R. Stupp, W. Mason, M. Van-den-bent, M. Weller, B. Fisher et al., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-96, 2005.
DOI : 10.1056/NEJMoa043330

R. Stupp, M. Hegi, W. Mason, M. Van-den-bent, M. Taphoorn et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, The Lancet Oncology, vol.10, issue.5, pp.459-66, 2009.
DOI : 10.1016/S1470-2045(09)70025-7

J. Polivka, J. Polivka, L. Holubec, T. Kubikova, V. Priban et al., Advances in Experimental Targeted Therapy and Immunotherapy for Patients with Glioblastoma Multiforme, Anticancer Research, vol.37, issue.1, pp.21-33, 2017.
DOI : 10.21873/anticanres.11285

V. Staedtke, R. Bai, and J. Laterra, Investigational new drugs for brain cancer, Expert Opinion on Investigational Drugs, vol.14, issue.5, pp.937-56, 2016.
DOI : 10.1038/mt.2014.160

J. Kang and C. Adamson, Novel chemotherapeutics and other therapies for treating high-grade glioma, Expert Opinion on Investigational Drugs, vol.59, issue.3, pp.1361-79, 2015.
DOI : 10.1002/cncr.26188

S. Wilhelm, C. Carter, M. Lynch, T. Lowinger, J. Dumas et al., Discovery and development of sorafenib: a multikinase inhibitor for treating cancer, Nature Reviews Drug Discovery, vol.47, issue.10, pp.835-879, 2006.
DOI : 10.4161/cc.3.2.648

E. Carra, F. Barbieri, D. Marubbi, A. Pattarozzi, R. Favoni et al., Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures, Cell Cycle, vol.82, issue.3, pp.491-500, 2013.
DOI : 10.1016/j.bcp.2011.07.073

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.23372?needAccess=true

M. Siegelin, C. Raskett, C. Gilbert, A. Ross, and D. Altieri, Sorafenib exerts anti-glioma activity in vitro and in vivo, Neuroscience Letters, vol.478, issue.3, pp.165-70, 2010.
DOI : 10.1016/j.neulet.2010.05.009

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198851/pdf

F. Yang, C. Brown, R. Buettner, M. Hedvat, R. Starr et al., Sorafenib Induces Growth Arrest and Apoptosis of Human Glioblastoma Cells through the Dephosphorylation of Signal Transducers and Activators of Transcription 3, Molecular Cancer Therapeutics, vol.9, issue.4, pp.953-62, 2010.
DOI : 10.1158/1535-7163.MCT-09-0947

D. Peereboom, M. Ahluwalia, X. Ye, J. Supko, S. Hilderbrand et al., NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme, Neuro-Oncology, vol.15, issue.4, pp.490-496, 2013.
DOI : 10.1093/neuonc/nos322

E. Lee, J. Kuhn, K. Lamborn, L. Abrey, L. Deangelis et al., Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02, Neuro-Oncology, vol.14, issue.12, pp.1511-1519, 2012.
DOI : 10.1093/neuonc/nos264

A. Hottinger, A. Aissa, V. Espeli, D. Squiban, N. Dunkel et al., Phase I study of sorafenib combined with radiation therapy and temozolomide as first-line treatment of high-grade glioma, British Journal of Cancer, vol.52, issue.11, pp.2655-61, 2014.
DOI : 10.1158/0008-5472.CAN-04-1443

R. Den, M. Kamrava, Z. Sheng, M. Werner-wasik, E. Dougherty et al., A Phase I Study of the Combination of Sorafenib With Temozolomide and Radiation Therapy for the Treatment of Primary and Recurrent High-Grade Gliomas, International Journal of Radiation Oncology*Biology*Physics, vol.85, issue.2, pp.321-329, 2013.
DOI : 10.1016/j.ijrobp.2012.04.017

M. Hassler, M. Ackerl, B. Flechl, C. Sax, A. Wöhrer et al., Sorafenib for patients with pretreated recurrent or progressive high-grade glioma, Anti-Cancer Drugs, vol.25, pp.723-731, 2014.
DOI : 10.1097/CAD.0000000000000077

F. Zustovich, L. Landi, G. Lombardi, C. Porta, L. Galli et al., Sorafenib plus daily low dose temozolomide for relapsed glioblastoma: A phase II study., Journal of Clinical Oncology, vol.29, issue.15_suppl, pp.3487-94, 2013.
DOI : 10.1200/jco.2011.29.15_suppl.2080

