. Greenfield, Receptor Tyrosine Kinases in Osteosarcoma: Not Just the Usual Suspects, Adv Exp Med Biol, vol.804, pp.47-66, 2014.
DOI : 10.1007/978-3-319-04843-7_3

E. Mcgary, K. Weber, L. Mills, M. Doucet, V. Lewis et al., Inhibition of platelet-derived growth factor-mediated proliferation of osteosarcoma cells by the novel tyrosine kinase inhibitor STI571, Clin Cancer Res, vol.8, pp.3584-91, 2002.

A. Ikeda, D. Judelson, N. Federman, K. Glaser, E. Landaw et al., ABT-869 Inhibits the Proliferation of Ewing Sarcoma Cells and Suppresses Platelet-Derived Growth Factor Receptor ?? and c-KIT Signaling Pathways, Molecular Cancer Therapeutics, vol.9, issue.3, pp.653-60, 2010.
DOI : 10.1158/1535-7163.MCT-09-0812

R. Chugh, J. Wathen, R. Maki, R. Benjamin, S. Patel et al., Phase II Multicenter Trial of Imatinib in 10 Histologic Subtypes of Sarcoma Using a Bayesian Hierarchical Statistical Model, Journal of Clinical Oncology, vol.27, issue.19, pp.3148-3153, 2009.
DOI : 10.1200/JCO.2008.20.5054

J. Chao, G. Budd, P. Chu, P. Frankel, D. Garcia et al., Phase II clinical trial of imatinib mesylate in therapy of KIT and/or PDGFRalphaexpressing Ewing sarcoma family of tumours and desmoplastic small round cell tumours, Anticancer Res, vol.30, pp.547-552, 2010.

M. Bond, M. Bernstein, A. Pappo, K. Schultz, M. Krailo et al., A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: A Children's Oncology Group study, Pediatric Blood & Cancer, vol.111, issue.2, pp.254-258, 2008.
DOI : 10.1093/jnci/94.22.1673

I. Gonzalez, E. Andreu, A. Panizo, S. Inoges, A. Fontalba et al., Imatinib Inhibits Proliferation of Ewing Tumor Cells Mediated by the Stem Cell Factor/KIT Receptor Pathway, and Sensitizes Cells to Vincristine and Doxorubicin-Induced Apoptosis, Clinical Cancer Research, vol.10, issue.2, pp.751-761, 2004.
DOI : 10.1158/1078-0432.CCR-0778-03

F. Timeus, N. Crescenzio, A. Fandi, A. Doria, L. Foglia et al., In vitro antiproliferative and antimigratory activity of dasatinib in neuroblastoma and Ewing sarcoma cell lines, Oncology Reports, vol.19, pp.353-359, 2008.
DOI : 10.3892/or.19.2.353

P. Hingorani, W. Zhang, R. Gorlick, and E. Kolb, Inhibition of Src Phosphorylation Alters Metastatic Potential of Osteosarcoma In vitro but not In vivo, Clinical Cancer Research, vol.15, issue.10, pp.3416-3422, 2009.
DOI : 10.1158/1078-0432.CCR-08-1657

R. Aplenc, S. Blaney, L. Strauss, F. Balis, S. Shusterman et al., Pediatric Phase I Trial and Pharmacokinetic Study of Dasatinib: A Report From the Children's Oncology Group Phase I Consortium, Journal of Clinical Oncology, vol.29, issue.7, pp.839-844, 2011.
DOI : 10.1200/JCO.2010.30.7231

J. Maris, J. Courtright, P. Houghton, C. Morton, E. Kolb et al., Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program, Pediatric Blood & Cancer, vol.6, issue.1, pp.42-48, 2008.
DOI : 10.1002/pbc.21535

S. Dubois, S. Shusterman, A. Ingle, C. Ahern, J. Reid et al., Phase I and Pharmacokinetic Study of Sunitinib in Pediatric Patients with Refractory Solid Tumors: A Children's Oncology Group Study, Clinical Cancer Research, vol.17, issue.15, pp.5113-5122, 2011.
DOI : 10.1158/1078-0432.CCR-11-0237

S. Keir, C. Morton, J. Wu, R. Kurmasheva, P. Houghton et al., Initial testing of the multitargeted kinase inhibitor pazopanib by the pediatric preclinical testing program, Pediatric Blood & Cancer, vol.29, issue.3, pp.586-588, 2012.
DOI : 10.1200/jco.2011.29.15_suppl.9501

