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Abstract 
 
 

Bone cancers are characterised by the development of tumour cells in bone sites, associated 

with a dysregulation of their environment. In the last two decades, numerous therapeutic 

strategies have been developped to target the cancer cells or tumour niche. As the crosstalk 

between these two entities is thightly controlled by the release of polypeptide mediators 

activating signaling pathways through several receptor tyrosine kinases (RTKs), RTK 

inhibitors have been designed. These inhibitors have shown exciting clinical impacts, such as 

imatinib mesylate which has become a reference treatment for chronic myeloid leukaemia and 

gastrointestinal tumours. The present review gives an overview of the main molecular and 

functional characteristics of RTKs, and focuses on the clinical applications that are envisaged 

and already assessed for the treatment of bone sarcomas and bone metastases.   
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1. Introduction 
 

To be able to play their physiological role (intra- and inter-cellular signal transmission, 

adaptation to changes in the microenvironment), cells must be able to receive, integrate and 

respond to numerous extracellular messengers. These communications between cells and their 

environment are made possible through the attachment of molecules considered as 

messengers to their receptors, identified as effectors (cytokines, growth factors, etc). As 

proposed by Ehrlich in 1910, “to act, a substance must be fixed." These receptors are 

essentially located at the cell membrane, although there are also intra-cytoplasmic receptors 

such as steroid hormone that can be translocated into the nucleus to regulate expression of 

numerous genes. Membrane receptors possess: (i) an extracellular hydrophilic domain, often 

glycosylated, which recognises the ligand; (ii) a hydrophobic trans-membrane domain that 

makes embedding possible within the lipid bilayer of the plasma membrane; and (iii) an intra-

cytoplasmic domain dedicated to signal transduction within the cell. The binding of a ligand 

to its receptor is specific, reversible and involves a large number of low-energy bonds 

(hydrogen, ionic, hydrophobic, Van der Waals). Thus, at equilibrium, the dissociation rate is 

equal to the rate of association. Among the receptors of cytokine/growth factors, six types of 

receptor have intrinsic enzymatic activity (kinase or phosphatase receptors, and guanylyl 

cyclase-coupled receptors) or not (the G protein-coupled receptors, the receptor-type 

"channel", and cytokine receptors). 

The guanylyl cyclase-coupled receptors include natriuretic peptide, nitric oxide, carbon 

monoxide and enterotoxin receptors. The binding of the ligand to the extracellular domain of 

its receptor leads to intracellular activation of the guanylate cyclase domain of the receptor 

chain, and to synthesis of a cyclic GMP for activating the cAMP-dependent protein kinase 

environment [1]. The G protein-coupled receptors are characterised by seven transmembrane 

domains. The trimeric G proteins located on the cytoplasmic side of the cell membrane 
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transduce and amplify cell signalling through the production of cyclic AMP. The chemokine 

receptors are included in this family environment [2]. The ion channel linked receptors are 

ligand-dependent ion channels and their opening or closing activities are associated with the 

nature of the ligand. These receptors can be ionotropic or metabotropic. In the first case, the 

receptor is actually the pore, and opens following a conformational change made possible by 

the ligand binding. On the contrary, in the case of metabotropic receptors, ligand-stimulated 

receptors activate a ligand-independent channel through the intracellular effector environment 

[3]. Cytokine receptors can be divided into four groups: i) receptors with an immunoglobulin-

like ectodomain (IL-1α/β, IL-18); ii) the trimeric members of the TNF receptor superfamily 

(which include, for instance, RANK, TRAIL receptors, TNF receptors-α/β); iii), class I-

cytokine receptors (or haematopoietin receptors) environment [4] and iv) class II-cytokine 

receptors (or interferon and IL-10 receptors) [5]. Class I/II- cytokine receptors have 

oligomeric structures, where a specific α-chain warrants specific ligand recognition, while one 

or two channels (β/γ) are used for signal transduction. For instance, the receptors of 

interleukins (IL) 2, 4, 7, 9 and 15 consist in a specific chain to the cytokine, and the shared 

IL-2 γ-receptor chain, IL-2 and IL-34 also share a β-receptor chain environment [6]. 

Similarly, the IL-6 cytokine family (IL-6, IL-11, CNTF, OSM and LIF) shares the gp130 

receptor chain environment [7]. Among the cytokine receptor families, some are characterised 

by intrinsic kinase activity and consequently by their ability for autophosphorylation. They 

form the receptor tyrosine kinase (RTK) family. 

