M. Bogunovic, S. H. Davé, J. S. Tilstra, D. T. Chang, N. Harpaz et al., Enteroendocrine cells express functional Toll-like receptors, AJP: Gastrointestinal and Liver Physiology, vol.292, issue.6, pp.1770-1783, 2007.
DOI : 10.1152/ajpgi.00249.2006

URL : http://ajpgi.physiology.org/content/ajpgi/292/6/G1770.full.pdf

C. A. Brighton, J. Rievaj, R. E. Kuhre, L. L. Glass, K. Schoonjans et al., Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein???Coupled Bile Acid Receptors, Endocrinology, vol.156, issue.11, pp.3961-3970, 2015.
DOI : 10.1210/en.2015-1321

URL : https://academic.oup.com/endo/article-pdf/156/11/3961/20218189/endo3961.pdf

P. D. Cani, S. Possemiers, T. Van-de-wiele, Y. Guiot, A. Everard et al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut, vol.58, issue.8, pp.1091-1103, 2009.
DOI : 10.1136/gut.2008.165886

A. P. Chambers, J. E. Sorrell, A. Haller, K. Roelofs, C. R. Hutch et al., The Role of Pancreatic Preproglucagon in Glucose Homeostasis in Mice, Cell Metabolism, vol.25, issue.4, pp.927-934, 2017.
DOI : 10.1016/j.cmet.2017.02.008

M. Deniz, B. M. Atasoy, F. Dane, G. Can, C. Erzik et al., Radiation-induced oxidative injury of the ileum and colon is alleviated by glucagon-like peptide-1 and -2, Journal of Radiation Research and Applied Sciences, vol.8, issue.2, pp.234-242, 2015.
DOI : 10.1016/j.jrras.2015.01.010

D. J. Drucker, The Cardiovascular Biology of Glucagon-like Peptide-1, Cell Metabolism, vol.24, issue.1, pp.15-30, 2016.
DOI : 10.1016/j.cmet.2016.06.009

D. J. Drucker, Y. , and B. , Physiology and Pharmacology of the Enteroendocrine Hormone Glucagon-Like Peptide-2, Annual Review of Physiology, vol.76, issue.1, pp.561-583, 2014.
DOI : 10.1146/annurev-physiol-021113-170317

H. Ellingsgaard, I. Hauselmann, B. Schuler, A. M. Habib, L. L. Baggio et al., Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells, Nature Medicine, vol.46, issue.11, pp.1481-1489, 2011.
DOI : 10.1007/s00125-003-1080-1

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286294/pdf

C. Erridge, T. Attina, C. M. Spickett, W. , and D. J. , A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation, Am. J. Clin. Nutr, vol.86, pp.1286-1292, 2007.

J. Gagnon, M. Sauvé, W. Zhao, H. M. Stacey, S. C. Wiber et al., Chronic Exposure to TNF?? Impairs Secretion of Glucagon-Like Peptide-1, Endocrinology, vol.156, issue.11, pp.3950-3960, 2015.
DOI : 10.1210/en.2015-1361

URL : https://academic.oup.com/endo/article-pdf/156/11/3950/8987007/endo3950.pdf

A. Gnauck, R. G. Lentle, and M. C. Kruger, The Characteristics and Function of Bacterial Lipopolysaccharides and Their Endotoxic Potential in Humans, International Reviews of Immunology, vol.87, issue.2, pp.189-218, 2016.
DOI : 10.2337/dc09-0979

J. J. Holst, The Physiology of Glucagon-like Peptide 1, Physiological Reviews, vol.87, issue.4, pp.1409-1439, 2007.
DOI : 10.1152/physrev.00034.2006

K. Hoshino, O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa et al., Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product, J. Immunol, vol.162, pp.3749-3752, 1999.