D. Reardon, J. Vredenburgh, A. Desjardins, K. Peters, S. Gururangan et al., Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma, Journal of Neuro-Oncology, vol.8, issue.2, pp.57-66, 2011.
DOI : 10.5414/CPP42650

M. Roger, A. Clavreul, L. Sindji, A. Chassevent, P. Schiller et al., In vitro and in vivo interactions between glioma and marrow-isolated adult multilineage inducible (MIAMI) cells, Brain Research, vol.1473, pp.193-203, 2012.
DOI : 10.1016/j.brainres.2012.07.030

A. Mangraviti, S. Tzeng, D. Gullotti, K. Kozielski, J. Kim et al., Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival, Biomaterials, vol.100, pp.53-66, 2016.
DOI : 10.1016/j.biomaterials.2016.05.025

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902753/pdf

I. Balyasnikova, M. Prasol, S. Ferguson, Y. Han, A. Ahmed et al., Intranasal Delivery of Mesenchymal Stem Cells Significantly Extends Survival of Irradiated Mice with Experimental Brain Tumors, Molecular Therapy, vol.22, issue.1, pp.140-148, 2014.
DOI : 10.1038/mt.2013.199

S. Pacioni, D. 'alessandris, Q. Giannetti, S. Morgante, L. Coccè et al., Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts, Stem Cell Research & Therapy, vol.10, issue.8, p.53, 2017.
DOI : 10.1016/j.celrep.2015.01.057

URL : http://doi.org/10.1186/s13287-017-0516-3

L. Menon, J. Pratt, H. Yang, P. Black, G. Sorensen et al., Imaging of human mesenchymal stromal cells: homing to human brain tumors, Journal of Neuro-Oncology, vol.15, issue.2, pp.257-67, 2012.
DOI : 10.1038/gt.2008.39

E. Binello and I. Germano, Stem cells as therapeutic vehicles for the treatment of high-grade gliomas, Neuro-Oncology, vol.14, issue.3, pp.256-65, 2012.
DOI : 10.1093/neuonc/nor204

M. Roger, A. Clavreul, M. Venier-julienne, C. Passirani, C. Montero-menei et al., The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy, Biomaterials, vol.32, issue.8, pp.2106-2122, 2011.
DOI : 10.1016/j.biomaterials.2010.11.056

D. Bexell, A. Svensson, and J. Bengzon, Stem cell-based therapy for malignant glioma, Cancer Treatment Reviews, vol.39, issue.4, pp.358-65, 2013.
DOI : 10.1016/j.ctrv.2012.06.006

URL : https://doi.org/10.1016/j.ctrv.2012.06.006

A. Aleynik, K. Gernavage, Y. Mourad, L. Sherman, K. Liu et al., Stem cell delivery of therapies for brain disorders, Clinical and Translational Medicine, vol.3, issue.1, p.24, 2014.
DOI : 10.1186/2001-1326-3-24

D. Bhere and K. Shah, Stem Cell-Based Therapies for Cancer, Adv Cancer Res, vol.127, pp.159-89, 2015.
DOI : 10.1016/bs.acr.2015.04.012

H. Namba, H. Kawaji, and T. Yamasaki, Use of genetically engineered stem cells for glioma therapy (Review), Oncology Letters, vol.11, pp.9-15, 2016.
DOI : 10.3892/ol.2015.3860

X. Zhang, B. Beard, G. Trobridge, B. Wood, G. Sale et al., High incidence of leukemia in large animals after stem cell gene therapy with a HOXB4-expressing retroviral vector, Journal of Clinical Investigation, vol.118, issue.4, pp.1502-1512, 2008.
DOI : 10.1172/JCI34371

M. Roger, A. Clavreul, N. Huynh, C. Passirani, P. Schiller et al., Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy, International Journal of Pharmaceutics, vol.423, issue.1, pp.63-71, 2012.
DOI : 10.1016/j.ijpharm.2011.04.058

L. Li, Y. Guan, H. Liu, N. Hao, T. Liu et al., Silica Nanorattle???Doxorubicin-Anchored Mesenchymal Stem Cells for Tumor-Tropic Therapy, ACS Nano, vol.5, issue.9, pp.7462-70, 2011.
DOI : 10.1021/nn202399w

A. Clavreul, A. Montagu, A. Lainé, C. Tétaud, N. Lautram et al., Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules, International Journal of Nanomedicine, vol.10, pp.1259-71, 2015.
DOI : 10.2147/IJN.S69175