G. Bender, J. Lee, A. Reid, J. Baruchel, S. Roberts et al., Phase I Pharmacokinetic and Pharmacodynamic Study of Pazopanib in Children With Soft Tissue Sarcoma and Other Refractory Solid Tumors: A Children's Oncology Group Phase I Consortium Report, Journal of Clinical Oncology, vol.31, issue.24, pp.3034-3043, 2013.
DOI : 10.1200/JCO.2012.47.0914

S. Kumar, R. Mokhtari, R. Sheikh, B. Wu, L. Zhang et al., Metronomic Oral Topotecan with Pazopanib Is an Active Antiangiogenic Regimen in Mouse Models of Aggressive Pediatric Solid Tumor, Clinical Cancer Research, vol.17, issue.17, pp.5656-5667, 2011.
DOI : 10.1158/1078-0432.CCR-11-0078

L. Gammaitoni, G. Migliardi, G. Camussi, M. Alberghini, B. Torchio et al., Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1 and ezrin pathways, Mol Cancer, vol.28, issue.1, p.118, 2009.

F. Navid, S. Baker, M. Mccarville, C. Stewart, C. Billups et al., Phase I and Clinical Pharmacology Study of Bevacizumab, Sorafenib, and Low-Dose Cyclophosphamide in Children and Young Adults with Refractory/Recurrent Solid Tumors, Clinical Cancer Research, vol.19, issue.1, pp.236-246, 2013.
DOI : 10.1158/1078-0432.CCR-12-1897

G. Grignani, E. Palmerini, P. Dileo, S. Asaftei, D. Ambrosio et al., A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study, Annals of Oncology, vol.23, issue.2, pp.508-516, 2012.
DOI : 10.1093/annonc/mdr151

J. Han, R. Tian, Y. B. Luo, C. Tan, P. Shen et al., Gas6/Axl mediates tumor cell apoptosis, migration and invasion and predicts the clinical outcome of osteosarcoma patients, Biochemical and Biophysical Research Communications, vol.435, issue.3, pp.493-500, 2013.
DOI : 10.1016/j.bbrc.2013.05.019

A. Rettew, P. Getty, and E. Greenfield, Receptor Tyrosine Kinases in Osteosarcoma: Not Just the Usual Suspects, Adv Exp Med Biol, vol.804, pp.47-66, 2014.
DOI : 10.1007/978-3-319-04843-7_3

Y. Zhang, Y. Tang, Y. Man, F. Pan, Z. Li et al., Knockdown of AXL Receptor Tyrosine Kinase in Osteosarcoma Cells Leads to Decreased Proliferation and Increased Apoptosis, International Journal of Immunopathology and Pharmacology, vol.8, issue.1, pp.179-188, 2013.
DOI : 10.1177/153303460900800608

E. Fleuren, M. Hillebrandt-roeffen, U. Flucke, T. Loo, D. Boerman et al., The role of AXL and the <i>in vitro</i> activity of the receptor tyrosine kinase inhibitor BGB324 in Ewing sarcoma, Oncotarget, vol.5, issue.24
DOI : 10.18632/oncotarget.2648

E. Fleuren, M. Roeffen, W. Leenders, U. Flucke, M. Vlenterie et al., Expression and clinical relevance of MET and ALK in Ewing sarcomas, International Journal of Cancer, vol.30, issue.suppl 4, pp.427-463, 2013.
DOI : 10.1200/JCO.2010.32.4145

E. Sampson, B. Martin, A. Morris, C. Xie, E. Schwarz et al., The orally bioavailable met inhibitor PF-2341066 inhibits osteosarcoma growth and osteolysis/matrix production in a xenograft model, Journal of Bone and Mineral Research, vol.22, issue.6, pp.1283-94, 2011.
DOI : 10.1007/s10585-005-0365-9

R. Fritsche-guenther, A. Noske, U. Ungethüm, R. Kuban, P. Schlag et al., De novo expression of EphA2 in osteosarcoma modulates activation of the mitogenic signalling pathway, Histopathology, vol.283, issue.6, pp.836-850, 2010.
DOI : 10.1007/978-3-7091-3846-5

