M. Bondy, M. Scheurer, B. Malmer, J. Barnholtz-sloan, F. Davis et al., Brain tumor epidemiology: Consensus from the Brain Tumor Epidemiology Consortium, Cancer, vol.16, issue.2-3, pp.1953-68, 2008.
DOI : 10.1212/01.WNL.0000129533.26544.BF

URL : http://onlinelibrary.wiley.com/doi/10.1002/cncr.23741/pdf

R. Stupp, W. Mason, M. Van-den-bent, M. Weller, B. Fisher et al., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-96, 2005.
DOI : 10.1056/NEJMoa043330

L. Muldoon, C. Soussain, K. Jahnke, C. Johanson, T. Siegal et al., Chemotherapy Delivery Issues in Central Nervous System Malignancy: A Reality Check, Journal of Clinical Oncology, vol.25, issue.16, pp.2295-305, 2007.
DOI : 10.1200/JCO.2006.09.9861

M. Zalutsky, D. Reardon, G. Akabani, R. Coleman, A. Friedman et al., Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6, J Nucl Med Off Publ Soc Nucl Med, vol.49, issue.1, pp.30-38, 2008.

D. Reardon, G. Akabani, R. Coleman, A. Friedman, H. Friedman et al., I-Labeled Antitenascin Monoclonal Antibody 81C6 Administered Into Surgically Created Resection Cavities of Patients With Newly Diagnosed Malignant Gliomas, Journal of Clinical Oncology, vol.20, issue.5, pp.1389-97, 2002.
DOI : 10.1200/JCO.2002.20.5.1389

D. Reardon, J. Rich, H. Friedman, and D. Bigner, Recent Advances in the Treatment of Malignant Astrocytoma, Journal of Clinical Oncology, vol.24, issue.8, pp.1253-65, 2006.
DOI : 10.1200/JCO.2005.04.5302

A. Veeravagu, Z. Liu, G. Niu, K. Chen, B. Jia et al., Integrin ??v??3-Targeted Radioimmunotherapy of Glioblastoma Multiforme, Clinical Cancer Research, vol.14, issue.22, pp.7330-7339, 2008.
DOI : 10.1158/1078-0432.CCR-08-0797

URL : http://clincancerres.aacrjournals.org/content/clincanres/14/22/7330.full.pdf

A. Casacó, G. López, I. García, J. Rodríguez, R. Fernández et al., Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188-Re in adult recurrent high-grade glioma, Cancer Biology & Therapy, vol.7, issue.3, pp.333-342, 2008.
DOI : 10.4161/cbt.7.3.5414

S. Sofou, J. Thomas, H. Lin, M. Mcdevitt, D. Scheinberg et al., Engineered liposomes for potential alpha-particle therapy of metastatic cancer, J Nucl Med Off Publ Soc Nucl Med, vol.45, issue.2, pp.253-60, 2004.

W. Phillips, B. Goins, A. Bao, D. Vargas, J. Guttierez et al., Rhenium-186 liposomes as convection-enhanced nanoparticle brachytherapy for treatment of glioblastoma, Neuro-Oncology, vol.14, issue.4, pp.416-441, 2012.
DOI : 10.1093/neuonc/nos060

F. Huang, T. Lee, C. Kao, C. Chang, X. Zhang et al., Re-Labeled PEGylated Nanoliposome in Orthotopic Glioma Bearing Rat Model, Cancer Biotherapy & Radiopharmaceuticals, vol.26, issue.6, pp.717-742, 2011.
DOI : 10.1089/cbr.2011.1052

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231795/pdf

B. Heurtault, P. Saulnier, B. Pech, J. Proust, and J. Benoit, A novel phase inversion-based process for the preparation of lipid nanocarriers, Pharmaceutical Research, vol.19, issue.6, pp.875-80, 2002.
DOI : 10.1023/A:1016121319668

E. Allard, F. Hindre, C. Passirani, L. Lemaire, N. Lepareur et al., 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas, European Journal of Nuclear Medicine and Molecular Imaging, vol.112, issue.10, pp.1838-1884, 2008.
DOI : 10.1016/j.ijrobp.2006.12.001