 All of these receptors tightly control tissue homeostasis, and any dysregulation of 

these ligand-receptor systems (mutations, overexpression, etc) disturbs cell communication 

and leads to pathological situations. Bone formation and bone remodelling are then controlled 

by a large panel of cytokines and growth factors regulating the dialogue between osteoblasts, 

osteoclasts and their environment [8]. It has been recognised that cancer cells (bone sarcomas, 
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metastatic cells originating from carcinomas) dysregulate the balance between osteoblasts and 

osteoclasts, activate osteoclastogenesis and then stimulate bone resorption. Consequently, 

activated osteoclasts resorb the extracellular bone matrix and release numerous growth factors 

entrapped in the organic matrix, which stimulate in turn the proliferation of cancer cells. 

Based on these observations, numerous chemical drugs have been developed to specifically 

target the various receptor tyrosine kinases activated by mutations, or by the ligands present 

in the tumour microenvironment. The present review summarises the classification, structure 

and mechanism, and focuses on the targeting of action of the receptor tyrosine kinases. Their 

use in the treatment of bone cancers (bone sarcomas and bone metastases) is described and 

discussed. 

 

2. The receptor tyrosine kinase (RTK) family 

2.1. Classification and structure of RTKs 

Protein kinases are key enzymes in the regulation of various cellular processes that catalyse 

the transfer of a phosphate group from ATP to a hydroxyl group of a serine or a threonine. 

Among the 90 identified genes encoding proteins with tyrosine kinase activity, 58 encode 

receptors divided into 20 subfamilies [9, 10] (Table I). Of these subfamilies, EGFR / ErbB 

(class I), the receptor for insulin (class II), for PDGF (Class III), for FGF (class IV), for 

VEGF (class V) and HGF (MET, Class VI) are strongly associated with oncological diseases. 

These RTKs are characterised by a single trans-membrane domain and a glycosylated N-

terminal extracellular domain with a high number of disulfide bonds. This extracellular 

domain is involved in the dimerisation process of the receptors, and consequently in ligand 

recognition (Figure 1). The composition of these domains (immunoglobulin domains, rich in 

leucine, lysine and cystein, fibronectin type III domain, etc.) depends on the classes of RTKs 

and then defines the specificity of the ligands. The RTKs are inserted into the cell membrane 
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thanks to an α-helix trans-membrane domain composed of 20 amino acids. The trans-

membrane domain plays a key role in the formation and stabilisation of the dimer of the 

receptor chains. In the lipid environment of the cell membrane, the α-helix are non-covalently 

oligomerised [11] (Figure 1). This type of process makes it possible to pre-dimerise the RTKs 

in the cell membrane capable of interacting with the corresponding ligand [12]. 

The cytoplasmic domain harbours a specific domain with tyrosine kinase activity that is 

involved in the catalysis of the ATP-dependent phosphorylation of receptor chains. It includes 

two domains: a juxtamembrane region composed of 40 to 80 amino acids corresponding to 

the tyrosine kinase domain and a carboxy-terminal region. The tyrosine kinase domain is 

composed of 12 subdomains organised into two lobes, connected by the kinase insert domain 

(subdomain V) (Figure 1). The tyrosine kinase domain includes an activation loop, whose 

orientation (and phosphorylation) determines the active or inactive state of the kinase domain. 

The ATP required for kinase activity is housed between the two lobes. The small lobe (named 

lobe N, for N-terminal, subdomains I to IV), composed of β-sheets and one α helice, binds, 

stabilises and orients the ATP previously complexed with Mg2+ ions. The large lobe (named 

C, for C-terminal, subdomains VI to IX) is mainly composed of α helices, and plays a part in 

the chelation of ATP by Mg2+ ATP. It then binds the protein substrate containing the tyrosine 

target and catalyses the transfer of the phosphate group from the ATP to the receptor chains 

[13]. The size of the tyrosine kinase domain is relatively constant between the different RTKs. 

On the contrary, the size and content of the juxta- and C-terminal domains, vary considerably 

between the RTK families, conferring the specificity of intracellular signals. For instance, the 

intracellular domain of PDGFRβ has 552 amino acids, the intracellular domain of EGFR has 

542 amino acids, while the FGFR1 shows 425 and TrkA only 356 amino acid residues. The 

number of tyrosine residues (phosphorylable or not) and their distribution vary significantly 

between the RTKs. Thus, 27 tyrosine residues are detected for the PDGFRβ (of which 19 can 
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be phosphorylated) and only 11 tyrosines can be detected in TrkA (with 6 phoshorylable 

tyrosines) (Bradshaw et al. 2013). However, a pair of tyrosine residues phosphorylated after 

RTK activation is found in the activation loop and is required for the functionality of the 

receptor. The activation of these tyrosine residues stabilises the “open” conformation of the 

activation loop and both lobes, and also allows the ATP and peptidic substrate environment to 

bind [13]. An additional, third tyrosine amino acid (located in a close upstream domain) 

participates in the conformational change of the activation loop. All the mutations on these 

tyrosine residues result in inactivation of the receptor chains. EGFR is an exception in the 

RTK families and it has only one tyrosine residue at this position, which is not essential for 

receptor chain activation and function.  