URL : https://hal.archives-ouvertes.fr/hal-01392451

S. Pacioni, D. 'alessandris, Q. Giannetti, S. Morgante, L. et al., Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts, Stem Cell Research & Therapy, vol.28, issue.1, p.194, 2015.
DOI : 10.1158/1535-7163.MCT-10-0552

URL : http://doi.org/10.1186/s13287-015-0185-z

X. Zhang, S. Yao, C. Liu, and Y. Jiang, Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy, Biomaterials, vol.39, pp.269-81, 2015.
DOI : 10.1016/j.biomaterials.2014.11.003

A. Pessina, A. Bonomi, V. Coccè, G. Invernici, S. Navone et al., Mesenchymal Stromal Cells Primed with Paclitaxel Provide a New Approach for Cancer Therapy, PLoS ONE, vol.170, issue.12, p.28321, 2011.
DOI : 10.1371/journal.pone.0028321.s009

URL : https://doi.org/10.1371/journal.pone.0028321

U. Fischer, M. Harting, F. Jimenez, W. Monzon-posadas, H. Xue et al., Pulmonary Passage is a Major Obstacle for Intravenous Stem Cell Delivery: The Pulmonary First-Pass Effect, Stem Cells and Development, vol.18, issue.5, pp.683-92, 2009.
DOI : 10.1089/scd.2008.0253

Y. Ramot, M. Steiner, V. Morad, S. Leibovitch, N. Amouyal et al., Pulmonary thrombosis in the mouse following intravenous administration of quantum dot-labeled mesenchymal cells, Nanotoxicology, vol.115, issue.9, pp.98-105, 2010.
DOI : 10.1289/ehp.10290

L. Danielyan, R. Schäfer, A. Von-ameln-mayerhofer, M. Buadze, J. Geisler et al., Intranasal delivery of cells to the brain, European Journal of Cell Biology, vol.88, issue.6, pp.315-339, 2009.
DOI : 10.1016/j.ejcb.2009.02.001

L. Danielyan, S. Beer-hammer, A. Stolzing, R. Schäfer, G. Siegel et al., Intranasal Delivery of Bone Marrow-Derived Mesenchymal Stem Cells, Macrophages, and Microglia to the Brain in Mouse Models of Alzheimer's and Parkinson's Disease, Cell Transplantation, vol.117, issue.1_suppl, pp.123-162, 2014.
DOI : 10.1007/s00401-008-0481-0

C. Van-velthoven, A. Kavelaars, F. Van-bel, and C. Heijnen, Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage, Pediatric Research, vol.444, pp.419-441, 2010.
DOI : 10.1203/PDR.0b013e3181f1c289

D. Ippolito, G. Diabira, S. Howard, G. Menei, P. Roos et al., Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential, Journal of Cell Science, vol.117, issue.14, pp.2971-81, 2004.
DOI : 10.1242/jcs.01103

L. Sherman, M. Shaker, V. Mariotti, and P. Rameshwar, Mesenchymal stromal/stem cells in drug therapy: New perspective, Cytotherapy, vol.19, issue.1, pp.19-27, 2017.
DOI : 10.1016/j.jcyt.2016.09.007

L. Pascucci, V. Coccè, A. Bonomi, D. Ami, P. Ceccarelli et al., Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery, Journal of Controlled Release, vol.192, pp.262-70, 2014.
DOI : 10.1016/j.jconrel.2014.07.042

D. Fattore, A. Luciano, R. Saracino, R. Battafarano, G. Rizzo et al., Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells, Expert Opinion on Biological Therapy, vol.2, issue.4, pp.495-504, 2015.
DOI : 10.4161/hv.22130

M. Reitz, M. Demestre, J. Sedlacik, H. Meissner, J. Fiehler et al., Intranasal Delivery of Neural Stem/Progenitor Cells: A Noninvasive Passage to Target Intracerebral Glioma, STEM CELLS Translational Medicine, vol.39, issue.12, pp.866-73, 2012.
DOI : 10.1161/STROKEAHA.107.502047

J. Lemée, A. Clavreul, and P. Menei, Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone, Neuro-Oncology, vol.17, issue.10, pp.1322-1354, 2015.
DOI : 10.1093/neuonc/nov119

S. Ridge, F. Sullivan, and S. Glynn, Mesenchymal stem cells: key players in cancer progression, Molecular Cancer, vol.14, issue.1, p.31, 2017.
DOI : 10.1186/s12964-016-0127-0

URL : https://molecular-cancer.biomedcentral.com/track/pdf/10.1186/s12943-017-0597-8?site=molecular-cancer.biomedcentral.com

