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Abstract 

Background 

Lowering the gut exposure to antibiotics during treatments can prevent microbiota disruption. We 

evaluated the effect of an activated charcoal-based adsorbent, DAV131A, on fecal free moxifloxacin 

concentration and mortality in a hamster model of moxifloxacin-induced C. difficile infection. 

Methods 

215 hamsters receiving moxifloxacin subcutaneously (D1-D5) were orally infected at D3 with C. difficile 

spores. They received various doses (0-1800mg/kg/day) and schedules (BID, TID) of DAV131A (D1-D8). 

Moxifloxacin concentration and C. difficile counts were determined at D3, and mortality at D12. We 

compared mortality, moxifloxacin concentration and C. difficile counts according to DAV131A 

regimens, and modelled the link between DAV131A regimen, moxifloxacin concentration and 

mortality.  

Results 

All hamsters that received no DAV131A died, but none of those that received 1800mg/kg/day. A 

significant dose-dependent relationship between DAV131A dose and (i) mortality rates, (ii) 

moxifloxacin concentration and (iii) C. difficile counts was evidenced. Mathematical modeling 

suggested that (i) lowering moxifloxacin concentration at D3, which was 58µg/g (95%CI=50-66) without 

DAV131A, to 17µg/g (14-21) would reduce mortality by 90% and (ii) this would be achieved with a daily 

DAV131A dose of 703mg/kg (596-809). 

Conclusions 

In this model of C. difficile infection, DAV131A reduced mortality in a dose-dependent manner by 

decreasing fecal free moxifloxacin concentration. 

Keywords 

C. difficile infection, hamster animal model, mortality, prevention, moxifloxacin  
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Main text 

Introduction 

Clostridium difficile is a sporulating Gram positive bacillus that can lead to mild-to-severe intestinal 

infections, including pseudomembranous colitis and toxic megacolon (1). With 500,000 cases and 

29,000 deaths in 2011 in the USA (2), the burden of C. difficile infection on the US healthcare system 

has reached $4.8 billion (3). C. difficile is the leading cause of healthcare-associated infections (4), and 

the Centers for Diseases Control consider it as an immediate public health threat (5). 

Antibiotics are the main risk factors for C. difficile infections because the gut microbiota is exposed to 

high concentrations of the drugs during oral or parenteral treatments, resulting in its disruption (6, 7). 

Reducing this exposure thus appears appealing for limiting the consequences of antibiotic treatments 

on the microbiota. Such an approach has been pioneered by administering β-lactamases together with 

β-lactam antibiotics. This prevents colonization by resistant bacteria in mice (8, 9), as well as in dogs 

(10) and in humans (11). It also reduces antibiotic concentrations in the human gut (12, 13) during 

treatments, and preserves the intestinal microbiota in humanized gnotobiotic pigs (12). However, this 

promising approach is limited to β-lactams, when many other antibiotics are also at risk of provoking 

C. difficile infection, particularly fluoroquinolones (14). 

In rats, delivering activated charcoal to the intestine allowed removing ciprofloxacin residues from the 

gut, and decreased antibiotic exposure of the microbiota without affecting its plasma 

pharmacokinetics (15). Similarly, we have shown that oral DAV131A, a charcoal-based adsorbent, 

decreased intestinal colonization by β-lactam resistant Klebsiella pneumoniae in cefotaxime-treated 

mice (16). 

Here we used the Syrian hamster model of C. difficile infection, that recapitulates many aspects of the 

human infection (17) and has been widely used for evaluating new therapies against C. difficile 

infection (18-20), to assess the protective effect of DAV131A. We also developed a mathematical 

model to analyze the relationships between DAV131A regimens, fecal free moxifloxacin concentration 

and hamster mortality. 
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Material and Methods 

DAV131A 

DAV131A is an activated charcoal-based adsorbent with high adsorption capacity (16). It was 

administered to hamsters by oral gavage after mixing with 0.25% w/v Natrosol® 250 

Hydroxyethylcellulose. Hamsters from placebo groups received Natrosol® alone. 