K. Mstuo and N. Otaki, Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases, Cell Adh Migr, vol.6, pp.148-156, 2012.

J. Posthumadeboer, S. Piersma, T. Pham, P. Van-egmond, J. Knol et al., Surface proteomic analysis of osteosarcoma identifies EPHA2 as receptor for targeted drug delivery, British Journal of Cancer, vol.36, issue.8, pp.2142-2154, 2013.
DOI : 10.1186/1471-2407-10-206

M. Kuijjer, E. Peterse, B. Van-den-akker, I. Briaire-de-bruijn, M. Serra et al., IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma, BMC Cancer, vol.17, issue.1, p.245, 2013.
DOI : 10.1158/1078-0432.CCR-10-1731

Y. Cao, M. Roth, S. Piperdi, K. Montoya, R. Sowers et al., Insulin-Like Growth Factor 1 Receptor and Response to Anti-IGF1R Antibody Therapy in Osteosarcoma, PLoS ONE, vol.9, issue.8, p.106249, 2014.
DOI : 10.1371/journal.pone.0106249.s001

URL : https://doi.org/10.1371/journal.pone.0106249

J. Gill, D. Geller, and R. Gorlick, HER-2 Involvement in Osteosarcoma, Adv Exp Med Biol, vol.804, pp.161-77, 2014.
DOI : 10.1007/978-3-319-04843-7_9

D. Ebb, P. Meyers, H. Grier, M. Bernstein, R. Gorlick et al., Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2

M. Macheda and S. Stacker, Importance of Wnt Signaling in the Tumor Stroma Microenvironment, Current Cancer Drug Targets, vol.8, issue.6, pp.454-465, 2008.
DOI : 10.2174/156800908785699324

L. Truitt and A. Freywald, Dancing with the dead: Eph receptors and their kinase-null partnersThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting ??? Membrane Proteins in Health and Disease, and has undergone the Journal???s usual peer review process., Biochemistry and Cell Biology, vol.8, issue.2, pp.115-129, 2011.
DOI : 10.1074/jbc.M608509200

P. Clézardin, Pathophysiology of bone metastases and new molecular targets involved in bone remodelling, Bull Cancer, vol.100, pp.1083-91, 2013.

H. Uehara, S. Kim, T. Karashima, D. Shepherd, D. Fan et al., Effects of Blocking Platelet-Derived Growth Factor-Receptor Signaling in a Mouse Model of Experimental Prostate Cancer Bone Metastases, JNCI Journal of the National Cancer Institute, vol.95, issue.6, pp.458-70, 2003.
DOI : 10.1093/jnci/95.6.458

S. Kim, H. Uehara, S. Yazici, J. Busby, T. Nakamura et al., Targeting Platelet-Derived Growth Factor Receptor on Endothelial Cells of Multidrug-Resistant Prostate Cancer, JNCI: Journal of the National Cancer Institute, vol.98, issue.11, pp.783-93, 2006.
DOI : 10.1093/jnci/djj211

N. Tiffany, E. Wersinger, M. Garzotto, and T. Beer, Imatinib mesylate and zoledronic acid in androgen-independent prostate cancer, Urology, vol.63, issue.5, pp.934-943, 2004.
DOI : 10.1016/j.urology.2003.12.022

P. Mathew, P. Thall, D. Jones, C. Perez, C. Bucana et al., Platelet-Derived Growth Factor Receptor Inhibitor Imatinib Mesylate and Docetaxel: A Modular Phase I Trial in Androgen-Independent Prostate Cancer, Journal of Clinical Oncology, vol.22, issue.16, pp.3323-3332, 2004.
DOI : 10.1200/JCO.2004.10.116

P. Mathew, P. Thall, C. Bucana, W. Oh, M. Morris et al., Platelet-Derived Growth Factor Receptor Inhibition and Chemotherapy for Castration-Resistant Prostate Cancer with Bone Metastases, Clinical Cancer Research, vol.13, issue.19, pp.5816-5840, 2007.
DOI : 10.1158/1078-0432.CCR-07-1269

Y. Liu, M. Karaca, Z. Zhang, D. Gioeli, H. Earp et al., Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases, Oncogene, vol.141, issue.22, pp.3208-3224, 2010.
DOI : 10.1038/onc.2010.103

J. Araujo, A. Poblenz, P. Corn, N. Parikh, M. Starbuck et al., Dasatinib inhibits both osteoclast activation and prostate cancer PC-3 cell-induced osteoclast formation, Cancer Biology & Therapy, vol.8, issue.22, pp.2153-2162, 2009.
DOI : 10.4161/cbt.8.22.9770