C. Ingels, I. Vanhorebeek, and G. Van-den-berghe, Glucose homeostasis, nutrition and infections during critical illness, Clinical Microbiology and Infection, 2017.
DOI : 10.1016/j.cmi.2016.12.033

M. F. Kagnoff and L. Eckmann, Epithelial cells as sensors for microbial infection., Journal of Clinical Investigation, vol.100, issue.1, pp.6-10, 1997.
DOI : 10.1172/JCI119522

URL : http://www.jci.org/articles/view/119522/files/pdf

F. Kahles, C. Meyer, J. Mö-llmann, S. Diebold, H. M. Findeisen et al., GLP-1 Secretion Is Increased by Inflammatory Stimuli in an IL-6-Dependent Manner, Leading to Hyperinsulinemia and Blood Glucose Lowering, Diabetes, vol.63, issue.10, pp.3221-3229, 2014.
DOI : 10.2337/db14-0100

URL : http://diabetes.diabetesjournals.org/content/diabetes/63/10/3221.full.pdf

M. H. Kedees, Y. Guz, M. Grigoryan, and G. Teitelman, Functional activity of murine intestinal mucosal cells is regulated by the glucagon-like peptide-1 receptor, Peptides, vol.48, pp.36-44, 2013.
DOI : 10.1016/j.peptides.2013.07.022

R. G. Khadaroo, S. Fortis, S. Y. Salim, C. Streutker, T. A. Churchill et al., I-FABP as Biomarker for the Early Diagnosis of Acute Mesenteric Ischemia and Resultant Lung Injury, PLoS ONE, vol.176, issue.12, 2014.
DOI : 10.1371/journal.pone.0115242.t001

H. Kissow, B. Hartmann, J. J. Holst, N. Viby, L. S. Hansen et al., Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice, Regulatory Peptides, vol.179, issue.1-3, pp.91-100, 2012.
DOI : 10.1016/j.regpep.2012.08.016

H. Kissow, B. Hartmann, J. J. Holst, and S. S. Poulsen, Glucagon-like peptide-1 as a treatment for chemotherapy-induced mucositis, Gut, vol.29, issue.12, pp.1724-1733, 2013.
DOI : 10.1200/JCO.2010.32.4095

S. Kitajima, S. Takuma, and M. Morimoto, Changes in Colonic Mucosal Permeability in Mouse Colitis Induced with Dextran Sulfate Sodium., Experimental Animals, vol.48, issue.3, 1999.
DOI : 10.1538/expanim.48.137

J. A. Koehler, L. L. Baggio, B. Yusta, C. Longuet, K. J. Rowland et al., GLP-1R Agonists Promote Normal and Neoplastic Intestinal Growth through Mechanisms Requiring Fgf7, Cell Metabolism, vol.21, issue.3, pp.379-391, 2015.
DOI : 10.1016/j.cmet.2015.02.005

URL : https://doi.org/10.1016/j.cmet.2015.02.005

C. Lebherz, G. Schlieper, J. Mö-llmann, F. Kahles, M. Schwarz et al., GLP-1 Levels Predict Mortality in Patients with Critical Illness as Well as End-Stage Renal Disease, The American Journal of Medicine, vol.130, issue.7, pp.833-841, 2017.
DOI : 10.1016/j.amjmed.2017.03.010

Y. Lee and H. Jun, Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control, Mediators of Inflammation, vol.38, issue.7, p.3094642, 2016.
DOI : 10.1007/s00395-015-0465-x

URL : http://doi.org/10.1155/2016/3094642

G. W. Moran, C. O-'neill, and J. T. Mclaughlin, GLP-2 enhances barrier formation and attenuates TNF??-induced changes in a Caco-2 cell model of the intestinal barrier, Regulatory Peptides, vol.178, issue.1-3, pp.95-101, 2012.
DOI : 10.1016/j.regpep.2012.07.002

M. Murakami, T. Tsubata, R. Shinkura, S. Nisitani, M. Okamoto et al., Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse, Journal of Experimental Medicine, vol.180, issue.1, pp.111-121, 1994.
DOI : 10.1084/jem.180.1.111

A. T. Nguyen, S. Mandard, C. Dray, V. Deckert, P. Valet et al., Lipopolysaccharides-Mediated Increase in Glucose-Stimulated Insulin Secretion: Involvement of the GLP-1 Pathway, Diabetes, vol.63, issue.2, pp.471-482, 2014.
DOI : 10.2337/db13-0903