Hamster model of moxifloxacin-induced C. difficile infection 

A previously developed hamster model of antibiotic-induced C. difficile infection was adapted to 

moxifloxacin (21). Male Golden Syrian hamsters (80-120 grams) received 30 mg/kg of moxifloxacin by 

the subcutaneous route at a time designated as H0, once a day from day 1 (D1) to day 5 (D5). This dose 

was chosen as the lowest dose resulting in a 100% mortality rate in treated hamsters infected 

with C. difficile spores. It is not expected to cause any toxicity in hamsters since the minimal lethal 

intravenous dose reported in mice and rats is 100 mg/kg (22).  

Animals were infected orally on day 3 (D3), 4 hours after moxifloxacin administration (H4), with 104 

spores of the non-epidemic C. difficile strain UNT103-1 (VA-11, REA J strain), TcdA+, TcdB+, cdtB−, 

vancomycin MIC = 2 µg/mL, moxifloxacin MIC = 16 µg/mL, clindamycin MIC > 256 µg/mL, ceftriaxone 

MIC = 128 µg/mL, obtained from Curtis Donskey, Ohio VA Medical Centre. All surviving hamsters were 

euthanized at day 12 (D12). Animals were housed in conformity with NIH guidelines (23). All procedures 

were conducted at the University of North Texas Health Science Center in Fort Worth (Texas, USA) in 

accordance with Protocol 2012/13-21-A06 approved by the local Institutional Animal Care and Use 

Committee. 

Studies 

Three studies were conducted in order to test the protection afforded by DAV131A from lethal 

moxifloxacin-induced C. difficile infection. Their design are summarized in Table 1. All hamsters 

received moxifloxacin and were inoculated with C. difficile spores as described above. DAV131A was 

administered from D1 to D8.  
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In study 1, we aimed at analyzing the dose-response relationship between DAV131A daily dose 

and survival. To that end 4 groups of 10 hamsters each (groups 1C, 1E, 1G, 1I) were treated with 

increasing daily doses of DAV131A (200, 600, 1200 or 1800 mg/kg/day) administered bis in die (BID) 4 

hours before (H-4) and 1 hour after (H1) moxifloxacin injection. Four groups of 10 hamsters each (groups 

1B, 1D, 1F, 1H) received the same treatment plus an additional dose of DAV131A 10 hours before the 

first administration of moxifloxacin, i.e. at D1H-10. A control group receiving moxifloxacin alone (group 

1A) was included. 

In study 2, we compared the effect on survival of BID and ter in die (TID) administrations of a high 

dose of DAV131A, 1800 mg/kg/day. Two groups of 15 hamsters each received DAV131A at a dose of 

600 mg/kg  TID (at H-4, i.e. 4 hours before, and at H1 and H6, i.e. respectively 1 and 6 hours after 

moxifloxacin administration, group 2B), or at a dose of 900 mg/kg BID (at H-4 and H1 as described above, 

group 2C). In addition, all these animals also received an additional initial dose of DAV131A at D1H-10. 

A control, untreated group (group 2A) was also included.  

In study 3, we assessed the influence on survival of giving the first dose of DAV131A before (H-4), 

concomitantly or after (H1) the first antibiotic administration. Seven groups of 10 hamsters each were 

included, all receiving DAV131A BID at H-4 and H1 on D2-D8, but at specific timings on D1. Two of these 

groups received 600 (group 3B) and 1200 (group 3E) mg/kg/day DAV131A, respectively, at H-4 and H1 

on D1; two other groups also received 600 (group 3C) and 1200 (group 3F) mg/kg/day of DAV131A but 

at H0 and H5 on D1. Three groups received 600 (group 3D), 1200 (group 3G) and 1800 (group 3H) 

mg/kg/day of DAV131A, respectively, at H2 and H7 on D1. The last group (group 3A) received DAV131A 

placebo with the same schedule as these last 3 groups.  

Feces collection and analysis 

We focused the analysis on D3 which bracketed C. difficile inoculation. Two pools of feces were 

collected daily from D2 to D4 in all studies. The first was made of all pellets emitted in the first 12 hours 

after moxifloxacin administration (H0-H12 period) and the second was made of all pellets emitted in the 
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period between 12 and 24 hours after moxifloxacin administration (H12-H24). As it is a natural and 

physiological behavior in hamsters, coprophagy was not controlled.  

