W. Dauer and S. Przedborski, Parkinson's Disease, Neuron, vol.39, issue.6, pp.889-909, 2003.
DOI : 10.1016/S0896-6273(03)00568-3

M. Spillantini, M. Schmidt, V. Lee, J. Trojanowski, R. Jakes et al., ??-Synuclein in Lewy bodies, Nature, vol.388, issue.6645, pp.839-879, 1997.
DOI : 10.1038/42166

H. Lashuel, C. Overk, A. Oueslati, and E. Masliah, The many faces of ??-synuclein: from structure and toxicity to therapeutic target, Nature Reviews Neuroscience, vol.418, issue.1, pp.38-48, 2013.
DOI : 10.1038/418291a

H. Lee, S. Patel, and S. Lee, Intravesicular Localization and Exocytosis of ??-Synuclein and its Aggregates, Journal of Neuroscience, vol.25, issue.25, pp.6016-6040, 2005.
DOI : 10.1523/JNEUROSCI.0692-05.2005

A. Jang, H. Lee, J. Suk, J. Jung, K. Kim et al., Non-classical exocytosis of alpha-synuclein is sensitive to folding states and promoted under stress conditions, J Neurochem, vol.113, pp.1263-74, 2010.

A. Gerhard, N. Pavese, G. Hotton, F. Turkheimer, M. Es et al., In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease, Neurobiology of Disease, vol.21, issue.2, pp.404-416, 2006.
DOI : 10.1016/j.nbd.2005.08.002

E. Bezard, S. Dovero, C. Prunier, P. Ravenscroft, S. Chalon et al., Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease, J Neurosci, vol.21, pp.6853-61, 2001.

D. Arkadir, H. Bergman, and S. Fahn, Redundant dopaminergic activity may enable compensatory axonal sprouting in Parkinson disease, Neurology, vol.82, issue.12, pp.1093-1101, 2014.
DOI : 10.1212/WNL.0000000000000243

K. Lloyd, CNS Compensation to Dopamine Neuron Loss in Parkinson???s Disease, Adv Exp Med Biol, vol.90, pp.255-66, 1977.
DOI : 10.1007/978-1-4684-2511-6_16

M. Polymeropoulos, C. Lavedan, E. Leroy, S. Ide, A. Dehejia et al., Mutation in the -Synuclein Gene Identified in Families with Parkinson's Disease, Science, vol.276, issue.5321, pp.2045-2052, 1997.
DOI : 10.1126/science.276.5321.2045

A. Singleton, M. Farrer, J. Johnson, A. Singleton, S. Hague et al., ??-Synuclein Locus Triplication Causes Parkinson's Disease, Science, vol.302, issue.5646, p.841, 2003.
DOI : 10.1126/science.1090278

M. Chartier-harlin, J. Kachergus, C. Roumier, V. Mouroux, X. Douay et al., ??-synuclein locus duplication as a cause of familial Parkinson's disease, The Lancet, vol.364, issue.9440, pp.1167-1176, 2004.
DOI : 10.1016/S0140-6736(04)17103-1

P. Ibanez, A. Bonnet, B. Debarges, E. Lohmann, F. Tison et al., Causal relation between ??-synuclein locus duplication as a cause of familial Parkinson's disease, The Lancet, vol.364, issue.9440, pp.1169-71, 2004.
DOI : 10.1016/S0140-6736(04)17104-3

D. Maraganore, M. De-andrade, A. Elbaz, M. Farrer, J. Ioannidis et al., Collaborative Analysis of ??-Synuclein Gene Promoter Variability and Parkinson Disease, JAMA, vol.296, issue.6, pp.661-70, 2006.
DOI : 10.1001/jama.296.6.661

URL : https://hal.archives-ouvertes.fr/inserm-00180153

J. Simon-sanchez, C. Schulte, J. Bras, M. Sharma, J. Gibbs et al., Genome-wide association study reveals genetic risk underlying Parkinson's disease, Nature Genetics, vol.105, issue.12, pp.1308-1320, 2009.
DOI : 10.1212/WNL.56.suppl_4.S21

D. Hernandez, X. Reed, and A. Singleton, Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance, Journal of Neurochemistry, vol.89, issue.3 Pt 1, pp.59-74, 2016.
DOI : 10.1016/j.ajhg.2011.06.008

URL : http://onlinelibrary.wiley.com/doi/10.1111/jnc.13593/pdf

P. Gomez-suaga and S. Hilfiker, LRRK2 as a modulator of lysosomal calcium homeostasis with downstream effects on autophagy, Autophagy, vol.8, issue.4, pp.692-695, 2012.
DOI : 10.4161/auto.19305

S. Mullin and A. Schapira, The genetics of Parkinson's disease, British Medical Bulletin, vol.114, issue.1, pp.39-52, 2015.
DOI : 10.1093/bmb/ldv022

T. Hamza, C. Zabetian, A. Tenesa, A. Laederach, J. Montimurro et al., Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease, Nature Genetics, vol.21, issue.9, pp.781-786, 2010.
DOI : 10.1212/WNL.38.8.1285

P. Holmans, V. Moskvina, L. Jones, M. Sharma, A. Vedernikov et al., A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease, Human Molecular Genetics, vol.22, issue.5, pp.1039-1088, 2013.
DOI : 10.1093/hmg/dds492

A. Witoelar, I. Jansen, Y. Wang, R. Desikan, J. Gibbs et al., Genome-wide Pleiotropy between Parkinson disease and autoimmune diseases, JAMA Neurol, vol.74, pp.780-92, 2017.

V. Dias, E. Junn, and M. Mouradian, The role of oxidative stress in Parkinson's disease, J Parkinsons Dis, vol.3, pp.461-91, 2013.

P. Michel, E. Hirsch, and S. Hunot, Understanding Dopaminergic Cell Death Pathways in Parkinson Disease, Neuron, vol.90, issue.4, pp.675-91, 2016.
DOI : 10.1016/j.neuron.2016.03.038

URL : https://hal.archives-ouvertes.fr/inserm-01348875

A. Elbaz and F. Moisan, The scientific bases to consider Parkinson's disease an occupational disease in agriculture professionals exposed to pesticides in France, Journal of Epidemiology and Community Health, vol.10, issue.4, pp.319-340, 2016.
DOI : 10.1371/journal.pgen.1004788

M. Chin-chan, J. Navarro-yepes, and B. Quintanilla-vega, Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases, Frontiers in Cellular Neuroscience, vol.115, p.124, 2015.
DOI : 10.1111/j.1471-4159.2010.07002.x

URL : http://journal.frontiersin.org/article/10.3389/fncel.2015.00124/pdf

J. Bove and C. Perier, Neurotoxin-based models of Parkinson's disease, Neuroscience, vol.211, pp.51-76, 2012.
DOI : 10.1016/j.neuroscience.2011.10.057