 

2.2. General mechanism of action 

It is admitted that the binding of a dimeric ligand to its receptor chains increases the proximity 

or/and stabilises the receptor chains that will be then auto-phosphorylated through their kinase 

domains (a process called trans-phosphorylation). This non-covalent dimerisation is 

associated with conformational changes that lead to the activation of the cytoplasmic kinase 

domains of the receptors. In most cases, one of the two receptor chains will trans-

phosphorylate specific cytoplasmic tyrosines from the other monomeric chain environment 

[14]. In some cases, the constitutive form of the RTKs is a dimer such as insulin receptors. In 

addition, some ligands such as EGF are monomeric, and their binding to their receptor 

induces a conformational change that shifts the intra-molecular loop and exposes a binding 

domain in the receptor that results in its dimerisation environment [15]. In others, the 

dimerisation of the ligand is required to activate the receptor chain (i.e. the NGF - TrkA 

system environment 16].  
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In the absence of the ligand, the activation loop self-regulates activation of the 

receptor because its “closed” conformation inhibits catalytic activity (cis-inhibition). 

Dimerisation of the RTK chains following ligand binding induces the rotation of the N- and 

C- lobes, as well as the major axis of the protein. The activation loop, which is masked by its 

tyrosine residues, the ATP binding site, moves to enable ATP binding and the 

autophosphorylation of tyrosine residues located on the opposite receptor chain. The trans 

phosphorylation of key tyrosine residues located in the activation loop stabilises the “open” 

conformation, and breaks the binding between these tyrosines and the binding sites to the 

protein substrates, making it possible to access the C lobe, then activating its kinase activity. 

In addition, other tyrosine residues are phosphorylated by protein kinases previously recruited 

on the phosphorylated tyrosines of the RTK environment [17]. Several molecular “brakes” in 

kinase activity have been developed to limit phosphorylation levels. These molecular domains 

are located in the activation loop, in the juxtamembrane domain (KIT, PDGFR) or in the C-

terminal domain (i.e. Tie2). In the last two cases, these molecular repressions will be removed 

by cis-phosphorylation of the RTKs during the ligand binding-induced conformational 

changes [18]. Phosphorylation of the catalytic domain of the RTKs activates and increases the 

activity of the kinase domain, whereas the non-catalytic domains create various anchoring 

sites for cytoplasmic targets involved in intracellular signal transduction. These tyrosines are 

mostly located on the juxta-membrane and C-terminal domains, and at the insert kinase 

domain residues, allowing the binding, activation and phosphorylation of numerous 

cytoplasmic proteins that will then relay the signal towards various intracellular activation 

pathways. These proteins have SH2 or PTB domains that recognise tyrosine phosphorylated 

receptor chains, and have intrinsic enzymatic activity, such as Src or PLCγ, or serve as 

adapter proteins for recruiting other enzymes, such as Grb2 linked to the MAPK activation 

pathway. The proteins recruited by their SH2 domains are named "adapter", while those that 
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bind directly to the receptor chains or to the Grb2 adaptative protein are called "anchoring 

proteins". Adaptive and anchoring proteins can bind to similar phosphorylated tyrosine 

residues or to several tyrosine residues from the same receptor chains. Thus, Gab1 binds to 

tyrosine1068 and tyrosine1086 of EGFR. Insulin and FGF receptors bind to a protein assembly 

that can be phosphorylated and used as adaptive proteins [19].  

 

2.3. RTKs and activated signalling pathways 

RTKs are considered as protein platforms, or the starting point for many cellular signalling 

pathways by recruiting enzymatic effectors (PLCγ, PI3K, Src, etc) either directly on to their 

intra-cytoplasmic domain, or indirectly through adapter proteins (Grb2, Shc, etc.), forming 

complexes capable of activating intracellular enzymes (Ras, etc.) (Figure 2). RTK 

downstream signalling pathways are mainly MAPK, PI3K, Src, and other signalling pathways 

involving PLCγ, JAK / STAT, etc. While the early stages of signal transduction following the 

activation of RTKs is based mainly on tyrosine phosphorylation, signal propagation associates 

various phosphorylations on serine / threonine residues in the majority of cellular processes, 

as well as other processes such as ubiquitination, glycosylation or acetylation [20].  

