G. W. Ashdown, G. L. Burn, D. J. Williamson, E. Pand?i?, R. Peters et al., Live-Cell Super-resolution Reveals F-Actin and Plasma Membrane Dynamics at the T Cell Synapse, Biophysical Journal, vol.112, issue.8, pp.1703-1713, 2017.
DOI : 10.1016/j.bpj.2017.01.038

K. Bai, W. , and W. , Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro, Journal of The Royal Society Interface, vol.31, issue.8, pp.2290-2298, 2012.
DOI : 10.1161/ATVBAHA.111.225268

K. T. Bashour, A. Gondarenko, H. Chen, K. Shen, X. Liu et al., CD28 and CD3 have complementary roles in T-cell traction forces, Proc. Natl, 2014.
DOI : 10.1016/j.cell.2007.03.037

R. Basu, Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing, Cell, vol.165, issue.1, pp.100-110, 2016.
DOI : 10.1016/j.cell.2016.01.021

URL : https://hal.archives-ouvertes.fr/hal-01317871

R. Basu and M. Huse, Mechanical Communication at the Immunological Synapse, Trends in Cell Biology, vol.27, issue.4, pp.241-254, 2017.
DOI : 10.1016/j.tcb.2016.10.005

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.39, issue.9, pp.930-933, 1986.
DOI : 10.1016/0021-9797(72)90039-2

T. Bornschlogl, S. Romero, C. L. Vestergaard, J. Joanny, G. T. Van-nhieu et al., Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip, Proc. Natl. Acad. Sci, pp.18928-18933, 2013.
DOI : 10.1039/C2IB20097J

N. Bufi, M. Saitakis, S. Dogniaux, O. Buschinger, A. Bohineust et al., Human Primary Immune Cells Exhibit Distinct Mechanical Properties that Are Modified by Inflammation, Biophysical Journal, vol.108, issue.9, pp.2181-2190, 2015.
DOI : 10.1016/j.bpj.2015.03.047

M. Colbert, N. Raegen, C. Fradin, and K. Dalnoki-veress, Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique, The European Physical Journal E, vol.63, issue.2, pp.117-121, 2009.
DOI : 10.1140/epje/i2009-10514-7

W. A. Comrie and J. K. Burkhardt, Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse, Frontiers in Immunology, vol.12, issue.4, pp.1-25, 2016.
DOI : 10.1038/nri3191

M. Dembo, W. , and Y. L. , Stresses at the Cell-to-Substrate Interface during Locomotion of Fibroblasts, Biophysical Journal, vol.76, issue.4, pp.2307-2316, 1999.
DOI : 10.1016/S0006-3495(99)77386-8

D. Depoil, D. , and M. L. , Force and affinity in ligand discrimination by the TCR, Trends in Immunology, vol.35, issue.12, pp.597-603, 2014.
DOI : 10.1016/j.it.2014.10.007

N. Desprat, A. Guiroy, A. Asnacios, and M. L. Dustin, Microplates-based rheometer for a single living cell Hunter to Gatherer and Back: Immunological Synapses and Kinapses as Variations on the Theme of Amoeboid Locomotion, Rev. Sci. Instrum. Annu. Rev. Cell Dev. Biol, vol.77, issue.24, pp.577-596, 2006.

E. Evans and B. Kukan, Passive material behavior of granulocytes based on large deformation and recovery after deformation tests, Blood, pp.1028-1035, 1984.

E. Evans, A. Leung, and D. Zhelev, Synchrony of cell spreading and contraction force as phagocytes engulf large pathogens, The Journal of Cell Biology, vol.122, issue.6, pp.1295-1300, 1993.
DOI : 10.1083/jcb.122.6.1295

L. Guillou, A. Babataheri, P. Puech, A. I. Barakat, J. L. Husson et al., T-lymphocyte passive deformation is controlled by unfolding of membrane surface reservoirs, Molecular Biology of the Cell, vol.114, issue.22, pp.3574-3582, 2016.
DOI : 10.1038/nri1222

V. Heinrich and C. Ounkomol, Force versus Axial Deflection of Pipette-Aspirated Closed Membranes, Biophysical Journal, vol.93, issue.2, pp.363-372, 2007.
DOI : 10.1529/biophysj.107.104091

M. Herant, V. Heinrich, and M. Dembo, Mechanics of neutrophil phagocytosis: behavior of the cortical tension, Journal of Cell Science, vol.118, issue.9, pp.1789-1797, 2005.
DOI : 10.1242/jcs.02275

M. Herant, V. Heinrich, and M. Dembo, Mechanics of neutrophil phagocytosis: experiments and quantitative models, Journal of Cell Science, vol.119, issue.9, pp.1903-1913, 2006.
DOI : 10.1242/jcs.02876

