D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

I. S. Alam, M. A. Arshad, Q. Nguyen, and E. Aboagye, Radiopharmaceuticals as probes to characterize tumour tissue, CrossRef] [PubMed] 3. Mellstedt, H. Monoclonal antibodies in human cancer, pp.537-561, 2003.
DOI : 10.1038/nm.2935

B. Fauvel and A. Yasri, Antibodies directed against receptor tyrosine kinases, mAbs, vol.25, issue.4, pp.838-851
DOI : 10.1158/0008-5472.CAN-10-2274

M. Medinger and J. Drevs, Receptor Tyrosine Kinases and Anticancer Therapy, Current Pharmaceutical Design, vol.11, issue.9, pp.1139-1149, 2005.
DOI : 10.2174/1381612053507611

J. Baselga, Targeting Tyrosine Kinases in Cancer: The Second Wave, Science, vol.312, issue.5777, pp.1175-1178, 2006.
DOI : 10.1126/science.1125951

B. D. Wright and S. E. Lapi, Designing the Magic Bullet? The Advancement of Immuno-PET into Clinical Use, Journal of Nuclear Medicine, vol.54, issue.8, pp.1171-1174, 2013.
DOI : 10.2967/jnumed.113.126086

G. Köhler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity [CrossRef] [PubMed] 9. Teillaud, J.-L. Engineering of monoclonal antibodies and antibody-based fusion proteins: Successes and challenges, Nature Expert Opin. Biol. Ther, vol.256, issue.5, pp.495-497, 1975.

D. J. Slamon, B. Leyland-jones, S. Shak, H. Fuchs, V. Paton et al., Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2, New England Journal of Medicine, vol.344, issue.11, pp.783-792, 2001.
DOI : 10.1056/NEJM200103153441101

O. W. Press, J. P. Leonard, B. Coiffier, R. Levy, and J. Timmerman, Immunotherapy of Non-Hodgkin's lymphomas. Hematol, Am. Soc. Hematol. Educ. Program, pp.221-240, 2001.

M. Herlyn, Z. Steplewski, D. Herlyn, and H. Koprowski, Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies., Proc. Natl. Acad. Sci. USA 1979, pp.1438-1442
DOI : 10.1073/pnas.76.3.1438

W. W. Moses, Recent advances and future advances in time-of-flight PET, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.580, issue.2, pp.919-924, 2007.
DOI : 10.1016/j.nima.2007.06.038

T. K. Lewellen, Recent developments in PET detector technology, Physics in Medicine and Biology, vol.53, issue.17, pp.287-317, 2008.
DOI : 10.1088/0031-9155/53/17/R01

URL : http://iopscience.iop.org/article/10.1088/0031-9155/53/17/R01/pdf

O. C. Boerman and W. J. Oyen, Immuno-PET of Cancer: A Revival of Antibody Imaging, Journal of Nuclear Medicine, vol.52, issue.8, pp.1171-1172, 2011.
DOI : 10.2967/jnumed.111.089771

G. A. Van-dongen, A. J. Poot, and D. J. Vugts, PET imaging with radiolabeled antibodies and tyrosine kinase inhibitors: immuno-PET and TKI-PET, Tumor Biology, vol.353, issue.Suppl 1, pp.607-615, 2012.
DOI : 10.1056/NEJMoa050753

G. A. Van-dongen, G. W. Visser, M. N. Lub-de-hooge, E. G. De-vries, and L. Perk, Immuno-PET: A Navigator in Monoclonal Antibody Development and Applications, The Oncologist, vol.12, issue.12, pp.1379-1389, 2007.
DOI : 10.1634/theoncologist.12-12-1379

F. Kraeber-bodere, C. Bailly, M. Chérel, and J. Chatal, ImmunoPET to help stratify patients for targeted therapies and to improve drug development, European Journal of Nuclear Medicine and Molecular Imaging, vol.42, issue.12, pp.2166-2168, 2016.
DOI : 10.1007/s00259-015-3025-6