 The MAPK pathway plays a part in controlling cell proliferation, cell death or 

differentiation, and migration, as well as promoting angiogenesis. The MAPK signalling 

cascade is divided into four major pathways used by RTKs and leading to ERK1/2 activation 

(Figure 2). After activation of the RTKs by their ligand, the adaptive protein Grb2 binds by its 

SH2 domains, the phosphorylated tyrosine residues of the receptor chains and the adaptive 

protein SOS by their SH3 domain, which is bound to the PIP2 membrane. This binding allows 

the activation of Ras, a small G protein, via SOS, a GEF protein exchanging the GDP for a 

GTP. In fact, Ras oscillates between its active and inactive state, thus acting as a "switch" for 

intracellular effector molecules. Once activated, Ras allows phosphorylated signal 

transduction through recruitment and phosphorylation of Raf kinases A, B or C (or MAP3K) 
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[21]. Activated Raf phosphorylates MEK1 and MEK2 (or MAP2K1/2) on serine218/serine222 

and serine222/serine226 residues of their activation loop, and activated MEK1/2 itself catalyses 

the phosphorylation of Erk1 and Erk2 (or MAPK1/2) on their threonine202/185 and 

tyrosine204/187 residues. Phosphorylated Erk1/2 will be then translocated to the nucleus to 

activate transcription factors that will regulate the transcription of genes involved in the 

survival and growth of the cells, or activate cytosolic proteins, such as RSK1/2, which target 

cytoplasmic effectors or will finally be translocated into the nucleus to act as a transcription 

factor [22]. 

The targets of these transcription factors are transcriptional regulators such as STAT, 

Elk-1, CREB or H3 histone that activate transcription of early genes. Of these early genes, c-

Fos, c-Jun or c-Myc stimulate the expression of other genes such as cyclin D1 or CDK6, 

which control progression in the G1 phase and G1/S transition. When RTK activation, and 

therefore that of Erk1/2, is maintained, expression of the previous proteins is stabilised as c-

Fos, which is phosphorylated on threonine residues by its RSK1/2 and Erk1/2, and forms the 

complex AP-1 with c-Jun, which also activates the transcription of target genes (Figure 2). 

The MAPK pathway also activates three additional pathways: p38, JNK and ERK5. In the 

first pathway, p38α/β/γ/δ are activated by a MAP2K such as MKK3 or MKK6, previously 

activated by a MAP3K such as TAK1, and consequently, p38 induces the transcription of 

various genes involved in cell proliferation, angiogenesis, inflammation and the production of 

immunomodulatory cytokines. In the JNK pathway, the TAK1-, MEKK1-, or MLK-MAP3Ks 

activate the MAP2K4 or MAP2K7, which activates JNK1, 2 or 3, for instance, and lead to the 

control of  cell apoptosis or the development of the immune system [23]. In the ERK5 

pathway, WNK1 activates MEKK2 and 3, which phosphorylates MEK5, leading to ERK5 

activation. The translocation of ERK5 into the nucleus regulates cell proliferation and 

survival by activating the transcription of cyclin D1 for example, allowing G1/S transition in 
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the cell cycle in the same way as Erk1/2. ERK5 also has more specific substrates, such as the 

MEF2 transcription factor family, the pro-apoptotic protein BAD, connexin 43, etc. [24].  

The PI3K/Akt/mTOR pathway controls cell cycle progression, the cell survival/cell 

apoptosis balance. Its activation facilitates cell proliferation and migration, the metabolism of 

glucose, etc. PI3K is a "lipid" kinase that phosphorylates membrane lipids via its catalytic 

p110 subunit (α, β or δ) once recruited by its two SH2 domains from the p85 regulatory 

subunit on activated RTKs. PIP2 then forms PIP3 (phosphatidylinositol 3,4,5-triphosphate) by 

transferring a phosphate group, and Akt (PKB, for Protein Kinase B) and PDK-1 then bind to 

the membrane, where the PDK-1 activated by PIP3 phosphorylates Akt (Figure 2). Activated 

Akt becomes an activation crossroad for many proteins, allowing cells to survive by 

inhibiting, ubiquitinating and degrading pro-apoptotic proteins such as BAD and p53, and by 

inducing the expression of anti-apoptotics such as Bcl-2 or Akt. In addition, Akt also induces 

cell proliferation by activating various cyclins and by inhibiting several cell cycle repressors 

such as p21 or p27. Akt also allows the transcription of pro-angiogenic genes such as VEGF 

and HIF-1α, which are involved in numerous oncological processes. In addition, Akt inhibits 

the glucose metabolism by suppressing GSK3, and regulates the lipid metabolism through 

mTOR activation [25]. 