URL : https://hal.archives-ouvertes.fr/inserm-00343438

C. Vanpouille-box, F. Lacoeuille, C. Belloche, N. Lepareur, L. Lemaire et al., Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with 188Re-lipid nanocapsules, Biomaterials, vol.32, issue.28, pp.6781-90, 2011.
DOI : 10.1016/j.biomaterials.2011.05.067

URL : https://hal.archives-ouvertes.fr/inserm-00638699

A. Vescovi, R. Galli, and B. Reynolds, Brain tumour stem cells, Nature Reviews Cancer, vol.6, issue.6, pp.425-461, 2006.
DOI : 10.1016/S0002-9440(10)61750-6

S. Singh, I. Clarke, M. Terasaki, V. Bonn, C. Hawkins et al., Identification of a cancer stem cell in human brain tumors, Cancer Res, vol.63, issue.18, pp.5821-5829, 2003.

S. Singh, C. Hawkins, I. Clarke, J. Squire, J. Bayani et al., Identification of human brain tumour initiating cells, Nature, vol.64, issue.7015, pp.396-401, 2004.
DOI : 10.1093/jnen/61.3.215

R. Galli, E. Binda, U. Orfanelli, B. Cipelletti, A. Gritti et al., Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma, Cancer Research, vol.64, issue.19, pp.7011-7032, 2004.
DOI : 10.1158/0008-5472.CAN-04-1364

N. Sanai, A. Alvarez-buylla, and M. Berger, Neural Stem Cells and the Origin of Gliomas, New England Journal of Medicine, vol.353, issue.8, pp.811-833, 2005.
DOI : 10.1056/NEJMra043666

D. Schonberg, D. Lubelski, T. Miller, and J. Rich, Brain tumor stem cells: Molecular characteristics and their impact on therapy, Molecular Aspects of Medicine, vol.39, pp.82-101, 2014.
DOI : 10.1016/j.mam.2013.06.004

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866208/pdf

S. Bao, Q. Wu, Z. Li, S. Sathornsumetee, H. Wang et al., Targeting Cancer Stem Cells through L1CAM Suppresses Glioma Growth, Cancer Research, vol.68, issue.15, pp.6043-6051, 2008.
DOI : 10.1158/0008-5472.CAN-08-1079

URL : http://cancerres.aacrjournals.org/content/canres/68/15/6043.full.pdf

S. Bao, Q. Wu, S. Sathornsumetee, Y. Hao, Z. Li et al., Stem Cell???like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor, Cancer Research, vol.66, issue.16, pp.7843-7851, 2006.
DOI : 10.1158/0008-5472.CAN-06-1010

URL : http://cancerres.aacrjournals.org/content/canres/66/16/7843.full.pdf

L. Cheng, Q. Wu, Z. Huang, O. Guryanova, Q. Huang et al., L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1, The EMBO Journal, vol.8, issue.5, pp.800-813, 2011.
DOI : 10.1038/nrd2137

URL : http://emboj.embopress.org/content/embojnl/30/5/800.full.pdf

A. Singh, R. Arya, A. Trivedi, S. Sanyal, R. Baral et al., Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12, Cytokine & Growth Factor Reviews, vol.24, issue.1, pp.41-50, 2013.
DOI : 10.1016/j.cytogfr.2012.08.007

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172454/pdf

J. Zhang, S. Sarkar, and V. Yong, The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase, Carcinogenesis, vol.26, issue.12, pp.2069-77, 2005.
DOI : 10.1093/carcin/bgi183

URL : https://academic.oup.com/carcin/article-pdf/26/12/2069/17284584/bgi183.pdf

M. Ehtesham, K. Mapara, C. Stevenson, and R. Thompson, CXCR4 mediates the proliferation of glioblastoma progenitor cells, Cancer Letters, vol.274, issue.2, pp.305-317, 2009.
DOI : 10.1016/j.canlet.2008.09.034

J. Brown, Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy, The British Journal of Radiology, vol.87, issue.1035, p.20130686, 1035.
DOI : 10.1259/bjr.20130686