C. Hivroz and M. Saitakis, Biophysical Aspects of T Lymphocyte Activation at the Immune Synapse, Frontiers in Immunology, vol.11, pp.1-12, 2016.
DOI : 10.1038/nri3066

R. M. Hochmuth, Micropipette aspiration of living cells, Journal of Biomechanics, vol.33, issue.1, pp.15-22, 2000.
DOI : 10.1016/S0021-9290(99)00175-X

B. Hogan, A. Babataheri, Y. Hwang, A. I. Barakat, and J. Husson, Characterizing Cell Adhesion by Using Micropipette Aspiration, Biophysical Journal, vol.109, issue.2, pp.209-219, 2015.
DOI : 10.1016/j.bpj.2015.06.015

URL : https://hal.archives-ouvertes.fr/hal-01187678

J. Howard and J. Hudspeth, Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell., Proc. Natl. Acad, 1987.
DOI : 10.1073/pnas.84.9.3064

K. H. Hu and M. J. Butte, T cell activation requires force generation, The Journal of Cell Biology, vol.213, issue.5, pp.535-542, 2016.
DOI : 10.1091/mbc.E11-08-0731

K. L. Hui, L. Balagopalan, L. E. Samelson, and A. Upadhyaya, Cytoskeletal forces during signaling activation in Jurkat T-cells, Molecular Biology of the Cell, vol.126, issue.5, pp.685-695, 2015.
DOI : 10.1242/jcs.098210

K. L. Hui and A. Upadhyaya, Dynamic microtubules regulate cellular contractility during T-cell activation, Proc. Natl. Acad. Sci, pp.4175-4183, 2017.
DOI : 10.1002/cm.21156

J. Husson, K. Chemin, A. Bohineust, C. Hivroz, H. et al., Force Generation upon T Cell Receptor Engagement Force spectroscopy of a single artificial biomolecule bond: The Kramers' high-barrier limit holds close to the critical force, PLoS One J. Chem. Phys, vol.6, issue.130, pp.2-5, 2009.

N. Inagaki and H. Katsuno, Actin Waves: Origin of Cell Polarization and Migration?, Trends in Cell Biology, vol.27, issue.7, pp.1-12, 2017.
DOI : 10.1016/j.tcb.2017.02.003

D. E. Ingber, TENSEGRITY: THE ARCHITECTURAL BASIS OF CELLULAR MECHANOTRANSDUCTION, Annual Review of Physiology, vol.59, issue.1, 1997.
DOI : 10.1146/annurev.physiol.59.1.575

C. Y. Lee, G. R. Thompson, C. J. Hastey, G. C. Hodge, J. M. Lunetta et al., Coccidioides Endospores and Spherules Draw Strong Chemotactic, Adhesive, and Phagocytic Responses by Individual Human Neutrophils, PLOS ONE, vol.74, issue.1, pp.1-28, 2015.
DOI : 10.1371/journal.pone.0129522.s006

B. Liu, W. Chen, and C. Zhu, Molecular Force Spectroscopy on Cells, Annual Review of Physical Chemistry, vol.66, issue.1, 2015.
DOI : 10.1146/annurev-physchem-040214-121742

Y. Liu, L. Blanchfield, V. P. Ma, R. Andargachew, K. Galior et al., DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity Forces generated during actinbased propulsion: a direct measurement by micromanipulation Quantifying the Mechanical Properties of the Endothelial Glycocalyx with Atomic Force Microscopy, Proc. Natl. Acad. Sci. U. S. A. Proc. Natl. Acad. Sci. U. S. A. J. Vis. Exp, vol.101, pp.5992-5997, 2004.

R. Martinelli, A. S. Zeiger, M. Whitfield, T. E. Sciuto, A. Dvorak et al., Probing the biomechanical contribution of the endothelium to lymphocyte migration: diapedesis by the path of least resistance, Journal of Cell Science, vol.127, issue.17, pp.3720-3734, 2014.
DOI : 10.1242/jcs.148619

R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans, Energy landscapes of receptor???ligand bonds explored with dynamic force spectroscopy, Nature, vol.394, issue.6714, pp.50-53, 1999.
DOI : 10.1038/27873

E. Meyhöfer, H. , J. Mitrossilis, D. Fouchard, J. Pereira et al., The force generated by a single kinesin molecule against an elastic load Real-time single-cell response to stiffness, Natl. Acad. ? 92 Proc. Natl. Acad. Sci. U. S. A. 107, pp.16518-16523, 1995.

D. Needham, R. M. Hochmuth, F. Niedergang, D. Bartolo, V. Alcover et al., A sensitive measure of surface stress in the resting neutrophil Comparative Anatomy of Phagocytic and Immunological Synapses, Biophys. J. Front. Immunol, vol.61, issue.7, pp.1664-1670, 1992.

