T. Okazaki, A. Maeda, H. Nishimura, T. Kurosaki, and T. Honjo, PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine, Proceedings of the National Academy of Sciences, vol.386, issue.6621, pp.13866-71, 2001.
DOI : 10.1038/386181a0

K. Sheppard, L. Fitz, J. Lee, C. Benander, J. George et al., PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3?? signalosome and downstream signaling to PKC??, FEBS Letters, vol.4, issue.1-3, pp.37-41, 2004.
DOI : 10.1038/ni884

R. Thompson, H. Dong, C. Lohse, B. Leibovich, M. Blute et al., PD-1 Is Expressed by Tumor-Infiltrating Immune Cells and Is Associated with Poor Outcome for Patients with Renal Cell Carcinoma, Clinical Cancer Research, vol.13, issue.6, pp.1757-61, 2007.
DOI : 10.1158/1078-0432.CCR-06-2599

Y. Zhang, S. Huang, D. Gong, Y. Qin, and Q. Shen, Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small cell lung cancer, Cellular & Molecular Immunology, vol.173, issue.5, pp.389-95, 2010.
DOI : 10.1128/JVI.77.8.4911-4927.2003

A. Gros, P. Robbins, X. Yao, Y. Li, S. Turcotte et al., PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors, Journal of Clinical Investigation, vol.124, issue.5, pp.2246-59, 2014.
DOI : 10.1172/JCI73639DS1

A. Gros, M. Parkhurst, E. Tran, A. Pasetto, P. Robbins et al., Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients, Nature Medicine, vol.22, issue.4, pp.433-441, 2016.
DOI : 10.4049/jimmunol.1103020

P. Ott, F. Hodi, and C. Robert, CTLA-4 and PD-1/PD-L1 Blockade: New Immunotherapeutic Modalities with Durable Clinical Benefit in Melanoma Patients, Clinical Cancer Research, vol.19, issue.19, pp.5300-5309, 2013.
DOI : 10.1158/1078-0432.CCR-13-0143

N. Rizvi, J. Mazieres, D. Planchard, T. Stinchcombe, G. Dy et al., Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial, The Lancet Oncology, vol.16, issue.3, pp.257-65, 2015.
DOI : 10.1016/S1470-2045(15)70054-9

S. Topalian, F. Hodi, J. Brahmer, S. Gettinger, D. Smith et al., Safety, Activity, and Immune Correlates of Anti???PD-1 Antibody in Cancer, New England Journal of Medicine, vol.366, issue.26, pp.2443-54, 2012.
DOI : 10.1056/NEJMoa1200690

F. Hodi, J. Chesney, A. Pavlick, C. Robert, K. Grossmann et al., Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial, The Lancet Oncology, vol.17, issue.11, pp.1558-68, 2016.
DOI : 10.1016/S1470-2045(16)30366-7

J. Larkin, V. Chiarion-sileni, R. Gonzalez, J. Grob, C. Cowey et al., Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma, New England Journal of Medicine, vol.373, issue.1, pp.23-34, 2015.
DOI : 10.1056/NEJMoa1504030

L. Carbognin, S. Pilotto, M. Milella, V. Vaccaro, M. Brunelli et al., Differential Activity of Nivolumab, Pembrolizumab and MPDL3280A according to the Tumor Expression of Programmed Death-Ligand-1 (PD-L1): Sensitivity Analysis of Trials in Melanoma, Lung and Genitourinary Cancers, PLOS ONE, vol.348, issue.6230, p.130142, 2015.
DOI : 10.1371/journal.pone.0130142.s001

P. Tumeh, C. Harview, J. Yearley, I. Shintaku, E. Taylor et al., PD-1 blockade induces responses by inhibiting adaptive immune resistance, Nature, vol.15, issue.7528, pp.568-71, 2014.
DOI : 10.1158/1078-0432.CCR-09-1624

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246418/pdf

M. Gubin, X. Zhang, H. Schuster, E. Caron, J. Ward et al., Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens, Nature, vol.102, issue.7528, pp.577-81, 2014.
DOI : 10.1073/pnas.0506580102

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279952/pdf

D. Le, J. Uram, H. Wang, B. Bartlett, H. Kemberling et al., PD-1 Blockade in Tumors with Mismatch-Repair Deficiency, New England Journal of Medicine, vol.372, issue.26, pp.2509-2529, 2015.
DOI : 10.1056/NEJMoa1500596

N. Rizvi, M. Hellmann, A. Snyder, P. Kvistborg, V. Makarov et al., Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer, Science, vol.105, issue.51, pp.124-132, 2015.
DOI : 10.1073/pnas.0810114105

C. Linnemann, M. Van-buuren, L. Bies, E. Verdegaal, R. Schotte et al., High-throughput epitope discovery reveals frequent recognition Cancer Res Cancer Research OF10 Simon et al. of neo-antigens by CD4þ T cells in human melanoma, Nat Med, vol.7721, issue.24, pp.81-86, 2015.
DOI : 10.1038/nm.3773