URL : https://link.springer.com/content/pdf/10.1007%2Fs00259-016-3458-6.pdf

A. Rahmim and H. Zaidi, PET versus SPECT: strengths, limitations and challenges, Nuclear Medicine Communications, vol.29, issue.3, pp.193-207, 2008.
DOI : 10.1097/MNM.0b013e3282f3a515

N. Chouin, F. Haddad, and J. Chatal, Tumor immunotargeting using innovative radionuclides, Int. J. Mol. Sci, vol.2015, issue.16, pp.3932-3954

C. A. Boswell and M. W. Brechbiel, Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view, Nuclear Medicine and Biology, vol.34, issue.7, pp.757-778, 2007.
DOI : 10.1016/j.nucmedbio.2007.04.001

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212602/pdf

A. C. Freise and A. M. Wu, In vivo imaging with antibodies and engineered fragments, Molecular Immunology, vol.67, issue.2, pp.142-152
DOI : 10.1016/j.molimm.2015.04.001

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529772/pdf

S. Muyldermans and . Nanobodies, Nanobodies: Natural Single-Domain Antibodies, Annual Review of Biochemistry, vol.82, issue.1, pp.775-797, 2013.
DOI : 10.1146/annurev-biochem-063011-092449

T. Ying, R. Gong, T. W. Ju, P. Prabakaran, and D. S. Dimitrov, Engineered Fc based antibody domains and fragments as novel scaffolds, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1844, issue.11, pp.1977-1982, 2014.
DOI : 10.1016/j.bbapap.2014.04.018

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4185235/pdf

M. Sandström, K. Lindskog, I. Velikyan, A. Wennborg, J. Feldwisch et al., Biodistribution and Radiation Dosimetry of the Anti-HER2 Affibody Molecule 68Ga-ABY-025 in Breast Cancer Patients, Journal of Nuclear Medicine, vol.57, issue.6, pp.867-871, 2016.
DOI : 10.2967/jnumed.115.169342

M. Keyaerts, C. Xavier, J. Heemskerk, N. Devoogdt, H. Everaert et al., Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma, Journal of Nuclear Medicine, vol.57, issue.1, pp.27-33, 2016.
DOI : 10.2967/jnumed.115.162024

P. J. Fraker and J. C. Speck, Reprint of ???Protein and Cell Membrane Iodinations with a Sparingly Soluble Chloroamide, 1,3,4,6-Tetrachloro-3a,6a-Diphenylglycoluril???, Biochemical and Biophysical Research Communications, vol.425, issue.3, pp.510-518, 1978.
DOI : 10.1016/j.bbrc.2012.08.017

D. S. Wilbur, M. Chyan, D. K. Hamlin, and M. A. Perry, Preparation and in vivo evaluation of radioiodinated closo-decaborate(2-) derivatives to identify structural components that provide low retention in tissues, Nuclear Medicine and Biology, vol.37, issue.2, p.167, 2010.
DOI : 10.1016/j.nucmedbio.2009.10.004

V. Tolmachev, A. Orlova, and H. Lundqvist, Approaches to Improve Cellular Retention of Radiohalogen Labels Delivered by Internalising Tumour-Targeting Proteins and Peptides, Current Medicinal Chemistry, vol.10, issue.22, pp.2447-2460, 2003.
DOI : 10.2174/0929867033456666

E. J. Kim, B. S. Kim, D. B. Choi, S. Chi, and T. H. Choi, Enhanced tumor retention of radioiodinated anti-epidermal growth factor receptor antibody using novel bifunctional iodination linker for radioimmunotherapy, Oncology Reports, vol.35, issue.6, pp.3159-3168, 2016.
DOI : 10.3892/or.2016.4706

W. J. Mcbride, R. M. Sharkey, H. Karacay, C. A. Souza, E. A. Rossi et al., A Novel Method of 18F Radiolabeling for PET, Journal of Nuclear Medicine, vol.50, issue.6, pp.991-998, 2009.
DOI : 10.2967/jnumed.108.060418