The role of the Src pathway in signal transmission within the cell was demonstrated 

for the first time in fibroblasts stimulated with PDGF [26]. Src, Fyn and Yes belong to the Src 

family, are activated by RTKs, and are associated with numerous other kinases such as Ras, 

PI3K, PLCγ or FAKs. The members of the Src family therefore have redundant functions in 

the intracellular signalling pathways described below. Src family members are recruited on 

RTKs (EGFR, FGFR, IGFR, MCSF-R, HGFR, etc.) after their activation and transmit 

mitogen signals inducing DNA synthesis, cell survival, cytoskeleton rearrangements, cell 

adhesion and motility, but also control receptor turnover [27]. Src family members can bind 
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phosphorylated residues by their SH2 domains, resulting in kinase activity after 

conformational modifications. This activation is very complex and requires the recruitment of 

Ras and Ral GTPases. Several studies have shown that SFKs may regulate activation of RTKs 

directly by phosphorylating tyrosine residues such as tyrosine845, tyrosine1101 and EGFR [28]. 

c-Src can be recruited within membrane complexes formed by integrins, and then 

phosphorylate these RTKs [29]. Furthermore, the Shp2 protein tyrosine phosphatase also 

plays a key role in this activation by blocking the activities of negative regulators (Csk for 

instance) [30].  

PLCγ, and JAK / STAT are additional signalling pathways associated with RTK 

activation. Various RTKs can bind through their phosphorylated tyrosine residue, the SH2 

domains of STAT transcription factors, as demonstrated for MET and STAT3. The activation 

of these trancription factors results in their dimerisation and translocation into the nucleus to 

activate specific target genes [31]. 

 

2.3. Feedback loops controllng RTK activation  

RTK activities are tightly controlled by numerous positive or negative molecular feedback 

loops that prolong the auto-activation of the receptors and signal amplitude, by inducing the 

production of the ligand for instance. Such feedback loops are essential for stabilising the 

RTK system [32]. These controls include proteins already present within the cell that are 

mobilised on activation of RTKs and/or subjected to post-translational modifications for 

immediately regulating the signal induced (early negative feedback) (Figure 3). They also 

associate the synthesis of response elements (late negative feedback) such as IEGs early or 

DEGS late genes that regulate the activity of AP-1, c-Myc, p53 or the MAPKs. Thus, Erk1/2, 

a downstream protagonist of the MAPK pathway, directly inhibits (early negative feedback) 

the phosphorylation of the effector proteins by inhibiting the kinase activity of upstream 



 13

enzymes (RAF and MEK) [33]. In addition, the translocation of Erk1/2 into the core may also 

activate the expression of transcriptional repressors, such as phosphatases (e.g.: DSPs) to 

inhibit MAPK activity (negative feedback late) [34]. 

By decreasing the amplitude of the signals generated and the stimulation of cellular 

activity, adapter proteins such as kinases, phosphatases and ubiquitin ligases located in the 

cytoplasm are the first early negative regulators of RTK activities [35]. The signal generated 

is then attenuated, based on the ubiquitination of RTKs by the E3 ubiquitin ligase c-CBL for 

instance, which leads to the endocytosis of the receptors and their degradation in the 

lysosomal compartment [36]. After activation by the ligand, the RTK is effectively clustered 

in clathrin-rich membrane regions and then internalised in clathrin-dependent endocytic 

vesicles to reduce the induced signal [37].  

 

3. RTKs in oncology 

3.1. RTK mutations and carcinogenesis 

RTKs are involved in numerous pathological disorders, especially in oncology. Around 30% 

of RTKs are mutated or overexpressed in various human cancers (MET, KIT, FLT3, etc.) 

[38]. Oncogenic mutations or gene duplications in the juxtamembrane region of KIT and 

FLT3 result in constitutive activation of these receptors in the absence of their ligand, and are 

consequently directly linked to the carcinogenesis process [39]. Duplications in the 

juxtamembrane region of FLT3 are responsible, for instance, for the constitutive activation of 

the receptor in 15-30% of cases of acute myeloid leukaemia [40] and in 65% of 

gastrointestinal stromal tumours (GISTs) [41]. Autocrine stimulation or overexpression of 

EGFR were also associated with many solid tumours. Thus, EGFR/ErbB-1 and ErbB-2 are 

overexpressed in lung [42], breast [43, 44] and prostate [45, 46] cancer, and their expression 
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is linked to marked aggressiveness and poor prognosis. Such observations have strengthened 

the therapeutic development of RTK inhibitors in the last three decades. 

 

3.2. RTK inhibitors and bone cancers  

3.2.1. RTK inhibitors target the bone tumour niche   

Primary malignant bone tumours (bone sarcomas) and bone metastases (from breast, prostate 

carcinomas, etc.) are characterised by their ability to dysregulate their micro-environment and 

especially the balance between bone apposition and bone resorption. Osteoblasts [8, 45-51] 

and osteoclasts [8, 52-54] express numerous RTKs and are then cellular targets of the 

corresponding ligands released in the cancer micro-environment. Based on these observations, 

the impact of RTK inhibitors has been assessed in bone remodelling. Recently, Bao et al., 

using broad kinase inhibitor screening applied to the mouse MC3T3-E1 osteoprogenitor cell 

line, identified two families of inhibitor affecting cell survival differentially [55]. The first 

family included pro-osteoblastic drugs such as lapatinib (EGFR/HER2 inhibitor), erlotinib 

(EGFR inhibitor) and sunitinib (FLT3/PDGFR/VEGFR/CSF-1R inhibitor), which stimulated 

osteoblastic proliferation. In contrast, the second family grouped together seven kinase 

inhibitors (GSK1838705A, PF-04691502, masitinib targeting KIT or XL880 targeting MET 

and VEGFR), which inhibited osteoblast viability in a dose- and time-dependent manner. 