B. Vogelstein, N. Papadopoulos, V. Velculescu, S. Zhou, L. Diaz et al., Cancer Genome Landscapes, Science, vol.4, issue.127, pp.1546-58, 2013.
DOI : 10.1126/scitranslmed.3003218

URL : http://science.sciencemag.org/content/sci/339/6127/1546.full.pdf

B. Youngblood, K. Oestreich, S. Ha, J. Duraiswamy, R. Akondy et al., Chronic Virus Infection Enforces Demethylation of the Locus that Encodes PD-1 in Antigen-Specific CD8+ T Cells, Immunity, vol.35, issue.3, pp.400-412, 2011.
DOI : 10.1016/j.immuni.2011.06.015

B. Youngblood, A. Noto, F. Porichis, R. Akondy, Z. Ndhlovu et al., Cutting Edge: Prolonged Exposure to HIV Reinforces a Poised Epigenetic Program for PD-1 Expression in Virus-Specific CD8 T Cells, The Journal of Immunology, vol.191, issue.2, pp.540-544, 2013.
DOI : 10.4049/jimmunol.1203161

E. Ahn, B. Youngblood, J. Lee, J. Lee, S. Sarkar et al., ABSTRACT, Journal of Virology, vol.90, issue.19, pp.8934-8980, 2016.
DOI : 10.1128/JVI.00798-16

M. Pittet, A. Zippelius, D. Valmori, D. Speiser, J. Cerottini et al., Melan-A/MART-1-specific CD8 T cells: from thymus to tumor, Trends in Immunology, vol.23, issue.7, pp.325-333, 2002.
DOI : 10.1016/S1471-4906(02)02244-5

A. Zippelius, M. Pittet, P. Batard, N. Rufer, M. De-smedt et al., Thymic Selection Generates a Large T Cell Pool Recognizing a Self-Peptide in Humans, The Journal of Experimental Medicine, vol.61, issue.4, pp.485-94, 2002.
DOI : 10.1046/j.1523-1747.2001.01363.x

B. Weide, H. Zelba, E. Derhovanessian, A. Pflugfelder, T. Eigentler et al., Functional T Cells Targeting NY-ESO-1 or Melan-A Are Predictive for Survival of Patients With Distant Melanoma Metastasis, Journal of Clinical Oncology, vol.30, issue.15, pp.1835-1876, 2012.
DOI : 10.1200/JCO.2011.40.2271

A. Khammari, N. Labarriere, V. Vignard, J. Nguyen, M. Pandolfino et al., Treatment of Metastatic Melanoma with Autologous Melan-A/Mart-1-Specific Cytotoxic T Lymphocyte Clones, Journal of Investigative Dermatology, vol.129, issue.12, pp.2835-2877, 2009.
DOI : 10.1038/jid.2009.144

V. Vignard, B. Lemercier, A. Lim, M. Pandolfino, Y. Guilloux et al., Adoptive Transfer of Tumor-Reactive Melan-A-Specific CTL Clones in Melanoma Patients Is Followed by Increased Frequencies of Additional Melan-A-Specific T Cells, The Journal of Immunology, vol.175, issue.7, pp.4797-805, 2005.
DOI : 10.4049/jimmunol.175.7.4797

S. Simon, V. Vignard, L. Florenceau, B. Dreno, A. Khammari et al., PD-1 expression conditions T cell avidity within an antigen-specific repertoire, OncoImmunology, vol.6, issue.1, p.1104448, 2016.
DOI : 10.1097/CJI.0b013e3181fad2b0

URL : https://hal.archives-ouvertes.fr/inserm-01280886

N. Labarriere, A. Fortun, A. Bellec, A. Khammari, B. Dreno et al., A Full GMP Process to Select and Amplify Epitope-Specific T Lymphocytes for Adoptive Immunotherapy of Metastatic Melanoma, Clinical and Developmental Immunology, vol.164, issue.2, p.932318, 2013.
DOI : 10.4049/jimmunol.164.2.1125

A. Hoos, A. Eggermont, S. Janetzki, F. Hodi, R. Ibrahim et al., Improved Endpoints for Cancer Immunotherapy Trials, JNCI Journal of the National Cancer Institute, vol.5, issue.9, pp.1388-97, 2010.
DOI : 10.1038/ncponc1183

M. Bodinier, M. Peyrat, C. Tournay, F. Davodeau, F. Romagne et al., Erratum: Efficient detection and immunomagnetic sorting of specific T cells using multimers of MHC class I and peptide with reduced CD8 binding, Nature Medicine, vol.6, issue.6, pp.707-717, 2000.
DOI : 10.1038/76292

R. Bouqui-e, A. Bonnin, K. Bernardeau, A. Khammari, B. Dreno et al., A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor specific T lymphocytes, Cancer Immunology, Immunotherapy, vol.320, issue.4, pp.553-66, 2009.
DOI : 10.4049/jimmunol.174.9.5249

J. Fourcade, Z. Sun, M. Benallaoua, P. Guillaume, I. Luescher et al., T cell dysfunction in melanoma patients, The Journal of Experimental Medicine, vol.18, issue.10, pp.2175-86, 2010.
DOI : 10.1038/ni1271