J. Shively, 18 F Labeling for immuno-PET: Where speed and contrast meet, J. Nucl. Med, vol.48, pp.170-172, 2007.

E. W. Price and C. Orvig, Matching chelators to radiometals for radiopharmaceuticals, Chem. Soc. Rev., vol.30, issue.1, pp.260-290
DOI : 10.1021/ic00007a024

M. W. Brechbiel, Bifunctional chelates for metal nuclides, Q. J. Nucl. Med. Mol. Imaging, vol.52, pp.166-173, 2008.

D. J. Vugts and G. A. Van-dongen, 89Zr-labeled compounds for PET imaging guided personalized therapy, Drug Discovery Today: Technologies, vol.8, issue.2-4, pp.53-61, 2011.
DOI : 10.1016/j.ddtec.2011.12.004

D. S. Abou, T. Ku, and P. M. Smith-jones, In vivo biodistribution and accumulation of 89Zr in mice, Nuclear Medicine and Biology, vol.38, issue.5, pp.675-681, 2011.
DOI : 10.1016/j.nucmedbio.2010.12.011

Y. Zhou, K. E. Baidoo, and M. W. Brechbiel, Mapping biological behaviors by application of longer-lived positron emitting radionuclides, Advanced Drug Delivery Reviews, vol.65, issue.8, pp.1098-1111, 2013.
DOI : 10.1016/j.addr.2012.10.012

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3593806/pdf

R. M. Sharkey, W. J. Mcbride, H. Karacay, K. Chang, G. L. Griffiths et al., A universal pretargeting system for cancer detection and therapy using bispecific antibody, Cancer Res, vol.63, pp.354-363, 2003.
DOI : 10.2172/898305

D. M. Goldenberg, R. M. Sharkey, G. Paganelli, J. Barbet, and J. Chatal, Antibody Pretargeting Advances Cancer Radioimmunodetection and Radioimmunotherapy, Journal of Clinical Oncology, vol.24, issue.5, pp.823-834, 2006.
DOI : 10.1200/JCO.2005.03.8471

C. Bodet-milin, A. Faivre-chauvet, T. Carlier, A. Rauscher, M. Bourgeois et al., Immuno-PET Using Anticarcinoembryonic Antigen Bispecific Antibody and 68Ga-Labeled Peptide in Metastatic Medullary Thyroid Carcinoma: Clinical Optimization of the Pretargeting Parameters in a First-in-Human Trial, Journal of Nuclear Medicine, vol.57, issue.10, pp.1505-1511, 2016.
DOI : 10.2967/jnumed.116.172221

URL : https://hal.archives-ouvertes.fr/inserm-01415668

R. K. Lim and Q. Lin, Bioorthogonal chemistry: recent progress and future directions, Chemical Communications, vol.446, issue.10, pp.1589-1600, 2010.
DOI : 10.1016/S0304-4165(01)00211-2

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914230/pdf

J. C. Knight and B. Cornelissen, Bioorthogonal chemistry: Implications for pretargeted nuclear (PET/SPECT) imaging and therapy, Am. J. Nucl. Med. Mol. Imaging, vol.4, pp.96-113, 2014.

B. M. Zeglis, P. Mohindra, G. I. Weissmann, V. Divilov, S. A. Hilderbrand et al., Modular Strategy for the Construction of Radiometalated Antibodies for Positron Emission Tomography Based on Inverse Electron Demand Diels???Alder Click Chemistry, Bioconjugate Chemistry, vol.22, issue.10, pp.2048-2059, 2011.
DOI : 10.1021/bc200288d

D. Zeng, B. M. Zeglis, J. S. Lewis, and C. J. Anderson, The Growing Impact of Bioorthogonal Click Chemistry on the Development of Radiopharmaceuticals, Journal of Nuclear Medicine, vol.54, issue.6, pp.829-832, 2013.
DOI : 10.2967/jnumed.112.115550