G. Ahn and J. Brown, Matrix Metalloproteinase-9 Is Required for Tumor Vasculogenesis but Not for Angiogenesis: Role of Bone Marrow-Derived Myelomonocytic Cells, Cancer Cell, vol.13, issue.3, pp.193-205, 2008.
DOI : 10.1016/j.ccr.2007.11.032

D. Tseng, D. Vasquez-medrano, and J. Brown, Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas, British Journal of Cancer, vol.277, issue.12, pp.1805-1814, 2011.
DOI : 10.1074/jbc.M206222200

M. Kioi, H. Vogel, G. Schultz, R. Hoffman, G. Harsh et al., Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice, Journal of Clinical Investigation, vol.120, issue.3, pp.694-705, 2010.
DOI : 10.1172/JCI40283DS1

S. Barbero, R. Bonavia, A. Bajetto, C. Porcile, P. Pirani et al., Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt, Cancer Res, vol.63, issue.8, pp.1969-74, 2003.

N. Lepareur, E. Garin, N. Noiret, and J. Herry, A kit formulation for the labelling of lipiodol with generator-produced188Re, Journal of Labelled Compounds and Radiopharmaceuticals, vol.9, issue.12, pp.857-67, 2004.
DOI : 10.1524/ract.1997.79.2.93

E. Bourseau-guilmain, J. Béjaud, A. Griveau, N. Lautram, F. Hindré et al., Development and characterization of immuno-nanocarriers targeting the cancer stem cell marker AC133, International Journal of Pharmaceutics, vol.423, issue.1, pp.93-101, 2012.
DOI : 10.1016/j.ijpharm.2011.06.001

S. Sharonov, I. Chourpa, H. Morjani, I. Nabiev, M. Manfait et al., Confocal spectral imaging analysis in studies of the spatial distribution of antitumour drugs within living cancer cells, Analytica Chimica Acta, vol.290, issue.1-2, pp.40-47, 1994.
DOI : 10.1016/0003-2670(94)80038-3

S. Vibet, K. Mahéo, J. Goré, P. Dubois, P. Bougnoux et al., Differential Subcellular Distribution of Mitoxantrone in Relation to Chemosensitization in Two Human Breast Cancer Cell Lines, Drug Metabolism and Disposition, vol.35, issue.5, pp.822-830, 2007.
DOI : 10.1124/dmd.106.013474

S. Hirsjärvi, L. Sancey, S. Dufort, C. Belloche, C. Vanpouille-box et al., Effect of particle size on the biodistribution of lipid nanocapsules: Comparison between nuclear and fluorescence imaging and counting, International Journal of Pharmaceutics, vol.453, issue.2, pp.594-600, 2013.
DOI : 10.1016/j.ijpharm.2013.05.057

F. Laurence, Intérêt des nanosphères comme forme orale à libération modifiée pour améliorer la biodisponibilité et le profil pharmacodynamique de l'isradipine, Université Henri Poincaré -Nancy, vol.1, 1999.

E. Allard, C. Passirani, and J. Benoit, Convection-enhanced delivery of nanocarriers for the treatment of brain tumors, Biomaterials, vol.30, issue.12, pp.2302-2320, 2009.
DOI : 10.1016/j.biomaterials.2009.01.003

S. Biswas and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nature Immunology, vol.313, issue.10, pp.889-96, 2010.
DOI : 10.1016/j.ccr.2009.06.017

L. Torres, M. Coca, J. Batista, A. Casaco, G. Lopez et al., Biodistribution and internal dosimetry of the 188Re-labelled humanized monoclonal antibody anti-epidemal growth factor receptor, nimotuzumab, in the locoregional treatment of malignant gliomas, Nuclear Medicine Communications, vol.29, issue.1, pp.66-75, 2008.
DOI : 10.1097/MNM.0b013e3282f1bbce

N. Tarasova, R. Stauber, and C. Michejda, Spontaneous and Ligand-induced Trafficking of CXC-Chemokine Receptor 4, Journal of Biological Chemistry, vol.72, issue.26, pp.15883-15889, 1998.
DOI : 10.1016/S0960-9822(06)00055-8

URL : http://www.jbc.org/content/273/26/15883.full.pdf

S. Tanabe, M. Heesen, I. Yoshizawa, M. Berman, Y. Luo et al., Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes, J Immunol Baltim Md, vol.159, issue.2, pp.905-916, 1950.