Nilotinib and CEP-751 may be added to the second family. Nilotinib potently inhibited 

osteoblast proliferation [56]. While nilotinib inhibits numerous RTKs (KIT, EPHA3, EPHA8, 

DDR1, DDR2, PDGFRB), its effects may be associated with the inhibition of PDGFR [65]. 

Pinski et al. demonstrated that proliferation induced apoptosis, but not quiescent human 

osteoblasts after treatment with CEP-751, a trk receptor tyrosine kinase inhibitor [57]. 

Similarly, inhibiting IGF1R also led to the inhibition of proliferation and induction of 

apoptosis of osteoblasts [58]. Nevertheless, these RTK inhibitors, due to their multiple 
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targeting, exert very complex effects and can exert dual activities on bone cells. Imatinib 

mesylate (Gleevec), which targets a broad range of tyrosine kinase proteins, including bcr/abl, 

c-kit, cFMS and the PDFGR among others, is able to inhibit osteoblast proliferation and also 

to activate their activities through the inhibition of PDGFR activity [59].  Gobin et al. 

confirmed recently this dual activity depending on the doses of inhibitor used. Low doses of 

imatinib mesylate increased the in vitro mineralisation process, and high doses of the drug 

markedly affected mineral deposits [60].   

RTKs are also expressed by osteoclast precursors and mature osteoclasts, and numerous 

studies have shown that RTK inhibitors strongly affect osteoclastogenesis and bone 

resorption. Imatinib mesylate decreases osteoclastogenesis, and increases mature osteoclast 

apoptosis through the inhibition of cFMS signalling  [61].  Sorafenib, an RET, and VEGFR 

inhibitors similarly target osteoclasts [62]. Dasatinib abolishes osteoclast formation in vitro by 

inhibiting cFMS activation, and increases osteoblast activities by repressing PDGFR 

signalling [63]. In addition, these authors demonstrated that the administration of dasatinib in 

animals resulted in dysregulated bone remodelling in favour of an increase in bone formation, 

which may be associated with the inhibition of osteoclast activity [63]. In 2012, Garcia-

Gomez et al. confirmed the anabolic and anti-catabolic effects of dasatinib [64]. Overall, 

these works revealed that bone cells are potential targets for RTK inhibitors, and that using 

RTK inhibitors in an oncological bone context will have an impact on the bone tumour niche.  

 

3.2.2. RTK inhibitors as therapeutic drugs for bone sarcomas 

Bone sarcomas derive from the mesoderm, and sarcoma cells originate from mesenchymal 

stem cells [65]. Osteosarcoma and Ewing’s sarcomas are the two main types of bone sarcoma 

diagnosed in children and young adults. The peak of incidence for both tumours is at puberty, 

suggesting that there is a strong link with bone growth and the numerous growth factors, 
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hormones and cytokines released during this period. In this context, RTK inhibitors assessed 

on bone cells were also assessed in bone sarcomas (Table II) [66, 67]. Recently, Rettew et al. 

identified several RTKs by using a phosphoproteomic approach and demonstrated that Axl, 

EphB2, FGFR2, IGF-1R and Ret more specifically controlled the behaviour of human 

osteosarcoma cells in vitro from a functional point of view [68]. PDGFR was also identified 

as a therapeutic target in osteosarcoma, and selective inhibition of PDGFR activation led to 

apoptosis of osteosarcoma cells in vitro [69]. These data were confirmed by a phospho-

receptor tyrosine kinase array kit which identified seven receptors (PDFGFRβ, Axl, RYK, 

EGFR, EphA2 and 10, IGF1R) as molecular targets for imatinib mesylate [60]. In this study, 

the authors showed that imatinib mesylate induced anti-proliferatives in pre-clinical models of 

osteosarcoma, and that of the seven modulated RTKs, PDGFRα appeared as the main target 

of the drug. Similar observations were made in Ewing’s sarcoma [70]. Unfortunately, clinical 

investigations demonstrated only low or no efficacy in children with relapse bone sarcomas, 

even in patients selected for tumour expression of KIT or PDGFR[71-73] (Table II). 