T. Koreckij, H. Nguyen, L. Brown, E. Yu, R. Vessella et al., Dasatinib inhibits the growth of prostate cancer in bone and provides additional protection from osteolysis, British Journal of Cancer, vol.54, issue.2, pp.263-271, 2009.
DOI : 10.1158/1078-0432.CCR-04-0621

E. Yu, C. Massard, M. Gross, M. Carducci, S. Culine et al., Once-daily Dasatinib: Expansion of Phase II Study Evaluating Safety and Efficacy of Dasatinib in Patients With Metastatic Castration-resistant Prostate Cancer, Urology, vol.77, issue.5, pp.1166-71, 2011.
DOI : 10.1016/j.urology.2011.01.006

E. Yu, G. Wilding, E. Posadas, M. Gross, S. Culine et al., Phase II Study of Dasatinib in Patients with Metastatic Castration-Resistant Prostate Cancer, Clinical Cancer Research, vol.15, issue.23, pp.7421-7429, 2009.
DOI : 10.1158/1078-0432.CCR-09-1691

J. Araujo, G. Trudel, F. Saad, A. Armstrong, E. Yu et al., Docetaxel and dasatinib or placebo in men with metastatic castration-resistant prostate cancer (READY): a randomised, double-blind phase 3 trial, The Lancet Oncology, vol.14, issue.13, pp.1307-1323, 2013.
DOI : 10.1016/S1470-2045(13)70479-0

G. Sonpavde, P. Periman, D. Bernold, D. Weckstein, M. Fleming et al., Sunitinib malate for metastatic castration-resistant prostate cancer following docetaxel-based chemotherapy, Annals of Oncology, vol.21, issue.2, pp.319-343, 2010.
DOI : 10.1093/annonc/mdp323

URL : https://academic.oup.com/annonc/article-pdf/21/2/319/929873/mdp323.pdf

M. Michaelson, S. Oudard, Y. Ou, L. Sengeløv, F. Saad et al., Randomized, Placebo-Controlled, Phase III Trial of Sunitinib Plus Prednisone Versus Prednisone Alone in Progressive, Metastatic, Castration-Resistant Prostate Cancer, Journal of Clinical Oncology, vol.32, issue.2, pp.76-82, 2014.
DOI : 10.1200/JCO.2012.48.5268

T. Bachelot, J. Garcia-saenz, S. Verma, M. Gutierrez, X. Pivot et al., Sunitinib in combination with trastuzumab for the treatment of advanced breast cancer: activity and safety results from a phase II study, BMC Cancer, vol.37, issue.4, p.166, 2014.
DOI : 10.1016/j.ctrv.2010.11.001

B. Beuselinck, S. Oudard, O. Rixe, P. Wolter, A. Blesius et al., Negative impact of bone metastasis on outcome in clear-cell renal cell carcinoma treated with sunitinib, Annals of Oncology, vol.22, issue.4, pp.794-800, 2011.
DOI : 10.1093/annonc/mdq554

D. Keizman, M. Ish-shalom, R. Pili, H. Hammers, M. Eisenberger et al., Bisphosphonates combined with sunitinib may improve the response rate, progression free survival and overall survival of patients with bone metastases from renal cell carcinoma, European Journal of Cancer, vol.48, issue.7, pp.1031-1038, 2012.
DOI : 10.1016/j.ejca.2012.02.050

M. Merz, D. Komljenovic, S. Zwick, W. Semmler, and T. Bäuerle, Sorafenib tosylate and paclitaxel induce anti-angiogenic, anti-tumour and anti-resorptive effects in experimental breast cancer bone metastases, European Journal of Cancer, vol.47, issue.2, pp.277-86, 2011.
DOI : 10.1016/j.ejca.2010.08.019

W. Dahut, C. Scripture, E. Posadas, L. Jain, J. Gulley et al., A Phase II Clinical Trial of Sorafenib in Androgen-Independent Prostate Cancer, Clinical Cancer Research, vol.14, issue.1, pp.209-223, 2008.
DOI : 10.1158/1078-0432.CCR-07-1355

J. Aragon-ching, L. Jain, J. Gulley, P. Arlen, J. Wright et al., Final analysis of a phase II trial using sorafenib for metastatic castration-resistant prostate cancer, BJU International, vol.16, issue.12, pp.1636-1676, 2009.
DOI : 10.1111/j.1464-410X.2008.08327.x