C. R. Divgi, N. Pandit-taskar, A. A. Jungbluth, V. E. Reuter, M. Gönen et al., Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial, The Lancet Oncology, vol.8, issue.4, pp.304-310, 2007.
DOI : 10.1016/S1470-2045(07)70044-X

C. R. Divgi, R. G. Uzzo, C. Gatsonis, R. Bartz, S. Treutner et al., Positron Emission Tomography/Computed Tomography Identification of Clear Cell Renal Cell Carcinoma: Results From the REDECT Trial, Journal of Clinical Oncology, vol.31, issue.2, pp.31-187, 2013.
DOI : 10.1200/JCO.2011.41.2445

B. A. Hoeben, J. H. Kaanders, G. M. Franssen, E. G. Troost, P. F. Rijken et al., PET of Hypoxia with 89Zr-Labeled cG250-F(ab')2 in Head and Neck Tumors, Journal of Nuclear Medicine, vol.51, issue.7, pp.1076-1083, 2010.
DOI : 10.2967/jnumed.109.073189

A. A. Elgamal, M. J. Troychak, and G. P. Murphy, ProstaScint?? scan may enhance identification of prostate cancer recurrences after prostatectomy, radiation, or hormone therapy: Analysis of 136 scans of 100 patients, The Prostate, vol.65, issue.4, pp.261-269, 1998.
DOI : 10.1002/1097-0142(19900415)65:8<1843::AID-CNCR2820650830>3.0.CO;2-4

R. C. Mease, C. A. Foss, and M. G. Pomper, PET Imaging in Prostate Cancer: Focus on Prostate-Specific Membrane Antigen, Current Topics in Medicinal Chemistry, vol.13, issue.8, pp.951-962, 2013.
DOI : 10.2174/1568026611313080008

A. P. Kiess, S. R. Banerjee, R. C. Mease, S. P. Rowe, A. Rao et al., Prostate-specific membrane antigen as a target for cancer imaging and therapy, Q. J. Nucl. Med. Mol. Imaging, vol.59, pp.241-268, 2015.

N. Pandit-taskar, J. A. O-'donoghue, V. Beylergil, S. Lyashchenko, S. Ruan et al., 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.27, issue.9, pp.2093-2105, 2014.
DOI : 10.1118/1.1288393

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404641/pdf

J. R. Osborne, D. A. Green, D. E. Spratt, S. Lyashchenko, S. B. Fareedy et al., A Prospective Pilot Study of 89Zr-J591/Prostate Specific Membrane Antigen Positron Emission Tomography in Men with Localized Prostate Cancer Undergoing Radical Prostatectomy, The Journal of Urology, vol.191, issue.5, pp.1439-1445, 2014.
DOI : 10.1016/j.juro.2013.10.041

I. Bahce, M. C. Huisman, E. E. Verwer, R. Ooijevaar, F. Boutkourt et al., Pilot study of 89 Zr-bevacizumab positron emission tomography in patients with advanced non-small cell lung cancer

E. R. Mulder, R. C. Schuit, R. Boellaard, and O. S. Hoekstra, 89 Zr-cetuximab PET imaging in patients with advanced colorectal cancer, Oncotarget, vol.6, pp.30384-30393, 2015.

S. J. Van-asselt, S. F. Oosting, A. H. Brouwers, A. H. Bongaerts, J. R. De-jong et al., Everolimus Reduces 89Zr-Bevacizumab Tumor Uptake in Patients with Neuroendocrine Tumors, Journal of Nuclear Medicine, vol.55, issue.7, pp.1087-1092, 2014.
DOI : 10.2967/jnumed.113.129056

D. Hollander, M. W. Bensch, F. Glaudemans, A. W. Oude-munnink, T. H. Enting et al., TGF-?? Antibody Uptake in Recurrent High-Grade Glioma Imaged with 89Zr-Fresolimumab PET, Journal of Nuclear Medicine, vol.56, issue.9, pp.1310-1314, 2015.
DOI : 10.2967/jnumed.115.154401