C. Olanow, Oxidation reactions in Parkinson's disease, Neurology, vol.40, 1990.
DOI : 10.1002/ana.24011

K. Winklhofer and C. Haass, Mitochondrial dysfunction in Parkinson's disease, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.1, pp.29-44, 2010.
DOI : 10.1016/j.bbadis.2009.08.013

Z. Alam, A. Jenner, S. Daniel, A. Lees, N. Cairns et al., Oxidative DNA Damage in the Parkinsonian Brain: An Apparent Selective Increase in 8-Hydroxyguanine Levels in Substantia Nigra, Journal of Neurochemistry, vol.69, issue.3, pp.1196-203, 1997.
DOI : 10.1046/j.1471-4159.1997.69031196.x

D. Dexter, C. Carter, F. Wells, F. Javoy-agid, Y. Agid et al., Basal Lipid Peroxidation in Substantia Nigra Is Increased in Parkinson's Disease, Journal of Neurochemistry, vol.46, issue.2, pp.381-390, 1989.
DOI : 10.1016/0028-3908(87)90187-0

J. Zhang, G. Perry, M. Smith, D. Robertson, S. Olson et al., Parkinson's Disease Is Associated with Oxidative Damage to Cytoplasmic DNA and RNA in Substantia Nigra Neurons, The American Journal of Pathology, vol.154, issue.5, pp.1423-1432, 1999.
DOI : 10.1016/S0002-9440(10)65396-5

E. Sofic, K. Lange, K. Jellinger, and P. Riederer, Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease, Neuroscience Letters, vol.142, issue.2, pp.128-158, 1992.
DOI : 10.1016/0304-3940(92)90355-B

P. Damier, E. Hirsch, P. Zhang, Y. Agid, and F. Javoy-agid, Glutathione peroxidase, glial cells and Parkinson's disease, Neuroscience, vol.52, issue.1, pp.1-6, 1993.
DOI : 10.1016/0306-4522(93)90175-F

M. Mittelbronn, K. Dietz, H. Schluesener, and R. Meyermann, Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude, Acta Neuropathol, vol.101, pp.249-55, 2001.

L. Lawson, V. Perry, P. Dri, and S. Gordon, Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain, Neuroscience, vol.39, issue.1, pp.151-70, 1990.
DOI : 10.1016/0306-4522(90)90229-W

A. Schapira, J. Cooper, D. Dexter, J. Clark, P. Jenner et al., Mitochondrial Complex I Deficiency in Parkinson's Disease, Journal of Neurochemistry, vol.49, issue.3, pp.823-830, 1990.
DOI : 10.1016/S0140-6736(88)91894-6

A. Schapira, V. Mann, J. Cooper, D. Dexter, S. Daniel et al., Reductase (Complex I) Deficiency in Parkinson's Disease, Journal of Neurochemistry, vol.54, issue.6, pp.2142-2147, 1990.
DOI : 10.1016/0076-6879(67)10048-7

Y. Mizuno, S. Ohta, M. Tanaka, S. Takamiya, K. Suzuki et al., Deficiencies in Complex I subunits of the respiratory chain in Parkinson's disease, Biochemical and Biophysical Research Communications, vol.163, issue.3, pp.1450-1455, 1989.
DOI : 10.1016/0006-291X(89)91141-8

F. Rossi and M. Zatti, Biochemical aspects of phagocytosis in poly-morphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells, Experientia, vol.112, issue.1, pp.21-24, 1964.
DOI : 10.1139/o63-051

A. Segal, HOW NEUTROPHILS KILL MICROBES, Annual Review of Immunology, vol.23, issue.1, pp.197-223, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115653

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2092448/pdf

B. Banfi, A. Maturana, S. Jaconi, S. Arnaudeau, T. Laforge et al., A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1, Science, vol.287, pp.138-180, 2000.

Y. Suh, R. Arnold, B. Lassegue, J. Shi, X. Xu et al., Cell transformation by the superoxide-generating oxidase Mox1, Nature, vol.273, issue.6748, pp.79-82, 1999.
DOI : 10.1074/jbc.273.4.2015

G. Cheng, Z. Cao, X. Xu, E. Van-meir, and J. Lambeth, Homologs of gp91 phox : cloning and tissue expression of Nox3, Nox4, and Nox5, Gene, vol.269, issue.1-2, pp.131-171, 2001.
DOI : 10.1016/S0378-1119(01)00449-8

M. Geiszt, J. Kopp, P. Varnai, and T. Leto, Identification of Renox, an NAD(P)H oxidase in kidney, Proceedings of the National Academy of Sciences, vol.145, issue.8, pp.8010-8014, 2000.
DOI : 10.1046/j.1523-1755.1998.00212.x

A. Shiose, J. Kuroda, K. Tsuruya, M. Hirai, H. Hirakata et al., A Novel Superoxide-producing NAD(P)H Oxidase in Kidney, Journal of Biological Chemistry, vol.201, issue.2, pp.1417-1440, 2001.
DOI : 10.1073/pnas.130135897

URL : http://www.jbc.org/content/276/2/1417.full.pdf

B. Banfi, G. Molnar, A. Maturana, K. Steger, B. Hegedus et al., -activated NADPH Oxidase in Testis, Spleen, and Lymph Nodes, Journal of Biological Chemistry, vol.10, issue.40, pp.37594-601, 2001.
DOI : 10.1084/jem.193.4.417

X. De-deken, D. Wang, M. Many, S. Costagliola, F. Libert et al., Cloning of Two Human Thyroid cDNAs Encoding New Members of the NADPH Oxidase Family, Journal of Biological Chemistry, vol.278, issue.30, pp.23227-23260, 2000.
DOI : 10.1006/abio.1997.2055

J. Meitzler, S. Hinde, B. Banfi, and W. Nauseef, Conserved Cysteine Residues Provide a Protein-Protein Interaction Surface in Dual Oxidase (DUOX) Proteins, Journal of Biological Chemistry, vol.101, issue.10, pp.7147-57, 2013.
DOI : 10.1172/JCI2649

URL : http://www.jbc.org/content/288/10/7147.full.pdf

J. Meitzler and P. Ortiz-de-montellano, and Human Dual Oxidase 1 (DUOX1) ???Peroxidase??? Domains, Journal of Biological Chemistry, vol.11, issue.28, pp.18634-18677, 2009.
DOI : 10.1074/jbc.274.15.10533

URL : http://www.jbc.org/content/284/28/18634.full.pdf

J. Meitzler and P. Ortiz-de-montellano, Structural stability and heme binding potential of the truncated human dual oxidase 2 (DUOX2) peroxidase domain, Archives of Biochemistry and Biophysics, vol.512, issue.2, pp.197-203, 2011.
DOI : 10.1016/j.abb.2011.05.021

S. Altenhofer, K. Radermacher, P. Kleikers, K. Wingler, and H. Schmidt, Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement, Antioxidants & Redox Signaling, vol.23, issue.5, pp.406-433, 2015.
DOI : 10.1089/ars.2013.5814