Dasatinib and Sunitinib were used in phase I clinical trials and defined the doses usable in a 

paediatric context [77, 79]. Although no objective responses were observed, 4 patients with 

sarcomas were in a stable condition [79]. Complementary investigations are needed to 

evaluate the therapeutic efficacy of dasatinib and sunitinib in sarcomas. Pazotinib, targeting 

VEGFR, PDGFR and c-KIT, and sorafenib, targeting RET and VEGFR, had interesting 

benefits in paediatric sarcomas [71, 54, 85] (Table II).   

 Protein assays have identified new RTKs with potential therapeutic benefits. Axl is 

thus expressed in most osteosarcomas [86] and a correlation was found between its expression 

and the clinical outcome [87, 88]. In addition, Fleuren et al. demonstrated that high Axl 

expression correlated with worse overall survival compared to Ewing’s sarcoma patients with 

lower expression [89] similar to MET [90]. The MET inhibitor (PF-2341066) then appeared 
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efficient in a xenograft model of osteosarcoma [91]. EphA2 was the most abundant surface 

protein on cancer cells and may be involved in the pathogenesis of osteosarcoma by 

modulating bone remodelling and the communications between tumour cells and their 

environment [92-94]. Recently, Kuijjer et al. provided an in vitro rationale for using IGR1R 

inhibitors in osteosarcoma [95]. However, IGF1R mRNA expression, cell surface expression, 

copy number, and mutation status were not associated with tumour responsiveness to anti-

IGF1R targeting [96]. EGFR are expressed by osteosarcoma cells, but gefitinib and 

BIBW2992 targeting the receptors were not effective on osteosarcoma cells, so the question 

of EGFR targeting remains open [97]. Similarly, HER-2 is expressed by osteosarcoma cells 

but its prognostic relevance is still controversial [98] and the results for the patients treated 

were limited [99]. A randomised study of patients with HER2-positive osteosarcoma would 

be of major interest for better understanding the role of HER-2 in the pathogenesis of bone 

sarcomas, and for evaluating their therapeutic value. EphA10 and RYK are two other RTKs 

expressed by osteosarcoma cells and represent other therapeutic opportunities [100, 101]. 

Overall, these data revealed the potential therapeutic interest for targeting RTKs in 

bone sarcomas. Clinical investigations must nevertheless be adapted to the 

expression/mutation/activation state of RTKs, which is the prerequisite for patient enrolment. 

 

3.2.3. RTK inhibitors: therapeutic benefits for bone metastases 

As with bone sarcomas, bone metastastic cells, from breast or prostate carcinoma for 

instance, dysregulate local bone remodelling and the associated TRKs/growth factors, which 

in turn facilitate tumour development [102]. Consequently, numerous TRKs and their ligands 

have been associated with the pathogenesis of carcinomas and their capacity to form bone 

metastases. Many investigations at the pre-clinical and clinical levels have thus been 

developed in the last 10 years (Table III). Unfortunately, whilst most of the drugs developed 

had interesting anti-cancer effects on the primary tumours or/and the establishment of bone 
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metastases, the results of the clinical trials were often disappointing. Imatinib mesylate for 

instance, which is very efficient in soft tissue sarcomas, had no palliative or clinical activity in 

metastastic castration-resistant prostate cancer [105]. Combining it with bisphosphonates and 

docetaxel did not improve overall survival and brings into question the value of PDGFR 

inhibition with taxane chemotherapy in prostate cancer bone metastases [105-107]. Similarly, 

phase III clinical trials did not confirm the combination of dasatinib (which targets c-KIT, 

EPHA2, PDGFR) and docetaxel in chemotherapy-naive patients with metastatic castration-

resistant prostate cancer (Table III). Sunitinib initially appeared promising in metastatic 

castration-resistant prostate cancer [115], however the phase III clinical trial did not 

significantly prolong the overall survival of patients after failure of a docetaxel-based regimen 

[116]. Sorafenib was developed to target RET and VEGFR [120] and has a moderate activity 

as a second-line treatment for metastatic castration-resistant prostate cancer [122]. HGFR (c-

MET) and its ligand HGF control numerous cellular signalling cascades that direct cell 

growth, proliferation, survival, and motility, and also regulate the epithelial-mesenchymal 

transition (EMT) with a stong impact on the developement of metastases. Cabozantinib was 

specifically developped to inhibit the downstream signalling pathways transduced by c-MET 

and VGEFR [124-131]. Cabozantinib is currently approved by the U.S. Food and Drug 