A. Sciarra, A. Gomez, A. Gentilucci, A. Parente, U. Salciccia et al., Adjuvant Therapy with Sorafenib in Bone Metastases Bilateral Renal Carcinoma: A Case Report, European Urology, vol.52, issue.2, pp.597-606, 2007.
DOI : 10.1016/j.eururo.2007.03.083

L. Pisters, P. Troncoso, H. Zhau, W. Li, V. Eschenbach et al., C-met Proto-Oncogene Expression in Benign and Malignant Human Prostate Tissues, The Journal of Urology, vol.154, issue.1, pp.293-301, 1995.
DOI : 10.1016/S0022-5347(01)67297-5

A. Tuck, M. Park, E. Sterns, A. Boag, and B. Elliott, Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma, Am J Pathol, vol.148, pp.225-257, 1996.

C. Birchmeier, W. Birchmeier, E. Gherardi, V. Woude, and G. , Met, metastasis, motility and more, Nature Reviews Molecular Cell Biology, vol.4, issue.12, pp.915-940, 2003.
DOI : 10.1038/nrm1261

M. Ponzo, R. Lesurf, S. Petkiewicz, O. Malley, F. Pinnaduwage et al., Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer, Proceedings of the National Academy of Sciences, vol.27, issue.6, pp.12903-12911, 2009.
DOI : 10.1038/emboj.2008.22

URL : http://www.pnas.org/content/106/31/12903.full.pdf

S. Previdi, F. Scolari, R. Chilà, F. Ricci, G. Abbadessa et al., Combination of the c-Met Inhibitor Tivantinib and Zoledronic Acid Prevents Tumor Bone Engraftment and Inhibits Progression of Established Bone Metastases in a Breast Xenograft Model, PLoS ONE, vol.360, issue.11, p.79101, 2013.
DOI : 10.1371/journal.pone.0079101.s004

T. Graham, G. Box, N. Tunariu, M. Crespo, T. Spinks et al., Preclinical Evaluation of Imaging Biomarkers for Prostate Cancer Bone Metastasis and Response to Cabozantinib, JNCI: Journal of the National Cancer Institute, vol.106, issue.4
DOI : 10.1093/jnci/dju033

R. Lee, P. Saylor, M. Michaelson, S. Rothenberg, M. Smas et al., A Dose-Ranging Study of Cabozantinib in Men with Castration-Resistant Prostate Cancer and Bone Metastases, Clinical Cancer Research, vol.19, issue.11, pp.3088-94, 2013.
DOI : 10.1158/1078-0432.CCR-13-0319

M. Smith, C. Sweeney, C. Smith, M. Sweeney, C. Corn et al., Cabozantinib in Chemotherapy-Pretreated Metastatic Castration-Resistant Prostate Cancer: Results of a Phase II Nonrandomized Expansion Study, Journal of Clinical Oncology, vol.32, issue.30, pp.3391-3400, 2014.
DOI : 10.1200/JCO.2013.54.5954

D. Smith, M. Smith, C. Sweeney, A. Elfiky, C. Logothetis et al., Cabozantinib in Patients With Advanced Prostate Cancer: Results of a Phase II Randomized Discontinuation Trial, Journal of Clinical Oncology, vol.31, issue.4
DOI : 10.1200/JCO.2012.45.0494

S. Previdi, F. Scolari, R. Chilà, F. Ricci, G. Abbadessa et al., Combination of the c-Met Inhibitor Tivantinib and Zoledronic Acid Prevents Tumor Bone Engraftment and Inhibits Progression of Established Bone Metastases in a Breast Xenograft Model, PLoS ONE, vol.360, issue.11, p.79101, 2013.
DOI : 10.1371/journal.pone.0079101.s004

S. Previdi, G. Abbadessa, F. Dalò, D. France, and M. Broggini, Breast Cancer-Derived Bone Metastasis Can Be Effectively Reduced through Specific c-MET Inhibitor Tivantinib (ARQ 197) and shRNA c-MET Knockdown, Molecular Cancer Therapeutics, vol.11, issue.1, pp.214-237, 2012.
DOI : 10.1158/1535-7163.MCT-11-0277

URL : http://mct.aacrjournals.org/content/molcanther/11/1/214.full.pdf

J. Yin, L. Zhang, J. Munasinghe, R. Linnoila, and K. Kelly, Cediranib/AZD2171 Inhibits Bone and Brain Metastasis in a Preclinical Model of Advanced Prostate Cancer, Cancer Research, vol.70, issue.21, pp.8662-8673, 2010.
DOI : 10.1158/0008-5472.CAN-10-1435