T. Kawahara, M. Quinn, and J. Lambeth, Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes, BMC Evolutionary Biology, vol.7, issue.1, p.109, 2007.
DOI : 10.1186/1471-2148-7-109

J. Lambeth, T. Kawahara, and B. Diebold, Regulation of Nox and Duox enzymatic activity and expression, Free Radical Biology and Medicine, vol.43, issue.3, pp.319-350, 2007.
DOI : 10.1016/j.freeradbiomed.2007.03.028

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1989153/pdf

L. Yu, M. Quinn, A. Cross, and M. Dinauer, Gp91phox is the heme binding subunit of the superoxide-generating NADPH oxidase, Proceedings of the National Academy of Sciences, vol.321, issue.5, pp.7993-8001, 1998.
DOI : 10.1042/bj3210583

C. Han, J. Freeman, T. Lee, S. Motalebi, and J. Lambeth, Regulation of the Neutrophil Respiratory Burst Oxidase, Journal of Biological Chemistry, vol.269, issue.27, pp.16663-16671, 1998.
DOI : 10.1021/bi00249a031

K. Roepstorff, I. Rasmussen, M. Sawada, C. Cudre-maroux, P. Salmon et al., Stimulus-dependent Regulation of the Phagocyte NADPH Oxidase by a VAV1, Rac1, and PAK1 Signaling Axis, Journal of Biological Chemistry, vol.96, issue.12, pp.7983-93, 2008.
DOI : 10.1172/JCI118187

C. Kim and M. Dinauer, Impaired NADPH oxidase activity in Rac2-deficient murine neutrophils does not result from defective translocation of p47phox and p67phox and can be rescued by exogenous arachidonic acid, Journal of Leukocyte Biology, vol.79, issue.1, pp.223-257, 2006.
DOI : 10.1189/jlb.0705371

H. Korchak, M. Rossi, and L. Kilpatrick, Generation but Not Degranulation or Adherence in Differentiated HL60 Cells, Journal of Biological Chemistry, vol.264, issue.42, pp.27292-27301, 1998.
DOI : 10.1073/pnas.92.17.7931

URL : http://www.jbc.org/content/273/42/27292.full.pdf

E. Bey, B. Xu, A. Bhattacharjee, C. Oldfield, X. Zhao et al., Protein Kinase C?? Is Required for p47phox Phosphorylation and Translocation in Activated Human Monocytes, The Journal of Immunology, vol.173, issue.9, pp.5730-5738, 2004.
DOI : 10.4049/jimmunol.173.9.5730

K. Waki, O. Inanami, T. Yamamori, H. Nagahata, and M. Kuwabara, Involvement of protein kinase C?? in the activation of NADPH oxidase and the phagocytosis of neutrophils, Free Radical Research, vol.349, issue.4, pp.359-67, 2006.
DOI : 10.1042/bj3490369

C. Hoyal, A. Gutierrez, B. Young, S. Catz, J. Lin et al., Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase, Proceedings of the National Academy of Sciences, vol.274, issue.29, pp.5130-5135, 2003.
DOI : 10.1074/jbc.274.29.20704

Q. Chen, D. Powell, M. Rane, S. Singh, W. Butt et al., Akt Phosphorylates p47phox and Mediates Respiratory Burst Activity in Human Neutrophils, The Journal of Immunology, vol.170, issue.10, pp.5302-5310, 2003.
DOI : 10.4049/jimmunol.170.10.5302

URL : http://www.jimmunol.org/content/jimmunol/170/10/5302.full.pdf

P. Dang, A. Stensballe, T. Boussetta, H. Raad, C. Dewas et al., A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites, Journal of Clinical Investigation, vol.116, issue.7, pp.2033-2076, 2006.
DOI : 10.1172/JCI27544

URL : http://www.jci.org/articles/view/27544/files/pdf

K. Martyn, M. Kim, M. Quinn, M. Dinauer, and U. Knaus, p21-activated kinase (Pak) regulates NADPH oxidase activation in human neutrophils, Blood, vol.106, issue.12, pp.3962-3971, 2005.
DOI : 10.1182/blood-2005-03-0859

URL : http://www.bloodjournal.org/content/bloodjournal/106/12/3962.full.pdf

C. Dewas, P. Dang, M. Gougerot-pocidalo, and J. El-benna, TNF-?? Induces Phosphorylation of p47phox in Human Neutrophils: Partial Phosphorylation of p47phox Is a Common Event of Priming of Human Neutrophils by TNF-?? and Granulocyte-Macrophage Colony-Stimulating Factor, The Journal of Immunology, vol.171, issue.8, pp.4392-4400, 2003.
DOI : 10.4049/jimmunol.171.8.4392

K. Martyn, L. Frederick, K. Von-loehneysen, M. Dinauer, and U. Knaus, Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases, Cellular Signalling, vol.18, issue.1, pp.69-82, 2006.
DOI : 10.1016/j.cellsig.2005.03.023

L. Serrander, L. Cartier, K. Bedard, B. Banfi, B. Lardy et al., NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation, Biochemical Journal, vol.406, issue.1, pp.105-119, 2007.
DOI : 10.1042/BJ20061903

URL : https://hal.archives-ouvertes.fr/hal-00400481

S. Basuroy, D. Tcheranova, S. Bhattacharya, C. Leffler, and H. Parfenova, Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-??-induced apoptosis, AJP: Cell Physiology, vol.300, issue.2, pp.256-65, 2011.
DOI : 10.1152/ajpcell.00272.2010

D. Meng, D. Lv, and J. Fang, Insulin-like growth factor-I induces reactive oxygen species production and cell migration through Nox4 and Rac1 in vascular smooth muscle cells, Cardiovascular Research, vol.80, issue.2, pp.299-308, 2008.
DOI : 10.1093/cvr/cvn173

URL : https://academic.oup.com/cardiovascres/article-pdf/80/2/299/993895/cvn173.pdf

A. Martin-garrido, D. Brown, A. Lyle, A. Dikalova, B. Seidel-rogol et al., NADPH oxidase 4 mediates TGF-??-induced smooth muscle ??-actin via p38MAPK and serum response factor, Free Radical Biology and Medicine, vol.50, issue.2, pp.354-62, 2011.
DOI : 10.1016/j.freeradbiomed.2010.11.007

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032946/pdf

D. Jagnandan, J. Church, B. Banfi, D. Stuehr, M. Marrero et al., Novel Mechanism of Activation of NADPH Oxidase 5, Journal of Biological Chemistry, vol.20, issue.9, pp.6494-507, 2007.
DOI : 10.1161/01.ATV.20.8.1903

K. Bedard and K. Krause, The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology, Physiological Reviews, vol.87, issue.1, pp.245-313, 2007.
DOI : 10.1152/physrev.00044.2005