Fecal free moxifloxacin concentration was determined at D3 on feces collected during the H0-H12 

period. Fecal pools were stored at -80°C until performing the assay. On the day of the assay, feces were 

weighted, homogenized in sterile saline, and debris were eliminated by centrifugation. Fecal free 

moxifloxacin concentration was measured by microbiological assay (B. subtilis ATCC 6633) after 

incubation at 37°C for 24 hours (24), with a limit of quantification (LOQ) of 0.2 µg/g. Missing data were 

imputed according to the following algorithm: (i) if fecal free moxifloxacin concentration was available 

for the period H0-H12 at D2 and D4, the missing value was imputed to the arithmetic mean of these 2 

values; (ii) if the concentration was known only for the period H0-H12 at D2 or D4, the missing value was 

imputed to this available value; (iii) otherwise, the missing data were not imputed and the animal was 

excluded from analysis. Data below the LOQ was imputed to the LOQ. 

Fecal counts of C. difficile were determined extemporaneously at D3 on the H12-H24 pool by plating 

serial dilutions of the samples on CDSA selective media (BBL C. difficile Selective agar, BD). Counts were 

read after anaerobic incubation at 37°C for 48h. Fecal counts below the LOQ (3.3 log10 CFU/g of feces) 

were imputed to the LOQ. Missing values were imputed using the counts at D4 [H12-H24], if available. 

Otherwise, the missing counts were not imputed. 

Statistical analysis 

We compared mortality rates at D12 in all hamsters according to DAV131A daily doses using the non-

parametric Fisher exact test. The link between the DAV131A daily dose and (i) fecal free moxifloxacin 

concentration at D3 [H0-H12] and (ii) the decimal logarithm of the C. difficile counts in feces at D3 [H12-

H24] was studied using the Spearman rank correlation test. Exact 95% confidence interval of the 

mortality rates were computed using the binomial distribution.  

We compared fecal free moxifloxacin concentration and C. difficile counts according to vital status at 

D12 using non-parametric Wilcoxon test. Ability of fecal free moxifloxacin concentration and C. difficile 
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counts for predicting death were assessed using the area under the ROC curve and their 95% 

confidence interval, computed using 1000 paired-bootstrap replicates (R functions roc and ci.auc). 

In hamsters who received DAV131A treatment (all groups except 1A, 2A and 3A), we compared 

fecal free moxifloxacin concentration according to the administration of an additional initial dose of 

DAV131A at D1H-10, or not using non-parametric Wilcoxon test.  

The impact of the BID vs TID DAV131A administrations on fecal free moxifloxacin concentration was 

tested in hamsters receiving a daily dose of DAV131A of 1800 mg/kg that had received a dose of 

DAV131A at D1H-10 (groups 1H, 2B and 2C). The impact on fecal free moxifloxacin concentration of the 

timing of the first DAV131A administration (4 hours before, together with or 2 hours after the first 

moxifloxacin administration) was tested in hamsters receiving 600 or 1200 mg/kg/day of DAV131A 

who did not receive DAV131A at D1H-10 (groups 1E, 1G, 3B, 3C, 3D, 3E, 3F, 3G). Analyses were 

performed using non-parametric Wilcoxon or Kruskal-Wallis tests, as appropriate. 

Finally, in order to identify independent features of the DAV131A dosing schedule associated with 

the reduction of fecal free moxifloxacin concentration, and to link the DAV131A dosing regimen to the 

mortality rate, we performed a modeling analysis of the data. Full methods and results are presented 

in Supplementary Text S1. 

Data are presented as number of observations n (%) or median (min-max). All tests were 2-sided with 

a type-I error of 0.05. All analyses were performed using R software v3.2.2. 

Results 

Comparison of mortality, fecal free moxifloxacin concentration and C. difficile counts across 

DAV131A doses 

Values for fecal free moxifloxacin concentration at D3 were missing for only 3/215 hamsters (1.4%) and 

1 value was below the LOQ. Values for C. difficile counts at D3 were missing for only 9/215 hamsters 

(4.2%), but as much as 121/215 (56.3%) were below the LOQ. 