R. Bachelier, C. Confavreux, O. Peyruchaud, M. Croset, D. Goehrig et al., Combination of anti-angiogenic therapies reduces osteolysis and tumor burden in experimental breast cancer bone metastasis, International Journal of Cancer, vol.2, issue.6, pp.1319-1348, 2014.
DOI : 10.1038/nrc867

K. Furugaki, Y. Moriya, T. Iwai, K. Yorozu, M. Yanagisawa et al., Erlotinib inhibits osteolytic bone invasion of human non-small-cell lung cancer cell line NCI-H292, Clinical & Experimental Metastasis, vol.93, issue.2, pp.649-59, 2011.
DOI : 10.1016/S0092-8674(00)81569-X

C. Nabhan, T. Lestingi, A. Galvez, K. Tolzien, S. Kelby et al., Erlotinib Has Moderate Single-agent Activity in Chemotherapy-na??ve Castration-resistant Prostate Cancer: Final Results of a Phase II Trial, Urology, vol.74, issue.3, pp.665-71, 2009.
DOI : 10.1016/j.urology.2009.05.016

M. Gross, C. Higano, A. Pantuck, O. Castellanos, E. Green et al., A phase II trial of docetaxel and erlotinib as first-line therapy for elderly patients with androgen-independent prostate cancer, BMC Cancer, vol.9, issue.7, p.142, 2007.
DOI : 10.1200/jco.2004.22.14_suppl.7010

D. 'alessio, A. , D. Luca, A. Maiello, M. Lamura et al., Effects of the combined blockade of EGFR and ErbB-2 on signal transduction and regulation of cell cycle regulatory proteins in breast cancer cells, Breast Cancer Res Treat, vol.123, pp.387-96, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509362

C. Borghese, L. Cattaruzza, E. Pivetta, N. Normanno, D. Luca et al., Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity, Journal of Cellular Biochemistry, vol.26, issue.Suppl 1, pp.1135-1179, 2013.
DOI : 10.1002/jbmr.295

A. Sgambato, A. Camerini, B. Faraglia, R. Ardito, G. Bianchino et al., Targeted inhibition of the epidermal growth factor receptor-tyrosine kinase by ZD1839 (?Iressa?) induces cell-cycle arrest and inhibits proliferation in prostate cancer cells, Journal of Cellular Physiology, vol.5, issue.1, pp.97-105, 2004.
DOI : 10.1016/S1383-5718(01)00232-7

C. Pezaro, M. Rosenthal, H. Gurney, I. Davis, C. Underhill et al., An Open-Label, Single-Arm Phase Two Trial of Gefitinib in Patients With Advanced or Metastatic Castration-Resistant Prostate Cancer, American Journal of Clinical Oncology, vol.32, issue.4, pp.338-379, 2009.
DOI : 10.1097/COC.0b013e31818b946b

F. Boccardo, A. Rubagotti, G. Conti, M. Battaglia, G. Cruciani et al., Prednisone plus Gefitinib versus Prednisone plus Placebo in the Treatment of Hormone-Refractory Prostate Cancer: A Randomized Phase II Trial, Oncology, vol.74, issue.3-4, pp.223-231, 2008.
DOI : 10.1159/000151391

M. Salzberg, C. Rochlitz, R. Morant, G. Thalmann, A. Pedrazzini et al., An Open-Label, Noncomparative Phase II Trial to Evaluate the Efficacy and Safety of Docetaxel in Combination with Gefitinib in Patients with Hormone-Refractory Metastatic Prostate Cancer, Oncology Research and Treatment, vol.1, issue.7, pp.355-60, 2007.
DOI : 10.1055/s-2005-871990

G. Somlo, C. Martel, S. Lau, P. Frankel, C. Ruel et al., A phase I/II prospective, single arm trial of gefitinib, trastuzumab, and docetaxel in patients with stage IV HER-2 positive metastatic breast cancer, Breast Cancer Research and Treatment, vol.10, issue.2, pp.899-906, 2012.
DOI : 10.2353/jmoldx.2008.070125