Y. Maru, T. Nishino, and K. Kakinuma, Expression of Nox genes in rat organs, mouse oocytes, and sea urchin eggs, DNA Sequence, vol.16, issue.2, pp.83-91, 2005.
DOI : 10.1080/10425170500069734

T. Harrigan, I. Abdullaev, D. Mongin, and A. , Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases, Journal of Neurochemistry, vol.18, issue.6, pp.2449-62, 2008.
DOI : 10.1161/01.STR.25.1.165

S. Sankarapandi, J. Zweier, G. Mukherjee, M. Quinn, and D. Huso, Measurement and Characterization of Superoxide Generation in Microglial Cells: Evidence for an NADPH Oxidase-Dependent Pathway, Archives of Biochemistry and Biophysics, vol.353, issue.2, pp.312-333, 1998.
DOI : 10.1006/abbi.1998.0658

S. Green, B. Cairns, R. J. Errett-baroncini, C. Hongo, J. Erickson et al., , a Component of the Phagocyte NADPH Oxidase, in Microglial Cells during Central Nervous System Inflammation, Journal of Cerebral Blood Flow & Metabolism, vol.6, issue.1, pp.374-84, 2001.
DOI : 10.1016/0960-5428(96)00017-4

C. Cheret, A. Gervais, A. Lelli, C. Colin, L. Amar et al., Neurotoxic Activation of Microglia Is Promoted by a Nox1-Dependent NADPH Oxidase, Journal of Neuroscience, vol.28, issue.46, pp.12039-51, 2008.
DOI : 10.1523/JNEUROSCI.3568-08.2008

URL : https://hal.archives-ouvertes.fr/pasteur-00428978

B. Li, K. Bedard, S. Sorce, B. Hinz, M. Dubois-dauphin et al., NOX4 Expression in Human Microglia Leads to Constitutive Generation of Reactive Oxygen Species and to Constitutive IL-6 Expression, Journal of Innate Immunity, vol.1, issue.6, pp.570-81, 2009.
DOI : 10.1159/000235563

E. Mead, A. Mosley, S. Eaton, L. Dobson, S. Heales et al., Microglial neurotransmitter receptors trigger superoxide production in microglia; consequences for microglial-neuronal interactions, Journal of Neurochemistry, vol.3, issue.2, pp.287-301, 2012.
DOI : 10.1038/nprot.2007.473

F. Vilhardt and B. Van-deurs, The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly, The EMBO Journal, vol.23, issue.4, pp.739-787, 2004.
DOI : 10.1038/sj.emboj.7600066

P. Ejlerskov, D. Christensen, D. Beyaie, J. Burritt, M. Paclet et al., NADPH Oxidase Is Internalized by Clathrin-coated Pits and Localizes to a Rab27A/B GTPase-regulated Secretory Compartment in Activated Macrophages, Journal of Biological Chemistry, vol.1746, issue.7, pp.4835-52, 2012.
DOI : 10.1038/nrm1572

M. Ibi, M. Katsuyama, C. Fan, K. Iwata, T. Nishinaka et al., NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth, Free Radical Biology and Medicine, vol.40, issue.10, pp.1785-95, 2006.
DOI : 10.1016/j.freeradbiomed.2006.01.009

S. Tammariello, M. Quinn, and S. Estus, NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons, J Neurosci, vol.20, p.53, 2000.

M. Kim, K. Shin, Y. Chung, K. Jung, C. Cha et al., Immunohistochemical study of p47Phox and gp91Phox distributions in rat brain, Brain Research, vol.1040, issue.1-2, pp.178-86, 2005.
DOI : 10.1016/j.brainres.2005.01.066

P. Vallet, Y. Charnay, K. Steger, E. Ogier-denis, E. Kovari et al., Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia, Neuroscience, vol.132, issue.2, pp.233-241, 2005.
DOI : 10.1016/j.neuroscience.2004.12.038

A. Case, S. Li, U. Basu, J. Tian, and M. Zimmerman, Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons, AJP: Heart and Circulatory Physiology, vol.305, issue.1, pp.19-28, 2013.
DOI : 10.1152/ajpheart.00974.2012

D. Choi, A. Cristovao, S. Guhathakurta, J. Lee, T. Joh et al., NADPH Oxidase 1-Mediated Oxidative Stress Leads to Dopamine Neuron Death in Parkinson's Disease, Antioxidants & Redox Signaling, vol.16, issue.10, pp.1033-1078, 2012.
DOI : 10.1089/ars.2011.3960

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315177/pdf

W. Zawada, R. Mrak, J. Biedermann, Q. Palmer, S. Gentleman et al., Loss of angiotensin II receptor expression in dopamine neurons in Parkinson???s disease correlates with pathological progression and is accompanied by increases in Nox4- and 8-OH guanosine-related nucleic acid oxidation and caspase-3 activation, Acta Neuropathologica Communications, vol.4, issue.8, p.9, 2015.
DOI : 10.3389/fendo.2013.00158

A. Abramov, J. Jacobson, F. Wientjes, J. Hothersall, L. Canevari et al., Expression and Modulation of an NADPH Oxidase in Mammalian Astrocytes, Journal of Neuroscience, vol.25, issue.40, pp.9176-84, 2005.
DOI : 10.1523/JNEUROSCI.1632-05.2005

N. Oshitani, A. Kitano, H. Okabe, S. Nakamura, T. Matsumoto et al., Location of nitroblue tetrazolium-reducing activity in human colonic mucosa obtained by biopsy, Digestive Diseases and Sciences, vol.134, issue.3, pp.546-50, 1993.
DOI : 10.1007/BF01316513

A. Panday, M. Sahoo, D. Osorio, and S. Batra, NADPH oxidases: an overview from structure to innate immunity-associated pathologies, Cellular and Molecular Immunology, vol.296, issue.1, pp.5-23, 2015.
DOI : 10.1002/hep.24599

URL : http://www.nature.com/cmi/journal/v12/n1/pdf/cmi201489a.pdf

K. Kishida, M. Pao, S. Holland, and E. Klann, NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1, Journal of Neurochemistry, vol.275, issue.2
DOI : 10.1074/jbc.M910425199

K. Kishida, C. Hoeffer, D. Hu, M. Pao, S. Holland et al., Synaptic Plasticity Deficits and Mild Memory Impairments in Mouse Models of Chronic Granulomatous Disease, Molecular and Cellular Biology, vol.26, issue.15, pp.5908-5928, 2006.
DOI : 10.1128/MCB.00269-06

V. Perry, A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation, Journal of Neuroimmunology, vol.90, issue.2, pp.113-134, 1998.
DOI : 10.1016/S0165-5728(98)00145-3

E. Hirsch, S. Vyas, and S. Hunot, Neuroinflammation in Parkinson's disease, Parkinsonism & Related Disorders, vol.18, pp.210-212, 2012.
DOI : 10.1016/S1353-8020(11)70065-7

D. Wu, P. Teismann, K. Tieu, M. Vila, V. Jackson-lewis et al., NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease, Proceedings of the National Academy of Sciences, vol.290, issue.5493, pp.6145-50, 2003.
DOI : 10.1126/science.290.5493.985

L. Episcopo, F. Tirolo, C. Testa, N. Caniglia, S. Morale et al., Plasticity of Subventricular Zone Neuroprogenitors in MPTP (1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine) Mouse Model of Parkinson's Disease Involves Cross Talk between Inflammatory and Wnt/??-Catenin Signaling Pathways: Functional Consequences for Neuroprotection and Repair, Journal of Neuroscience, vol.32, issue.6, pp.2062-85, 2012.
DOI : 10.1523/JNEUROSCI.5259-11.2012

D. Wu, V. Jackson-lewis, M. Vila, K. Tieu, P. Teismann et al., Blockade of microglial activation is neuroprotective in the 1-methyl-4, p.6, 2003.