J. Fourcade, Z. Sun, O. Pagliano, P. Guillaume, I. Luescher et al., CD8+ T Cells Specific for Tumor Antigens Can Be Rendered Dysfunctional by the Tumor Microenvironment through Upregulation of the Inhibitory Receptors BTLA and PD-1, Cancer Research, vol.72, issue.4, pp.887-96, 2012.
DOI : 10.1158/0008-5472.CAN-11-2637

J. Chauvin, O. Pagliano, J. Fourcade, Z. Sun, H. Wang et al., TIGIT and PD-1 impair tumor antigen???specific CD8+ T cells in melanoma patients, Journal of Clinical Investigation, vol.125, issue.5, pp.2046-58, 2015.
DOI : 10.1172/JCI80445DS1

Q. Ye, D. Song, M. Poussin, T. Yamamoto, A. Best et al., CD137 Accurately Identifies and Enriches for Naturally Occurring Tumor-Reactive T Cells in Tumor, Clinical Cancer Research, vol.20, issue.1, pp.44-55, 2014.
DOI : 10.1158/1078-0432.CCR-13-0945

H. Benlalam, N. Labarriere, B. Linard, L. Derre, E. Diez et al., Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma infiltrating lymphocytes (TIL): implications for immunotherapy, European Journal of Immunology, vol.158, issue.7, pp.2007-2022, 2001.
DOI : 10.4049/jimmunol.164.8.4382

P. Kvistborg, D. Philips, S. Kelderman, L. Hageman, C. Ottensmeier et al., Anti-CTLA-4 therapy broadens the melanoma-reactive CD8þ T cell response, Sci Transl Med, vol.6, pp.254-128, 2014.
DOI : 10.1126/scitranslmed.3008918

N. Mcgranahan, A. Furness, R. Rosenthal, S. Ramskov, R. Lyngaa et al., Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade, Science, vol.7, issue.5, pp.1463-1472, 2016.
DOI : 10.1038/nprot.2012.037

T. Schumacher and R. Schreiber, Neoantigens in cancer immunotherapy, Science, vol.43, issue.D1, pp.69-74, 2015.
DOI : 10.1093/nar/gku1075

A. Huang, M. Postow, R. Orlowski, R. Mick, B. Bengsch et al., T-cell invigoration to tumour burden ratio associated with anti-PD-1 response, Nature, vol.29, issue.7652, pp.60-65, 2017.
DOI : 10.1038/nbt.1991

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554367/pdf

A. Kamphorst, A. Wieland, T. Nasti, S. Yang, R. Zhang et al., Rescue of exhausted CD8 T cells by PD-1???targeted therapies is CD28-dependent, Science, vol.68, issue.6332, pp.1423-1430, 2017.
DOI : 10.1128/JVI.77.8.4911-4927.2003

V. Lennerz, M. Fatho, C. Gentilini, R. Frye, A. Lifke et al., The response of autologous T cells to a human melanoma is dominated by mutated neoantigens, Proceedings of the National Academy of Sciences, vol.36, issue.4, pp.16013-16021, 2005.
DOI : 10.2174/1566524013363447

S. Pinto, D. Sommermeyer, C. Michel, S. Wilde, D. Schendel et al., transcription and biased TCR usage explain the high frequency of MART-1-specific T cells, European Journal of Immunology, vol.184, issue.9, pp.2811-2832, 2014.
DOI : 10.4049/jimmunol.0902055

P. Dietrich, L. Gal, F. Dutoit, V. Pittet, M. Trautman et al., Prevalent Role of TCR ??-Chain in the Selection of the Preimmune Repertoire Specific for a Human Tumor-Associated Self-Antigen, The Journal of Immunology, vol.170, issue.10, pp.5103-5112, 2003.
DOI : 10.4049/jimmunol.170.10.5103

L. Trautmann, N. Labarriere, F. Jotereau, V. Karanikas, N. Gervois et al., Dominant TCR V????? usage by virus and tumor-reactive T cells with wide affinity ranges for their specific antigens, European Journal of Immunology, vol.32, issue.11, pp.3181-90, 2002.
DOI : 10.1002/1521-4141(200211)32:11<3181::AID-IMMU3181>3.0.CO;2-2

Y. Godet, J. Desfrancois, V. Vignard, D. Schadendorf, A. Khammari et al., Frequent occurrence of high affinity T cells against MELOE-1 makes this antigen an attractive target for melanoma immunotherapy, European Journal of Immunology, vol.42, issue.6, pp.1786-94, 2010.
DOI : 10.4049/jimmunol.170.10.5103

T. Inozume, T. Yaguchi, J. Furuta, K. Harada, Y. Kawakami et al., Melanoma Cells Control Antimelanoma CTL Responses via Interaction between TIGIT and CD155 in the Effector Phase, Journal of Investigative Dermatology, vol.136, issue.1, pp.255-63, 2016.
DOI : 10.1038/JID.2015.404