D. Zagzag, Y. Lukyanov, L. Lan, M. Ali, M. Esencay et al., Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion, Laboratory Investigation, vol.4, issue.12, pp.1221-1253, 2006.
DOI : 10.1038/nm1075

Y. Ma, R. Mentlein, F. Knerlich, M. Kruse, H. Mehdorn et al., Expression of stem cell markers in human astrocytomas of different WHO grades, Journal of Neuro-Oncology, vol.47, issue.1, pp.31-45, 2008.
DOI : 10.1177/002215540205000203

M. Ehtesham, J. Winston, P. Kabos, and R. Thompson, CXCR4 expression mediates glioma cell invasiveness, Oncogene, vol.25, issue.19, pp.2801-2807, 2006.
DOI : 10.1074/jbc.M206222200

URL : http://www.nature.com/onc/journal/v25/n19/pdf/1209302a.pdf

M. Hardee and D. Zagzag, Mechanisms of Glioma-Associated Neovascularization, The American Journal of Pathology, vol.181, issue.4, pp.1126-1167, 2012.
DOI : 10.1016/j.ajpath.2012.06.030

URL : https://doi.org/10.1016/j.ajpath.2012.06.030

C. Mignogna, F. Signorelli, M. Vismara, P. Zeppa, C. Camastra et al., A reappraisal of macrophage polarization in glioblastoma: Histopathological and immunohistochemical findings and review of the literature, Pathology - Research and Practice, vol.212, issue.6, pp.491-500, 2016.
DOI : 10.1016/j.prp.2016.02.020

S. Pyonteck, L. Akkari, A. Schuhmacher, R. Bowman, L. Sevenich et al., CSF-1R inhibition alters macrophage polarization and blocks glioma progression, Nature Medicine, vol.102, issue.10, pp.1264-72, 2013.
DOI : 10.1073/pnas.0506580102

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840724/pdf

D. Saha, R. Martuza, and S. Rabkin, Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade, Cancer Cell, vol.32, issue.2, pp.253-267, 2017.
DOI : 10.1016/j.ccell.2017.07.006

A. Béduneau, P. Saulnier, F. Hindré, A. Clavreul, J. Leroux et al., Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab??? fragments, Biomaterials, vol.28, issue.33, pp.4978-90, 2007.
DOI : 10.1016/j.biomaterials.2007.05.014

R. Bobo, D. Laske, A. Akbasak, P. Morrison, R. Dedrick et al., Convection-enhanced delivery of macromolecules in the brain., Proceedings of the National Academy of Sciences, vol.91, issue.6, pp.2076-80, 1994.
DOI : 10.1073/pnas.91.6.2076

C. Ling, J. Humm, S. Larson, H. Amols, Z. Fuks et al., Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality, International Journal of Radiation Oncology*Biology*Physics, vol.47, issue.3, pp.551-60, 2000.
DOI : 10.1016/S0360-3016(00)00467-3

E. Hall, Dose-painting by numbers: a feasible approach?, The Lancet Oncology, vol.6, issue.2, p.66, 2005.
DOI : 10.1016/S1470-2045(05)01718-3

S. Supiot, A. Lisbona, F. Paris, D. Azria, and P. Fenoglietto, « Dose-painting » : mythe ou réalité ? Cancer/Radiothérapie, pp.6-7554, 2010.
DOI : 10.1016/j.canrad.2010.06.005

A. Chan, A. Lau, A. Pirzkall, S. Chang, L. Verhey et al., Proton magnetic resonance spectroscopy imaging in the evaluation of patients undergoing gamma knife surgery for Grade IV glioma, Journal of Neurosurgery, vol.101, issue.3, pp.467-75, 2004.
DOI : 10.3171/jns.2004.101.3.0467

A. Grosu, W. Weber, M. Franz, S. Stärk, M. Piert et al., Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy, International Journal of Radiation Oncology*Biology*Physics, vol.63, issue.2, pp.511-520, 2005.
DOI : 10.1016/j.ijrobp.2005.01.056