D. Ossola, M. Y. Amarouch, P. Behr, J. Vörös, H. Abriel et al., Force-Controlled Patch Clamp of Beating Cardiac Cells, Nano Letters, vol.15, issue.3, pp.1743-1750, 2015.
DOI : 10.1021/nl504438z

C. Ounkomol, H. Xie, P. Dayton, H. , and V. , Versatile Horizontal Force Probe for Mechanical Tests on Pipette-Held Cells, Particles, and Membrane Capsules, Biophysical Journal, vol.96, issue.3, pp.1218-1231, 2009.
DOI : 10.1016/j.bpj.2008.10.047

F. Pincet, J. Husson, S. V. Plotnikov, and C. M. Waterman, The Solution to the Streptavidin-Biotin Paradox: The Influence of History on the Strength of Single Molecular Bonds Guiding cell migration by tugging, Biophys. J. Curr. Opin, vol.89, pp.4374-4381, 2005.

P. Puech, Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy, Journal of Cell Science, vol.118, issue.18, pp.4199-4206, 2005.
DOI : 10.1242/jcs.02547

A. Rigato, A. Miyagi, S. Scheuring, R. , F. Roybal et al., High-frequency microrheology reveals cytoskeleton dynamics in living cells Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics, Nat. Phys. Sci. Signal, vol.9, issue.6, pp.3-3, 2016.

M. Sato, M. J. Levesque, and R. M. Nerem, Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.7, issue.3, pp.276-286, 1987.
DOI : 10.1161/01.ATV.7.3.276

A. Schaefer and P. L. Hordijk, Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration, Journal of Cell Science, vol.128, issue.13, pp.2221-2230, 2015.
DOI : 10.1242/jcs.163055

C. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.2144/000112257

J. Y. Shao and R. M. Hochmuth, Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes, Biophysical Journal, vol.71, issue.5, pp.2892-2901, 1994.
DOI : 10.1016/S0006-3495(96)79486-9

D. Simson, F. Ziemann, M. Strigl, and R. Merkel, Micropipet-Based Pico Force Transducer: In Depth Analysis and Experimental Verification, Biophysical Journal, vol.74, issue.4, pp.2080-2088, 1998.
DOI : 10.1016/S0006-3495(98)77915-9

P. Sit, A. Spector, A. Lue, A. Popel, and W. Brownell, Micropipette aspiration on the outer hair cell lateral wall, Biophysical Journal, vol.72, issue.6, pp.2812-2819, 1997.
DOI : 10.1016/S0006-3495(97)78923-9

C. M. Spillmann, E. Lomakina, and R. E. Waugh, BFPTool: a software tool for analysis of Biomembrane Force Probe experiments Neutrophil adhesive contact dependence on impingement force, BMC Biophys. Biophys. J, vol.10, issue.87, pp.4237-4245, 2004.

L. Sun, Q. Cheng, H. Gao, and Y. Zhang, A nonlinear characteristic regime of biomembrane force probe, Journal of Biomechanics, vol.44, issue.4, pp.662-668, 2001.
DOI : 10.1016/j.jbiomech.2010.11.005

R. Varma, G. Campi, T. Yokosuka, T. Saito, D. et al., T Cell Receptor-Proximal Signals Are Sustained in Peripheral Microclusters and Terminated in the Central Supramolecular Activation Cluster, Immunity, vol.25, issue.1, pp.117-127, 2006.
DOI : 10.1016/j.immuni.2006.04.010

X. Wang, H. , and T. , Defining Single Molecular Forces Required to Activate Integrin and Notch Signaling, Science, vol.419, issue.6907, pp.991-994, 2013.
DOI : 10.1038/nature01083

C. Wülfing, A Receptor/Cytoskeletal Movement Triggered by Costimulation During T Cell Activation, Science, vol.80, issue.282, pp.2266-2269, 1998.

S. Figure, Comparison between the Micropipette Force Probe (MFP) and the Biomembrane Force Probe (BFP) The pulling loading rate was measured for the activation of human primary CD4+ T cells with anti-CD3/anti-CD28 beads (MFP) and anti-CD3 beads (BFP)

J. Husson, K. Chemin, A. Bohineust, C. Hivroz, H. et al., Force Generation upon T Cell Receptor Engagement. PLoS One 6, e19680.), the MFP data are in Figure 3C. Each data point shows mean±s.d. over one day of experiments, The BFP data was published before, 2011.

S. Figure, Human primary CD4+ T cells were pre-incubated for 15 minutes at 37°C with 30 ?M ML-7, the MLCK inhibitor, or the vehicle (DMSO) alone. Cells were then activated for 10 to 30 minutes with anti-CD3/anti-CD28 beads in the presence of ML-7. Phosphorylation of the MLC was measured by Western blot analysis. The gp96 protein in each lane is shown as a loading control, Compared to control (DMSO), the cells incubated with ML-7 show less phosphorylation of MLC demonstrating that ML-7 is inhibiting MLCK in our conditions