C. Zhang, S. Yang, Q. Wen, J. Zhong, X. Chen et al., Human-derived normal mesenchymal stem/stromal cells in anticancer therapies, Journal of Cancer, vol.8, issue.1, pp.85-96, 2017.
DOI : 10.7150/jca.16792

URL : http://www.jcancer.org/v08p0085.pdf

Y. Shi, L. Du, L. Lin, and Y. Wang, Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets, Nature Reviews Drug Discovery, vol.10, issue.1, pp.35-52, 2017.
DOI : 10.1021/mp300261e

A. Bronckaers, P. Hilkens, W. Martens, P. Gervois, J. Ratajczak et al., Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis, Pharmacology & Therapeutics, vol.143, issue.2, pp.181-96, 2014.
DOI : 10.1016/j.pharmthera.2014.02.013

C. Merino-gonzález, F. Zuñiga, C. Escudero, V. Ormazabal, C. Reyes et al., Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Angiogenesis: Potencial Clinical Application, Frontiers in Physiology, vol.8, issue.99, p.24, 2016.
DOI : 10.2147/SCCAA.S88036

A. Clavreul, A. Etcheverry, A. Chassevent, V. Quillien, T. Avril et al., Isolation of a new cell population in the glioblastoma microenvironment, Journal of Neuro-Oncology, vol.68, issue.3, pp.493-504, 2012.
DOI : 10.1158/0008-5472.CAN-08-0943

URL : https://hal.archives-ouvertes.fr/inserm-00626532

A. Clavreul, C. Guette, R. Faguer, C. Tétaud, A. Boissard et al., Glioblastoma-associated stromal cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties, The Journal of Pathology, vol.9, issue.1, pp.74-88, 2014.
DOI : 10.1038/onc.2010.503

URL : https://hal.archives-ouvertes.fr/hal-01064615

A. Clavreul, A. Etcheverry, C. Tétaud, A. Rousseau, T. Avril et al., Identification of two glioblastoma-associated stromal cell subtypes with different carcinogenic properties in histologically normal surgical margins, Journal of Neuro-Oncology, vol.72, issue.1, pp.1-10, 2015.
DOI : 10.1227/NEU.0b013e31828c3974

URL : https://hal.archives-ouvertes.fr/hal-01117114

F. Appaix, M. Nissou, B. Van-der-sanden, M. Dreyfus, F. Berger et al., Brain mesenchymal stem cells: The other stem cells of the brain?, World Journal of Stem Cells, vol.6, issue.2, pp.134-177, 2014.
DOI : 10.4252/wjsc.v6.i2.134

B. Kong, H. Shin, S. Kim, H. Mok, J. Shim et al., Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma, International Journal of Oncology, vol.42, issue.5, pp.1754-62, 2013.
DOI : 10.3892/ijo.2013.1856

E. Lim, Y. Suh, K. Yoo, J. Lee, I. Kim et al., Tumor-associated mesenchymal stem-like cells provide extracellular signaling cue for invasiveness of glioblastoma cells, Oncotarget, vol.8, pp.1438-1486, 2017.
DOI : 10.18632/oncotarget.13638

A. Hossain, J. Gumin, F. Gao, J. Figueroa, N. Shinojima et al., Mesenchymal Stem Cells Isolated From Human Gliomas Increase Proliferation and Maintain Stemness of Glioma Stem Cells Through the IL-6/gp130/STAT3 Pathway, STEM CELLS, vol.94, issue.8, pp.2400-2415, 2015.
DOI : 10.3171/jns.2001.94.1.0097

A. Svensson, T. Ramos-moreno, S. Eberstål, S. Scheding, and J. Bengzon, Identification of two distinct mesenchymal stromal cell populations in human malignant glioma, Journal of Neuro-Oncology, vol.65, issue.8, pp.245-54, 2017.
DOI : 10.1158/0008-5472.can-04-1874

T. Shahar, U. Rozovski, K. Hess, A. Hossain, J. Gumin et al., Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival, Neuro-Oncology, vol.19, pp.660-68, 2017.
DOI : 10.1093/neuonc/now239

S. Yoon, J. Shim, J. Chang, J. Moon, T. Roh et al., Tumor Mesenchymal Stem-Like Cell as a Prognostic Marker in Primary Glioblastoma, Stem Cells International, vol.26, issue.5, p.6756983, 2016.
DOI : 10.1093/jnen/63.4.314

URL : http://doi.org/10.1155/2016/6756983