J. Lemée, A. Clavreul, and P. Menei, Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone, Neuro-Oncology, vol.17, issue.10, pp.1322-1354, 2015.
DOI : 10.1093/neuonc/nov119

K. Petrecca, M. Guiot, V. Panet-raymond, and L. Souhami, Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma, Journal of Neuro-Oncology, vol.88, issue.1, pp.19-23, 2013.
DOI : 10.1007/s11060-008-9576-7

A. Bouras, M. Kaluzova, and C. Hadjipanayis, Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles, Journal of Neuro-Oncology, vol.91, issue.6, pp.13-22, 2015.
DOI : 10.1073/pnas.91.6.2076

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498963/pdf

M. Kaluzova, A. Bouras, R. Machaidze, and C. Hadjipanayis, Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles, Oncotarget, vol.6, issue.11, pp.8788-806, 2015.
DOI : 10.18632/oncotarget.3554

A. Merlo, E. Jermann, O. Hausmann, R. Chiquet-ehrismann, A. Probst et al., Biodistribution of111In-labelled SCN-bz-DTPA-BC-2 MAb following loco-regional injection into glioblastomas, International Journal of Cancer, vol.49, issue.5, pp.810-816, 1997.
DOI : 10.1038/bjc.1993.25

URL : http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0215(19970529)71:5<810::AID-IJC19>3.0.CO;2-B/pdf

D. Séhédic, A. Cikankowitz, F. Hindré, F. Davodeau, and E. Garcion, Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones, Trends in Pharmacological Sciences, vol.36, issue.4, pp.236-52, 2015.
DOI : 10.1016/j.tips.2015.02.002

N. Chau, P. Rogers, W. Aherne, V. Carroll, I. Collins et al., Identification of Novel Small Molecule Inhibitors of Hypoxia-Inducible Factor-1 That Differentially Block Hypoxia-Inducible Factor-1 Activity and Hypoxia-Inducible Factor-1?? Induction in Response to Hypoxic Stress and Growth Factors, Cancer Research, vol.65, issue.11, pp.4918-4946, 2005.
DOI : 10.1158/0008-5472.CAN-04-4453

Z. Miao, K. Luker, B. Summers, R. Berahovich, M. Bhojani et al., CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature, Proceedings of the National Academy of Sciences, vol.100, issue.20, pp.15735-15775, 2007.
DOI : 10.1073/pnas.1933744100

URL : http://www.pnas.org/content/104/40/15735.full.pdf

R. Wuerth, A. Bajetto, J. Harrison, F. Barbieri, and T. Florio, CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment, Front Cell Neurosci, vol.8, p.144, 2014.

M. Walters, K. Ebsworth, R. Berahovich, M. Penfold, S. Liu et al., Inhibition of CXCR7 extends survival following irradiation of brain tumours in mice and rats, British Journal of Cancer, vol.110, issue.5, pp.1179-88, 2014.
DOI : 10.1152/physiolgenomics.00147.2007

J. Brown, Inhibiting Vasculogenesis After Radiation: A New Paradigm to Improve Local Control by Radiotherapy, Semin Radiat Oncol, vol.23, issue.4, pp.281-288, 2013.

K. Herrmann, M. Schottelius, C. Lapa, T. Osl, A. Poschenrieder et al., First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease, Journal of Nuclear Medicine, vol.57, issue.2, pp.248-51, 2016.
DOI : 10.2967/jnumed.115.167361

S. Supplemental-figure, Analysis of immunoreactivity of free 12G5 antibody and 12G5-LNCs as a function of time after storage at 4°C determined by flow cytometry on U87MG transfected cells. The free 12G5 antibody and 12G5-LNCs labeled U87MG CXCR4+ cells. 12G5-LNCs labeling remains stable for 3 days. Statistical analysis was performed with the log-rank test

S. Supplemental-figure, Western blot analysis of the phosphorylation of Akt in U87MG CXCR4+ cells 16 hours after stimulation by SDF-1 at 25nM depending from the presence of LNC formulations, 12G5-LNC, IgG2a-LNCs and LNCs) or not (PBS)