J. E. Mortimer, J. R. Bading, D. M. Colcher, P. S. Conti, P. H. Frankel et al., Functional Imaging of Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer Using 64Cu-DOTA-Trastuzumab PET, Journal of Nuclear Medicine, vol.55, issue.1, pp.23-29, 2014.
DOI : 10.2967/jnumed.113.122630

E. C. Dijkers, T. H. Oude-munnink, J. G. Kosterink, A. H. Brouwers, P. L. Jager et al., Biodistribution of 89Zr-trastuzumab and PET Imaging of HER2-Positive Lesions in Patients With Metastatic Breast Cancer, Clinical Pharmacology & Therapeutics, vol.87, issue.5, pp.586-592, 2010.
DOI : 10.1162/153535003322556877

M. V. Dieci, E. Barbieri, F. Piacentini, G. Ficarra, S. Bettelli et al., Discordance in receptor status between primary and recurrent breast cancer has a prognostic impact: a single-Institution analysis, Annals of Oncology, vol.24, issue.1, pp.101-108, 2013.
DOI : 10.1093/annonc/mds248

C. Liedtke, K. Broglio, S. Moulder, L. Hsu, S. Kau et al., Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer, Annals of Oncology, vol.20, issue.12, pp.1953-1958, 2009.
DOI : 10.1093/annonc/mdp263

Y. Yang, N. Peng, S. Xie, and Y. Xie, Discordances in ER, PR and HER2 receptors between primary and recurrent/metastatic lesions and their impact on survival in breast cancer patients, Medical Oncology, vol.14, issue.4, pp.31-214, 2014.
DOI : 10.3747/co.2007.131

E. C. Dijkers, J. G. Kosterink, A. P. Rademaker, L. R. Perk, G. A. Van-dongen et al., Development and Characterization of Clinical-Grade 89Zr-Trastuzumab for HER2/neu ImmunoPET Imaging, Journal of Nuclear Medicine, vol.50, issue.6, pp.974-981, 2009.
DOI : 10.2967/jnumed.108.060392

R. P. Baum, V. Prasad, D. Müller, C. Schuchardt, A. Orlova et al., Molecular Imaging of HER2-Expressing Malignant Tumors in Breast Cancer Patients Using Synthetic 111In- or 68Ga-Labeled Affibody Molecules, Journal of Nuclear Medicine, vol.51, issue.6, pp.892-897, 2010.
DOI : 10.2967/jnumed.109.073239

K. Tamura, H. Kurihara, K. Yonemori, H. Tsuda, J. Suzuki et al., Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer, J. Nucl. Med, vol.64, issue.54, pp.1869-1875, 2013.
DOI : 10.2967/jnumed.112.118612

URL : http://jnm.snmjournals.org/content/54/11/1869.full.pdf

Y. W. Jauw, C. W. Menke-van-der-houven-van-oordt, O. S. Hoekstra, N. H. Hendrikse, D. J. Vugts et al., Immuno-Positron Emission Tomography with Zirconium-89-Labeled Monoclonal Antibodies in Oncology: What Can We Learn from Initial Clinical Trials?, Frontiers in Pharmacology, vol.5, 2016.
DOI : 10.1038/nprot.2010.13

G. Gebhart, L. E. Lamberts, Z. Wimana, C. Garcia, P. Emonts et al., Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial, Annals of Oncology, vol.27, issue.4
DOI : 10.1093/annonc/mdv577

H. Ghebeh, S. Mohammed, A. Omair, A. Qattan, C. Lehe et al., The B7-H1 (PD-L1) T Lymphocyte-Inhibitory Molecule Is Expressed in Breast Cancer Patients with Infiltrating Ductal Carcinoma: Correlation with Important High-Risk Prognostic Factors, Neoplasia, vol.8, issue.3, pp.190-198, 2006.
DOI : 10.1593/neo.05733