S. Huh, Y. Chung, Y. Piao, M. Jin, H. Son et al., Ethyl Pyruvate Rescues Nigrostriatal Dopaminergic Neurons by Regulating Glial Activation in a Mouse Model of Parkinson's Disease, The Journal of Immunology, vol.187, issue.2, pp.960-969, 2011.
DOI : 10.4049/jimmunol.1100009

W. Zhang, J. Gao, Z. Yan, X. Huang, P. Guo et al., Minimally toxic dose of Lipopolysaccharide and alpha-Synuclein Oligomer elicit synergistic Dopaminergic Neurodegeneration: role and mechanism of Microglial NOX2 activation, Mol Neurobiol, 2016.

M. Purisai, A. Mccormack, S. Cumine, J. Li, M. Isla et al., Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration, Neurobiology of Disease, vol.25, issue.2, pp.392-400, 2007.
DOI : 10.1016/j.nbd.2006.10.008

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001246/pdf

M. Hernandes, G. Santos, C. Cafe-mendes, L. Lima, C. Scavone et al., Microglial Cells Are Involved in the Susceptibility of NADPH Oxidase Knockout Mice to 6-Hydroxy-Dopamine-Induced Neurodegeneration, PLoS ONE, vol.6, issue.9, p.75532, 2013.
DOI : 10.1371/journal.pone.0075532.g006

J. Rodriguez-pallares, J. Parga, A. Munoz, P. Rey, M. Guerra et al., Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons, Journal of Neurochemistry, vol.186, issue.2, pp.145-56, 2007.
DOI : 10.1073/pnas.0937239100

Y. Wang, D. Liu, H. Zhang, L. Wei, Y. Liu et al., Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase, Toxicology and Applied Pharmacology, vol.322, pp.51-60, 2017.
DOI : 10.1016/j.taap.2017.03.005

A. Kumar, B. Stoica, B. Sabirzhanov, M. Burns, A. Faden et al., Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states, Neurobiology of Aging, vol.34, issue.5, pp.1397-411, 2013.
DOI : 10.1016/j.neurobiolaging.2012.11.013

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572914/pdf

K. Byrnes, D. Loane, B. Stoica, J. Zhang, and A. Faden, Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury, Journal of Neuroinflammation, vol.12, issue.1, p.43, 2012.
DOI : 10.1089/neu.1995.12.169

URL : https://jneuroinflammation.biomedcentral.com/track/pdf/10.1186/1742-2094-9-43?site=jneuroinflammation.biomedcentral.com

A. Kumar, J. Barrett, D. Alvarez-croda, B. Stoica, A. Faden et al., NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury, Brain, Behavior, and Immunity, vol.58, pp.291-309, 2016.
DOI : 10.1016/j.bbi.2016.07.158

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067217/pdf

S. Hunot, N. Dugas, B. Faucheux, A. Hartmann, M. Tardieu et al., FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells, J Neurosci, vol.19, pp.3440-3447, 1999.

M. Mogi, M. Harada, P. Riederer, H. Narabayashi, K. Fujita et al., Tumor necrosis factor-?? (TNF-??) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients, Neuroscience Letters, vol.165, issue.1-2, pp.208-218, 1994.
DOI : 10.1016/0304-3940(94)90746-3

M. Mogi, M. Harada, H. Narabayashi, H. Inagaki, M. Minami et al., Interleukin (IL)-1??, IL-2, IL-4, IL-6 and transforming growth factor-?? levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease, Neuroscience Letters, vol.211, issue.1, pp.13-19, 1996.
DOI : 10.1016/0304-3940(96)12706-3

S. Lehnardt, L. Massillon, P. Follett, F. Jensen, R. Ratan et al., Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway, Proceedings of the National Academy of Sciences, vol.20, issue.14, pp.8514-8523, 2003.
DOI : 10.1038/399a007

L. Qin, X. Wu, M. Block, Y. Liu, G. Breese et al., Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration, Glia, vol.19, issue.5, pp.453-62, 2007.
DOI : 10.1515/REVNEURO.2002.13.3.221

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871685/pdf

U. Hanisch, Functional diversity of microglia -how heterogeneous are they to begin with? Front Cell Neurosci, p.65, 2013.

H. Martin and P. Teismann, Glutathione--a review on its role and significance in Parkinson's disease, The FASEB Journal, vol.23, issue.10, pp.3263-72, 2009.
DOI : 10.1096/fj.08-125443

A. Poltorak, X. He, I. Smirnova, M. Liu, C. Van-huffel et al., Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene, Science, vol.282, issue.5396, pp.2085-2093, 1998.
DOI : 10.1126/science.282.5396.2085

K. Hoshino, O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa et al., Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product

L. Qin, G. Li, X. Qian, Y. Liu, X. Wu et al., Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation, Glia, vol.19, issue.1, pp.78-84, 2005.
DOI : 10.4049/jimmunol.166.1.574

Z. Pei, H. Pang, L. Qian, S. Yang, T. Wang et al., MAC1 mediates LPS-induced production of superoxide by microglia: The role of pattern recognition receptors in dopaminergic neurotoxicity, Glia, vol.170, issue.13, pp.1362-73, 2007.
DOI : 10.1084/jem.170.4.1231

L. Qin, Y. Liu, J. Hong, and F. Crews, NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration, Glia, vol.46, issue.Suppl 1, pp.855-68, 2013.
DOI : 10.1016/j.freeradbiomed.2008.10.031

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631289/pdf

L. Qin, Y. Liu, T. Wang, S. Wei, M. Block et al., NADPH Oxidase Mediates Lipopolysaccharide-induced Neurotoxicity and Proinflammatory Gene Expression in Activated Microglia, Journal of Biological Chemistry, vol.20, issue.2, pp.1415-1436, 2004.
DOI : 10.1074/jbc.M111883200

URL : http://www.jbc.org/content/279/2/1415.full.pdf

Q. Wang, E. Oyarzabal, B. Wilson, L. Qian, and J. Hong, Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice, Clinical Science, vol.129, issue.8, pp.757-67, 2015.
DOI : 10.1042/CS20150008

H. Gao, B. Liu, W. Zhang, and J. Hong, Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease, The FASEB Journal, vol.17, pp.1954-1960, 2003.
DOI : 10.1096/fj.03-0109fje

H. Gao, B. Liu, W. Zhang, and J. Hong, Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease, The FASEB Journal, vol.17, pp.1957-1966, 2003.
DOI : 10.1096/fj.03-0203fje

X. Wu, M. Block, W. Zhang, L. Qin, B. Wilson et al., The Role of Microglia in Paraquat-Induced Dopaminergic Neurotoxicity, Antioxidants & Redox Signaling, vol.7, issue.5-6, pp.654-61, 2005.
DOI : 10.1089/ars.2005.7.654

H. Gao, B. Liu, and J. Hong, Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons, J Neurosci, vol.23, pp.6181-6188, 2003.