Administration for the treatment of progressive, metastatic medullary thyroid cancer. The 

clinical evaluation demonstrated in phase II clinical trials that the use of this drug appeared 

clinically relevant in castration-resistant prostate cancer patients, as it improved bone scans 

and bone biomarkers, and reduced both soft tissue lesions and the number of circulating 

tumour cells [133-134]. The phase III COMET-II trials that cabozantinib has not fullfilled the 

promise reported in the phase II trials (Exelixis announcement: 

http://www.exelixis.com/investors-media/press-releases). Indeed, 50% of patients in the 

cabozantinib arm reported a pain response, compared to 17 percent of patients in the control 
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arm receiving mitoxantrone/ prednisone. This difference in pain response between the arms 

was not statistically significant. Tivantinib, another c-MET inhibitor, has shown promising 

therapeutic value in pre-clinical models [136-137]. Erlotinib has moderate clinical effect as a 

single-agent in chemotherapy-naïve castration-resistant cancer [142] and its combination with 

docetaxel did not show any added therapeutic value [143]. Genitinib, lapatinib and vandetanib 

alone or in combination with other drugs failed to show significant therapeutic activity 

compared to the conventional drugs in breast and prostate cancers (Table III). Dovotinib is a 

recently developed multi-RTK inhibitor (FGFR, VEGFR) that has shown interesting pre-

clinical activity in metastastic castration-resistant prostate cancer: anti-angiogenic activity, 

anti-tumour activity and clinical activity in 34 patients with bone metastases [159 ]. However, 

its combination with histone deacetylase inhibitor did not show any additional value [160]. 

Clinical trials are required to confirm its therapeutic value. 

 

Although numerous RTK inhibitors initially appeared to be of great interest, based on 

pre-clinical assessements, most of them have not fulfilled the promise hoped in phase I/II 

studies. The absence of significant results with their use can be explained by the multiplicity 

of their targets and the complexity of the mechanisms involved. Indeed, these drugs will 

affect not only the tumor cells but also its environment. Thus, the Cabozantinib, like 

dovotinib for instance for which the clinical activity needs to be confirmed, affects the 

coupling between cancer cells and the bone tumour niche [159, 161, 162]. The bone tumour 

microenvironment (in bone sarcoma and bone metastases) is then described as a 

sanctuary that controls at least in part the tumour growth and contributes to the drug 

resistance acquisition [163, 164]. By modulating the tumour microenvironment, RTK could 

have a positive and/or a negative impact on the tumour development.   
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4. Conclusion 

In the last 15 years, there have been high expectations in oncology of therapies with 

RTK inhibitors. Imatinib mesylate was the first to show spectacular clinical success in chronic 

myeloid leukaemia patients, and has become the first line of treatment. Gastro-intestinal 

stromal tumour (GIST) is the second success for the use of an RTK inhibitor, and imatinib 

mesylate is the standard of care in patients who are at high risk for GIST recurrence following 

resection [165]. Unfortunately, patients develop resistance and relapse due to protein point 

mutations and/or the introduction of molecular feedback loops. Many other RTK inhibitors 

have shown disappointing results in clinical applications after encouraging pre-clinical 

results. In all cases, the efficacy of RTK inhibitors is linked with their ability to disrupt the 

crosstalk between tumour cells and their environment. A better understanding of both 

intracellular signal modulating by these RTK inhibitors, and the feedback loops developed 

during the establishment of resistance, will increase the chances of success for these drugs. In 

addition, adapted investigational approaches will be needed to define the expression profile of 

the RTK genuinely activated/mutated/expressed in patients before their inclusion in clinical 

trials. 
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Figure Legends 
 
 
Figure 1: General organisation of the molecular domains that make up the RTKs. RTKs 

are characterised by the dimerisation of two receptor chains with an N-terminal (N) 

extracellular domain (ECM), and a C-terminal (C) intracellular domain (ICD). The 

extracellular domain is implicated in the recognition of the dimeric ligands and the formation 

of the receptor chain dimerisation process. The extracellular domain is associated with ligand 

recognition and is composed of various domains depending on the RTK class. The 

transmembrane-domain is composed of an a-helix chain which contributes to the stabilisation 

of the dimeric receptor chains. The binding of a dimeric ligand (in red) to the extracellular 

domains of the receptor chains strengthens the stabilisation of the receptor chains, which are 

auto-phosphorylated through their tyrosine kinase domains and then transduced in specific 

downstream signalling pathways.  

 

 
Figure 2: Main signalling pathways activated by the ligand-induced RTK auto-

phosphorylations. The phosphorylation cascades initiated by the RTK phosphorylations lead 

to the activation of numerous transcription factors which consequently control the regulation 

of many physiological processes. 

 

Figure 3: The negative feedback loops regulating RTK activation. The window of time 

required for inducing mRNA and protein synthesis after RTK activation is between 15 and 90 

minutes. These mechanisms are tightly regulated by negative feedback loops. Indeed, the 

phosphorylation cascade induced by RTK activation leads to the activation of numerous 

transcription factors and simultaneously of their repressors. The translocation of the various 

transcription factors can also induce the expression of transcriptional repressors or 
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phosphases, which in turn can repress the corresponding transcription factors and/or the 

upstream kinase activites.  + : activation; - : repression. 

 