Descriptive statistics on fecal free moxifloxacin concentration, C. difficile counts and mortality rates in 

each group of each study are reported in Table 1. 
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All (100%, 95%CI=90.0-100) 35 hamsters from the control groups that received moxifloxacin but no 

DAV131A (groups 1A, 2A, 3A) died; they had a median fecal free moxifloxacin concentration of 53.8 

µg/g (min-max, 24.5-211.3) at D3 at the time of C. difficile inoculation. Conversely, none of the 60 

animals receiving a daily dose of DAV131A of 1800 mg/kg (groups 1H, 1I, 2B, 2C, 3H) died (0%, 

95%CI=0.0-6.0); they had a median fecal free moxifloxacin concentration of 1.8 µg/g only (min-max, 

0.0 – 20.3). These animals showed no sign of disease, nor inflexion in their weight gain (data not 

shown). Also, the median counts of C. difficile were 6.0 log10 CFU/g (min-max, <3.3-7.8) in the control 

groups that received moxifloxacin but no DAV131A, much higher than the 3.8 log10 CFU/g (min-max, 

<3.3-5.9) observed in the moxifloxacin and 1800 mg/kg/day DAV131A treated group. 

We observed a highly significant decrease in mortality when the DAV131A daily dose administered 

to hamsters increased (p<10-15, Figure 1). A significant association was also evidenced between 

DAV131A daily dose and fecal free moxifloxacin concentration (Spearman rank correlation coefficient 

s=-0.9, p<10-15, Figure 2) as well as between DAV131A daily dose and fecal counts of C. difficile 

(Spearman rank correlation coefficient s=-0.3, p<10-4, Figure 3). Approximately 60% of the moxifloxacin 

excreted during D3 was retrieved on the fecal pellets collected during the period H0-H12. 

Comparison of fecal free moxifloxacin concentration and C. difficile counts according to vital 

status.  

Median fecal concentration of free moxifloxacin was 46.0 µg/g (min-max, 12.3-463.4) in hamster in 

which death occurred by D12 and 6.8 µg/g (min-max, 0.28-42.9) in hamsters that survived (p<10-15). 

Similarly, C. difficile counts were higher in hamsters in which death occurred than in survivors (5.2 

log10 CFU/g, min-max, <3.3-7.8 vs <3.3 log10 CFU/g, min-max, <3.3-5.9, p<10-15). The areas under the 

ROC curves of the fecal concentration of free moxifloxacin and of C. difficile counts for predicting death 

were 0.97 (95%CI=0.95.-0.99) and 0.86 (95%CI=0.79-0.92), respectively. 

Influence of DAV131A dosing schedule on fecal free moxifloxacin concentration 

Among the 180 hamsters treated by DAV131A (all groups except 1A, 2A and 3A), the administration 

of an additional initial dose of DAV131A at D1H-10 was significantly associated with a lower fecal free 
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moxifloxacin concentration (median [min-max]: 3.1 µg/g [0.0-463.4] vs 11.7 µg/g [0.7-62.9], p<10-5, 

Supplementary Figure S1). 

In the 40 hamsters treated with a daily dose of 1800 mg/kg DAV131A and receiving an additional initial 

dose of DAV131A at D1H-10 (groups 1H, 2B and 2C), fecal free moxifloxacin concentration was not 

significantly different between hamsters treated BID vs TID with DAV131A (1.6 µg/g [0.0-4.9] vs 1.9 

µg/g [0.9-3.8], p=0.2, Supplementary Figure S2).  

Among the 80 hamsters treated with a daily dose of 600 or 1200 mg/kg DAV131A BID and who did not 

receive an additional initial dose of DAV131A at D1H-10 (groups 1E, 1G, 3B, 3C, 3D, 3E, 3F, 3G), there 

was no significant difference in fecal free moxifloxacin concentration whether the first dose of 

DAV131A was administered 4 hours before (12.1 µg/g [5.1-27.8]), together with (15.6 µg/g [3.6-42.9]) 

or 2 hours after (12.8 µg/g [3.0-38.9]) the first administration of moxifloxacin (p=0.7, Supplementary 

Figure S3). 