W. Zhang, T. Wang, L. Qin, H. Gao, B. Wilson et al., Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase, The FASEB Journal, vol.18, pp.589-91, 2004.
DOI : 10.1096/fj.03-0983fje

M. Hernandes, C. Cafe-mendes, and L. Britto, NADPH Oxidase and the Degeneration of Dopaminergic Neurons in Parkinsonian Mice, Oxidative Medicine and Cellular Longevity, vol.22, issue.5, p.157857, 2013.
DOI : 10.1046/j.1471-4159.2002.00928.x

D. Beraud, H. Hathaway, J. Trecki, S. Chasovskikh, D. Johnson et al., Microglial Activation and Antioxidant Responses Induced by the Parkinson???s Disease Protein ??-Synuclein, Journal of Neuroimmune Pharmacology, vol.19, issue.6, pp.94-117, 2013.
DOI : 10.1096/fj.04-2751com

G. Codolo, N. Plotegher, T. Pozzobon, M. Brucale, I. Tessari et al., Triggering of Inflammasome by Aggregated ?????Synuclein, an Inflammatory Response in Synucleinopathies, PLoS ONE, vol.14, issue.1, p.55375, 2013.
DOI : 10.1371/journal.pone.0055375.s004

C. Kim, D. Ho, J. Suk, S. You, S. Michael et al., Neuronreleased oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia, Nat Commun, vol.2013, p.1562

L. Fellner, R. Irschick, K. Schanda, M. Reindl, L. Klimaschewski et al., Toll-like receptor 4 is required for ??-synuclein dependent activation of microglia and astroglia, Glia, vol.19, issue.Suppl 1, pp.349-60, 2013.
DOI : 10.1096/fj.04-2751com

W. Zhang, S. Dallas, D. Zhang, J. Guo, H. Pang et al., Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein, Glia, vol.4, issue.11, pp.1178-88, 2007.
DOI : 10.1515/REVNEURO.2005.16.2.123

T. Jiang, J. Hoekstra, X. Heng, W. Kang, J. Ding et al., P2X7 receptor is critical in ??-synuclein???mediated microglial NADPH oxidase activation, Neurobiology of Aging, vol.36, issue.7, pp.2304-2322, 2015.
DOI : 10.1016/j.neurobiolaging.2015.03.015

H. Qiao, Q. Zhang, H. Yuan, Y. Li, D. Wang et al., Elevated neuronal ??-synuclein promotes microglia activation after spinal cord ischemic/reperfused injury, NeuroReport, vol.26, issue.11, pp.656-61, 2015.
DOI : 10.1097/WNR.0000000000000406

S. Wang, C. Chu, M. Guo, L. Jiang, H. Nie et al., Identification of a specific ??-synuclein peptide (??-Syn 29-40) capable of eliciting microglial superoxide production to damage dopaminergic neurons, Journal of Neuroinflammation, vol.17, issue.7, p.158, 2016.
DOI : 10.1038/sj.leu.2402945

A. Harms, S. Cao, A. Rowse, A. Thome, X. Li et al., MHCII Is Required for ??-Synuclein-Induced Activation of Microglia, CD4 T Cell Proliferation, and Dopaminergic Neurodegeneration, Journal of Neuroscience, vol.33, issue.23, pp.9592-600, 2013.
DOI : 10.1523/JNEUROSCI.5610-12.2013

S. Wang, C. Chu, T. Stewart, C. Ginghina, Y. Wang et al., -dependent Lyn phosphorylation, Proceedings of the National Academy of Sciences, vol.71, issue.4, pp.1926-1961, 2015.
DOI : 10.1016/j.freeradbiomed.2006.08.002

W. Liu, H. Wu, L. Chen, Y. Wen, X. Kong et al., Park7 interacts with p47phox to direct NADPH oxidase-dependent ROS production and protect against sepsis, Cell Research, vol.2012, issue.6, pp.691-706, 2015.
DOI : 10.1001/jama.2011.909

URL : http://www.nature.com/cr/journal/v25/n6/pdf/cr201563a.pdf

H. Amatullah, Y. Shan, B. Beauchamp, P. Gali, S. Gupta et al., DJ-1/PARK7 Impairs Bacterial Clearance in Sepsis, American Journal of Respiratory and Critical Care Medicine, vol.189, issue.7, pp.889-905, 2017.
DOI : 10.1001/jama.2016.0287

T. Rodrigues-sousa, A. Ladeirinha, A. Santiago, H. Carvalheiro, B. Raposo et al., Deficient Production of Reactive Oxygen Species Leads to Severe Chronic DSS-Induced Colitis in Ncf1/p47phox-Mutant Mice, PLoS ONE, vol.209, issue.5, p.97532, 2014.
DOI : 10.1371/journal.pone.0097532.g008

N. Dzamko, C. Geczy, and G. Halliday, Inflammation is genetically implicated in Parkinson???s disease, Neuroscience, vol.302, pp.89-102, 2015.
DOI : 10.1016/j.neuroscience.2014.10.028

J. Schapansky, J. Nardozzi, and M. Lavoie, The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson???s disease, Neuroscience, vol.302, pp.74-88, 2015.
DOI : 10.1016/j.neuroscience.2014.09.049

M. Tejada-simon, F. Serrano, L. Villasana, B. Kanterewicz, G. Wu et al., Synaptic localization of a functional NADPH oxidase in the mouse hippocampus, Molecular and Cellular Neuroscience, vol.29, issue.1, pp.97-106, 2005.
DOI : 10.1016/j.mcn.2005.01.007

W. Chamulitrat, R. Schmidt, P. Tomakidi, W. Stremmel, W. Chunglok et al., Association of gp91phox homolog Nox1 with anchorage-independent growth and MAP kinase-activation of transformed human keratinocytes, Oncogene, vol.22, issue.38, pp.6045-53, 2003.
DOI : 10.1016/S0006-291X(02)02059-4