URL : https://hal.archives-ouvertes.fr/inserm-00880061

J. Pais-de-barros, T. Gautier, W. Sali, C. Adrie, H. Choubley et al., Quantitative lipopolysaccharide analysis using HPLC/MS/MS and its combination with the limulus amebocyte lysate assay, Journal of Lipid Research, vol.6, issue.7, pp.1363-1369, 2015.
DOI : 10.1210/jc.2013-3463

M. M. Pelsers, W. T. Hermens, and J. F. Glatz, Fatty acid-binding proteins as plasma markers of tissue injury, Clinica Chimica Acta, vol.352, issue.1-2, pp.15-35, 2005.
DOI : 10.1016/j.cccn.2004.09.001

A. Poltorak, X. He, I. Smirnova, M. Y. Liu, C. Van-huffel et al., Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene, Science, vol.282, issue.5396, pp.2085-2088, 1998.
DOI : 10.1126/science.282.5396.2085

L. Rinaman and J. Comer, Antagonism of central glucagon-like peptide-1 receptors enhances lipopolysaccharide-induced fever, Autonomic Neuroscience, vol.85, issue.1-3, pp.98-101, 2000.
DOI : 10.1016/S1566-0702(00)00227-7

S. Selleri, M. Palazzo, S. Deola, E. Wang, A. Balsari et al., Induction of pro-inflammatory programs in enteroendocrine cells by the Toll-like receptor agonists flagellin and bacterial LPS, International Immunology, vol.20, issue.8, pp.961-970, 2008.
DOI : 10.1093/intimm/dxn055

L. Simonsen, S. Pilgaard, C. Orskov, M. M. Rosenkilde, B. Hartmann et al., Exendin-4, but not dipeptidyl peptidase IV inhibition, increases small intestinal mass in GK rats, AJP: Gastrointestinal and Liver Physiology, vol.293, issue.1, pp.288-295, 2007.
DOI : 10.1152/ajpgi.00453.2006

URL : http://ajpgi.physiology.org/content/ajpgi/293/1/G288.full.pdf

J. Skov, Effects of GLP-1 in the Kidney, Reviews in Endocrine and Metabolic Disorders, vol.33, issue.12, pp.197-207, 2014.
DOI : 10.1093/eurheartj/ehr309

A. S. Vamadevan, M. Fukata, E. T. Arnold, L. S. Thomas, D. Hsu et al., Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis, Innate Immunity, vol.9, issue.2, pp.93-103, 2010.
DOI : 10.1177/09680519030090050901

N. Viby, M. S. Isidor, K. B. Buggeskov, S. S. Poulsen, J. B. Hansen et al., Glucagon-Like Peptide-1 (GLP-1) Reduces Mortality and Improves Lung Function in a Model of Experimental Obstructive Lung Disease in Female Mice, Endocrinology, vol.154, issue.12, pp.4503-4511, 2013.
DOI : 10.1210/en.2013-1666

X. Wang, A. M. Gusdon, H. Liu, and S. Qu, Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation, World Journal of Gastroenterology, vol.20, issue.40, pp.14821-14830, 2014.
DOI : 10.1016/j.physbeh.2010.02.029

P. Wismann, P. Barkholt, T. Secher, N. Vrang, H. B. Hansen et al., The endogenous preproglucagon system is not essential for gut growth homeostasis in mice, Molecular Metabolism, vol.6, issue.7, pp.681-692, 2017.
DOI : 10.1016/j.molmet.2017.04.007

J. J. Worthington, The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease: Figure 1, Biochemical Society Transactions, vol.43, issue.4, pp.727-733, 2015.
DOI : 10.1042/BST20150090

W. Zhang, W. Zhu, J. Zhang, N. Li, L. et al., Protective effects of glucagon-like peptide 2 on intestinal ischemia-reperfusion rats, Microsurgery, vol.279, issue.4, pp.285-290, 2008.
DOI : 10.1093/infdis/161.5.982