R. Carlson, O. Neill, A. Vidaurre, T. Gomez, H. Badve et al., A randomized trial of combination anastrozole plus gefitinib and of combination fulvestrant plus gefitinib in the treatment of postmenopausal women with hormone receptor positive metastatic breast cancer, Breast Cancer Research and Treatment, vol.68, issue.18, pp.1049-56, 2012.
DOI : 10.1158/0008-5472.CAN-08-1404

C. Osborne, P. Neven, L. Dirix, J. Mackey, J. Robert et al., Gefitinib or Placebo in Combination with Tamoxifen in Patients with Hormone Receptor-Positive Metastatic Breast Cancer: A Randomized Phase II Study, Clinical Cancer Research, vol.17, issue.5, pp.1147-59
DOI : 10.1158/1078-0432.CCR-10-1869

M. Cristofanilli, V. Valero, A. Mangalik, R. M. Rabinowitz, I. Arena et al., Phase II, Randomized Trial to Compare Anastrozole Combined with Gefitinib or Placebo in Postmenopausal Women with Hormone Receptor-Positive Metastatic Breast Cancer, Clinical Cancer Research, vol.16, issue.6, pp.1904-1918, 2010.
DOI : 10.1158/1078-0432.CCR-09-2282

Y. Whang, A. Armstrong, W. Rathmell, P. Godley, W. Kim et al., A phase II study of lapatinib, a dual EGFR and HER-2 tyrosine kinase inhibitor, in patients with castration-resistant prostate cancer, Urologic Oncology: Seminars and Original Investigations, vol.31, issue.1, pp.82-88, 2013.
DOI : 10.1016/j.urolonc.2010.09.018

S. Sridhar, S. Hotte, J. Chin, G. Hudes, R. Gregg et al., A Multicenter Phase II Clinical Trial of Lapatinib (GW572016) in Hormonally Untreated Advanced Prostate Cancer, American Journal of Clinical Oncology, vol.33, issue.6, pp.609-622, 2010.
DOI : 10.1097/COC.0b013e3181beac33

A. Azad, E. Beardsley, S. Hotte, S. Ellard, L. Klotz et al., A randomized phase II efficacy and safety study of vandetanib (ZD6474) in combination with bicalutamide versus bicalutamide alone in patients with chemotherapy na??ve castration-resistant prostate cancer, Investigational New Drugs, vol.24, issue.2, pp.746-52, 2014.
DOI : 10.1089/cbr.2008.0588

M. Clemons, B. Cochrane, G. Pond, N. Califaretti, S. Chia et al., Randomised, phase II, placebo-controlled, trial of fulvestrant plus vandetanib in postmenopausal women with bone only or bone predominant, hormone-receptor-positive metastatic breast cancer (MBC): the OCOG ZAMBONEY study, Breast Cancer Research and Treatment, vol.25, issue.1, pp.153-62, 2014.
DOI : 10.1016/j.clon.2012.11.004

S. Vallo, J. Mani, M. Stastny, J. Makarevi?, E. Juengel et al., The prostate cancer blocking potential of the histone deacetylase inhibitor LBH589 is not enhanced by the multi receptor tyrosine kinase inhibitor TKI258, Investigational New Drugs, vol.105, issue.Suppl 2, pp.265-72, 2013.
DOI : 10.1111/j.1464-410X.2009.08759.x

H. Nguyen, N. Ruppender, X. Zhang, L. Brown, T. Gross et al., Cabozantinib Inhibits Growth of Androgen-Sensitive and Castration-Resistant Prostate Cancer and Affects Bone Remodeling, PLoS ONE, vol.18, issue.10, p.78881, 2013.
DOI : 10.1371/journal.pone.0078881.s005

R. Lee and M. Smith, Cabozantinib and Prostate Cancer: Inhibiting Seed and Disrupting Soil?, Clinical Cancer Research, vol.20, issue.3, pp.525-532, 2014.
DOI : 10.1158/1078-0432.CCR-13-2636

M. Meads, L. Hazlehurst, and W. Dalton, The Bone Marrow Microenvironment as a Tumor Sanctuary and Contributor to Drug Resistance, Clinical Cancer Research, vol.14, issue.9, pp.2519-2545, 2008.
DOI : 10.1158/1078-0432.CCR-07-2223

J. Trent and M. Subramanian, Managing GIST in the imatinib era: optimization of adjuvant therapy, Expert Review of Anticancer Therapy, vol.30, issue.12, pp.1445-59, 2014.
DOI : 10.1093/carcin/bgs221