M. Desouki, M. Kulawiec, S. Bansal, G. Das, and K. Singh, Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors, Cancer Biology & Therapy, vol.4, issue.12, pp.1367-73, 2005.
DOI : 10.4161/cbt.4.12.2233

URL : http://www.tandfonline.com/doi/pdf/10.4161/cbt.4.12.2233?needAccess=true

J. Kuroda, K. Nakagawa, T. Yamasaki, K. Nakamura, R. Takeya et al., The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells, Genes to Cells, vol.295, issue.12, pp.1139-51, 2005.
DOI : 10.1074/jbc.M414548200

A. Cristovao, D. Choi, G. Baltazar, M. Beal, and Y. Kim, The Role of NADPH Oxidase 1???Derived Reactive Oxygen Species in Paraquat-Mediated Dopaminergic Cell Death, Antioxidants & Redox Signaling, vol.11, issue.9, pp.2105-2123, 2009.
DOI : 10.1089/ars.2009.2459

A. Cristovao, S. Guhathakurta, E. Bok, G. Je, S. Yoo et al., NADPH Oxidase 1 Mediates ??-Synucleinopathy in Parkinson's Disease, Journal of Neuroscience, vol.32, issue.42, pp.14465-77, 2012.
DOI : 10.1523/JNEUROSCI.2246-12.2012

URL : http://www.jneurosci.org/content/jneuro/32/42/14465.full.pdf

F. Zhang, Y. He, Y. Zheng, W. Zhang, Q. Wang et al., Therapeutic Effects of Fucoidan in 6-Hydroxydopamine-Lesioned Rat Model of Parkinson's disease: Role of NADPH oxidase-1, CNS Neuroscience & Therapeutics, vol.35, issue.12, pp.1036-1080, 2014.
DOI : 10.1042/BST0351127

H. Braak, E. Ghebremedhin, U. Rub, H. Bratzke, D. Tredici et al., Stages in the development of Parkinson???s disease-related pathology, Cell and Tissue Research, vol.16, issue.Suppl 2, pp.121-155, 2004.
DOI : 10.1007/s00441-004-0956-9

E. Topchiy, E. Panzhinskiy, W. Griffin, S. Barger, M. Das et al., Nox4-Generated Superoxide Drives Angiotensin II-Induced Neural Stem Cell Proliferation, Developmental Neuroscience, vol.35, issue.4, pp.293-305, 2013.
DOI : 10.1159/000350502

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889712/pdf

W. Zawada, G. Banninger, J. Thornton, B. Marriott, D. Cantu et al., Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade, Journal of Neuroinflammation, vol.8, issue.1, p.129, 2011.
DOI : 10.1073/pnas.0502552102

B. Villar-cheda, R. Valenzuela, A. Rodriguez-perez, M. Guerra, and J. Labandeira-garcia, Aging-related changes in the nigral angiotensin system enhances proinflammatory and pro-oxidative markers and 6-OHDA-induced dopaminergic degeneration, Neurobiology of Aging, vol.33, issue.1, pp.204-201, 2012.
DOI : 10.1016/j.neurobiolaging.2010.08.006

S. Lee, I. Bae, Y. Bae, and H. Um, Link between Mitochondria and NADPH Oxidase 1 Isozyme for the Sustained Production of Reactive Oxygen Species and Cell Death, Journal of Biological Chemistry, vol.24, issue.47, pp.36228-36263, 2006.
DOI : 10.1101/gad.1223004

A. Pickrell and R. Youle, The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson???s Disease, Neuron, vol.85, issue.2, pp.257-73, 2015.
DOI : 10.1016/j.neuron.2014.12.007

S. Gandhi, A. Wood-kaczmar, Z. Yao, H. Plun-favreau, E. Deas et al., PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death, Molecular Cell, vol.33, issue.5, pp.627-665, 2009.
DOI : 10.1016/j.molcel.2009.02.013

URL : https://doi.org/10.1016/j.molcel.2009.02.013

S. Dikalov, Cross talk between mitochondria and NADPH oxidases, Free Radical Biology and Medicine, vol.51, issue.7, pp.1289-301, 2011.
DOI : 10.1016/j.freeradbiomed.2011.06.033

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163726/pdf

N. Zinkevich and D. Gutterman, ROS-induced ROS release in vascular biology: redox-redox signaling, AJP: Heart and Circulatory Physiology, vol.301, issue.3, pp.647-53, 2011.
DOI : 10.1152/ajpheart.01271.2010

URL : http://ajpheart.physiology.org/content/ajpheart/301/3/H647.full.pdf

P. Calabresi, B. Picconi, L. Parnetti, D. Filippo, and M. , A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine???acetylcholine synaptic balance, The Lancet Neurology, vol.5, issue.11, pp.974-983, 2006.
DOI : 10.1016/S1474-4422(06)70600-7

F. Gardoni and C. Bellone, Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases, Frontiers in Cellular Neuroscience, vol.120, p.25, 2015.
DOI : 10.1016/s0306-4522(03)00326-9

A. Kamsler and M. Segal, Paradoxical actions of hydrogen peroxide on long-term potentiation in transgenic superoxide dismutase-1 mice, J Neurosci, vol.23, pp.10359-67, 2003.

I. Ahmed, S. Bose, N. Pavese, A. Ramlackhansingh, F. Turkheimer et al., Glutamate NMDA receptor dysregulation in Parkinson???s disease with dyskinesias, Brain, vol.134, issue.4, pp.979-86, 2011.
DOI : 10.1093/brain/awr028

URL : https://academic.oup.com/brain/article-pdf/134/4/979/17863143/awr028.pdf

M. Behrens, S. Ali, and L. Dugan, Interleukin-6 Mediates the Increase in NADPH-Oxidase in the Ketamine Model of Schizophrenia, Journal of Neuroscience, vol.28, issue.51, pp.13957-66, 2008.
DOI : 10.1523/JNEUROSCI.4457-08.2008

S. Ali, J. Young, C. Wallace, J. Gresack, D. Jeste et al., Initial evidence linking synaptic superoxide production with poor short-term memory in aged mice, Brain Research, vol.1368, pp.65-70, 2011.
DOI : 10.1016/j.brainres.2010.11.009

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018762/pdf

A. Brennan, S. Suh, S. Won, P. Narasimhan, T. Kauppinen et al., NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation, Nature Neuroscience, vol.169, issue.7, pp.857-63, 2009.
DOI : 10.1097/00004647-200002000-00018

S. Sorce, S. Schiavone, P. Tucci, M. Colaianna, V. Jaquet et al., The NADPH Oxidase NOX2 Controls Glutamate Release: A Novel Mechanism Involved in Psychosis-Like Ketamine Responses, Journal of Neuroscience, vol.30, issue.34, pp.11317-11342, 2010.
DOI : 10.1523/JNEUROSCI.1491-10.2010