C. Wu, Y. Zhu, J. Jiang, J. Zhao, X. Zhang et al., Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance, Acta Histochemica, vol.108, issue.1, pp.19-24, 2006.
DOI : 10.1016/j.acthis.2006.01.003

R. H. Thompson, S. M. Kuntz, B. C. Leibovich, H. Dong, C. M. Lohse et al., et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res, pp.3381-3385, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01597856

J. Hamanishi, M. Mandai, K. Abiko, N. Matsumura, T. Baba et al., The comprehensive assessment of local immune status of ovarian cancer by the clustering of multiple immune factors, Clinical Immunology, vol.141, issue.3, pp.338-347, 2011.
DOI : 10.1016/j.clim.2011.08.013

C. Mu, J. Huang, Y. Chen, C. Chen, and X. Zhang, High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation, Medical Oncology, vol.10, issue.3, pp.682-688, 2011.
DOI : 10.1158/1078-0432.CCR-04-0428

J. M. Taube, R. A. Anders, G. D. Young, H. Xu, R. Sharma et al., Colocalization of Inflammatory Response with B7-H1 Expression in Human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape, Science Translational Medicine, vol.27, issue.36
DOI : 10.1200/JCO.2009.23.4799

J. Liu, A. Hamrouni, D. Wolowiec, V. Coiteux, K. Kuliczkowski et al., Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-?? and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway, Blood, vol.110, issue.1, pp.296-304, 2007.
DOI : 10.1182/blood-2006-10-051482

URL : http://www.bloodjournal.org/content/bloodjournal/110/1/296.full.pdf

S. Heskamp, W. Hobo, J. D. Molkenboer-kuenen, D. Olive, W. J. Oyen et al., Noninvasive Imaging of Tumor PD-L1 Expression Using Radiolabeled Anti-PD-L1 Antibodies, Cancer Research, vol.75, issue.14, pp.2928-2936, 2015.
DOI : 10.1158/0008-5472.CAN-14-3477

URL : http://cancerres.aacrjournals.org/content/canres/75/14/2928.full.pdf

A. Natarajan, A. T. Mayer, L. Xu, R. E. Reeves, J. Gano et al., Novel Radiotracer for ImmunoPET Imaging of PD-1 Checkpoint Expression on Tumor Infiltrating Lymphocytes, Bioconjugate Chemistry, vol.26, issue.10, pp.2062-2069
DOI : 10.1021/acs.bioconjchem.5b00318

A. Josefsson, J. R. Nedrow, S. Park, S. R. Banerjee, A. Rittenbach et al., Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an Immunocompetent Mouse Model of Breast Cancer, Cancer Research, vol.76, issue.2, pp.472-479, 2016.
DOI : 10.1158/0008-5472.CAN-15-2141

C. Chang, E. A. Rossi, W. T. Van-der-graaf, and W. J. Oyen, Predictive patient-specific dosimetry and individualized dosing of pretargeted radioimmunotherapy in patients with advanced colorectal cancer, Eur. J. Nucl. Med. Mol. Imaging, vol.41, pp.1593-1602, 2014.

C. Rousseau, J. Hureaux, and O. Couturier, Pharmacokinetics and dosimetry studies for optimization of pretargeted radioimmunotherapy in CEA-expressing advanced lung cancer patients, p.84
URL : https://hal.archives-ouvertes.fr/hal-01258870

S. N. Rizvi, O. J. Visser, M. J. Vosjan, A. Van-lingen, O. S. Hoekstra et al., Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin???s lymphoma using 89Zr-ibritumomab tiuxetan and PET, European Journal of Nuclear Medicine and Molecular Imaging, vol.37, issue.4 Suppl, pp.512-520, 2012.
DOI : 10.1007/s00259-009-1297-4

L. R. Perk, O. J. Visser, M. Stigter-van-walsum, M. J. Vosjan, G. W. Visser et al., Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography, European Journal of Nuclear Medicine and Molecular Imaging, vol.21, issue.Suppl 1, pp.1337-1345, 2006.
DOI : 10.1007/s00259-006-0160-0