M. Patel, B. Day, J. Crapo, I. Fridovich, and J. Mcnamara, Requirement for Superoxide in Excitotoxic Cell Death, Neuron, vol.16, issue.2, pp.345-55, 1996.
DOI : 10.1016/S0896-6273(00)80052-5

URL : https://doi.org/10.1016/s0896-6273(00)80052-5

A. Brennan-minnella, Y. Shen, J. El-benna, and R. Swanson, Phosphoinositide 3-kinase couples NMDA receptors to superoxide release in excitotoxic neuronal death, Cell Death and Disease, vol.758, issue.4, p.580, 2013.
DOI : 10.1007/978-1-61779-170-3_11

URL : http://www.nature.com/cddis/journal/v4/n5/pdf/cddis2013164a.pdf

E. Mutez, A. Nkiliza, K. Belarbi, A. De-broucker, C. Vanbesien-mailliot et al., Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson's disease, Neurobiology of Disease, vol.63, pp.165-170, 2014.
DOI : 10.1016/j.nbd.2013.11.007

M. Elstner, C. Morris, K. Heim, A. Bender, D. Mehta et al., Expression analysis of dopaminergic neurons in Parkinson???s disease and aging links transcriptional dysregulation of energy metabolism to cell death, Acta Neuropathologica, vol.137, issue.Suppl 2, pp.75-86, 2011.
DOI : 10.1002/ajmg.b.30195

W. Hu, H. Tian, W. Yue, L. Li, S. Li et al., Rotenone induces apoptosis in human lung cancer cells by regulating autophagic flux, IUBMB Life, vol.175, issue.5, pp.388-93, 2016.
DOI : 10.1083/jcb.200512100

URL : http://onlinelibrary.wiley.com/doi/10.1002/iub.1493/pdf

T. Pan, P. Rawal, Y. Wu, W. Xie, J. Jankovic et al., Rapamycin protects against rotenone-induced apoptosis through autophagy induction, Neuroscience, vol.164, issue.2, pp.541-51, 2009.
DOI : 10.1016/j.neuroscience.2009.08.014

S. Dadakhujaev, H. Noh, E. Jung, J. Cha, S. Baek et al., Autophagy protects the rotenone-induced cell death in ??-synuclein overexpressing SH-SY5Y cells, Neuroscience Letters, vol.472, issue.1, pp.47-52, 2010.
DOI : 10.1016/j.neulet.2010.01.053

R. Pal, M. Palmieri, J. Loehr, S. Li, R. Abo-zahrah et al., Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy, Nature Communications, vol.52, p.4425, 2014.
DOI : 10.1016/j.febslet.2013.12.011

R. Pal, L. Bajaj, J. Sharma, M. Palmieri, D. Ronza et al., NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson???s disease, Scientific Reports, vol.8, issue.1, p.22866, 2016.
DOI : 10.1371/journal.pone.0068060

A. Sobhakumari, B. Schickling, L. Love-homan, A. Raeburn, E. Fletcher et al., NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells, Toxicology and Applied Pharmacology, vol.272, issue.3, pp.736-781, 2013.
DOI : 10.1016/j.taap.2013.07.013

S. Sciarretta, P. Zhai, D. Shao, D. Zablocki, N. Nagarajan et al., Activation of NADPH Oxidase 4 in the Endoplasmic Reticulum Promotes Cardiomyocyte Autophagy and Survival During Energy Stress Through the Protein Kinase RNA-Activated-Like Endoplasmic Reticulum Kinase/Eukaryotic Initiation Factor 2??/Activating Transcription Factor 4 Pathway, Circulation Research, vol.113, issue.11, pp.1253-64, 2013.
DOI : 10.1161/CIRCRESAHA.113.301787

A. Schapira, Targeting Mitochondria for Neuroprotection in Parkinson's Disease, Antioxidants & Redox Signaling, vol.16, issue.9, pp.965-73, 2012.
DOI : 10.1089/ars.2011.4419

E. Aldieri, C. Riganti, M. Polimeni, E. Gazzano, C. Lussiana et al., Classical Inhibitors of NOX NAD(P)H Oxidases Are Not Specific, Current Drug Metabolism, vol.9, issue.8, pp.686-96, 2008.
DOI : 10.2174/138920008786049285

M. Sedeek, G. Callera, A. Montezano, A. Gutsol, F. Heitz et al., Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney

B. Laleu, F. Gaggini, M. Orchard, L. Fioraso-cartier, L. Cagnon et al., First in Class, Potent, and Orally Bioavailable NADPH Oxidase Isoform 4 (Nox4) Inhibitors for the Treatment of Idiopathic Pulmonary Fibrosis, Journal of Medicinal Chemistry, vol.53, issue.21, pp.7715-7745, 2010.
DOI : 10.1021/jm100773e

T. Aoyama, Y. Paik, S. Watanabe, B. Laleu, F. Gaggini et al., Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent, Hepatology, vol.115, issue.6, pp.2316-2343, 2012.
DOI : 10.1016/j.freeradbiomed.2012.05.007

G. Teixeira, C. Szyndralewiez, S. Molango, S. Carnesecchi, F. Heitz et al., Therapeutic potential of NADPH oxidase 1/4 inhibitors, British Journal of Pharmacology, vol.131, issue.Database Issue, pp.1647-69, 2017.
DOI : 10.1161/CIRCULATIONAHA.114.011079

URL : http://onlinelibrary.wiley.com/doi/10.1111/bph.13532/pdf

B. Diebold, S. Smith, Y. Li, and J. Lambeth, NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress, Antioxidants & Redox Signaling, vol.23, issue.5, pp.375-405, 2015.
DOI : 10.1089/ars.2014.5862

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545678/pdf

R. Touyz and E. Schiffrin, Reactive oxygen species in vascular biology: implications in hypertension, Histochemistry and Cell Biology, vol.108, issue.4, pp.339-52, 2004.
DOI : 10.1007/s00418-004-0696-7

C. Wilcox, Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension?, AJP: Regulatory, Integrative and Comparative Physiology, vol.289, issue.4, pp.913-948, 2005.
DOI : 10.1152/ajpregu.00250.2005

N. Sharma, M. Kapoor, and B. Nehru, Apocyanin, NADPH oxidase inhibitor prevents lipopolysaccharide induced ??-synuclein aggregation and ameliorates motor function deficits in rats: Possible role of biochemical and inflammatory alterations, Behavioural Brain Research, vol.296, pp.177-90, 2016.
DOI : 10.1016/j.bbr.2015.09.012

Q. Wang, C. Chu, E. Oyarzabal, L. Jiang, S. Chen et al., Subpicomolar diphenyleneiodonium inhibits microglial NADPH oxidase with high specificity and shows great potential as a therapeutic agent for neurodegenerative diseases, Glia, vol.281, issue.Pt 1, pp.62-2034, 2014.
DOI : 10.1074/jbc.M607191200