Discussion 

Our most important result was that DAV131A provided a dose-dependent reduction of 

mortality in a hamster model of moxifloxacin-induced C. difficile infection. Fecal free moxifloxacin 

concentration of 53.8 µg/g (min-max, 24.5-211.3), C. difficile counts of 6.0 log10 CFU/g (min-max, 3.1-

7.8) and a 100% mortality rate were observed in animals who did not receive DAV131A treatment, 

while fecal free moxifloxacin concentration, C. difficile counts and mortality were respectively 

decreased to 7.3 µg/g (min-max, 3.0-29.6), 3.8 log10 CFU/g (min-max, 3.1-5.9) and 0% with doses of 

1800 mg/kg/day. DAV131A is the first product to exhibit such a level of protection against mortality 

from antibiotic-induced C. difficile infection in hamsters. Indeed a polymeric toxin-binding compound 

had been shown to protect only 70% to 90% of hamsters in an animal model of clindamycin-induced 

C. difficile infection (25), however, 20% to 40% of animals from the toxin-binding treatment group still 

had diarrhea 15 days after cessation of therapy, whereas protected animals in the experiments 

reported here had no sign of disease (data not shown).  
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The schedule of DAV131A administration (4 hours before, together or 2 hours after the first 

moxifloxacin administration) did not significantly affect the protective effect as assessed by survival, 

fecal free moxifloxacin concentration and C. difficile counts in feces (Table 1 and Supplementary Figure 

S3). When comparing administration schedules for a same total daily dose of DAV131A, BID was found 

not to be significantly less protective than TID. However, this result was only drawn from analysis of 

only 15 hamsters that received DAV131A on a TID-basis, all of which were treated with DAV131A at 

the highest dose (1800 mg/kg/day) and had also received an additional initial dose of DAV131A at D1H-

10.  

Another important result of our work is that the modelling approach described in the Supplementary 

Text S1 section allowed to investigate the mechanism of action by which DAV131A reduced mortality 

in hamsters. The effect appeared mediated by the reduction of the fecal concentration of free 

moxifloxacin when increasing the dose of DAV131A, in a dose-dependent manner.  

Our results should however be tempered by the absence of bacteriology data from our 

modeling analysis. We did not include C. difficile counts in the model as their ability to predict death 

was lower than that of fecal concentrations of free moxifloxacin. Furthermore, the symptoms of C. 

difficile infection are related to the action of toxins produced by pathogenic strains of C. difficile (1), 

whose presence and activity could not be assessed from fecal samples in our studies. We are currently 

developing new methods for measuring toxin production and activity in order to perform a more 

thorough analysis of the protective effect of DAV131A.  

   

 Altogether, our data provide encouraging prospects for the protection of the gut microbiota 

from perturbation during the use of antimicrobials, such as fluoroquinolones which are widely used 

for therapeutic purposes and were associated with the rise of the hypervirulent epidemic C. difficile 

strains of the 027 ribotype (14). These results in hamsters suggest that the approach warrants further 

clinical development. Indeed, the hamster model of C. difficile infection is appropriate for reproducing 

the deleterious impact of antibiotic treatments on gut microbiota that allows C. difficile spores to 
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germinate and the disease to develop (21). Therefore we believe that the efficacy of DAV131A 

obtained in this model is also relevant with respect to the mechanism of action of the product. The 

modelling approach confirms this, by showing that the protective effect of DAV131A in the hamster 

model was mediated by the reduction of the antibiotic concentrations in the gut.  

 

The interpolation of the dose of adsorbent between hamsters and humans constitutes a 

challenge, because of the vast differences in gastrointestinal transit times and fecal excretion 

physiology between the two species. Additionally, they could also exhibit differences in antibiotic 

pharmacokinetics; however, the fact that the maximum fecal concentration of free moxifloxacin 

measured in hamsters in the experiments reported here were within the range of what was found in 

humans treated with a clinical dose of moxifloxacin suggests similarities in the selective pressure 

exerted by antibiotics on the intestinal microbiota of hamsters in the model developed in this study 

and humans (26). Even given the limitations discussed above in transposing results between animal 

models and human patients, in particular because gastrointestinal transit is much faster in hamsters 

than in humans, our results suggest that the product would not necessarily need to be administered 

before the antibiotic, but could be given concomitantly or just after the first antibiotic intake. In the 

case where antimicrobial therapy can be programmed, a supplementary protection might be obtained 

when pre-treating patients with DAV132, as suggested by the additional protection obtained in 

hamsters which received the first dose of DAV131A 10 hours before the first injection of moxifloxacin. 

This should be further investigated in human studies. 

 

It can thus be inferred from our results that DAV131A protected the animals against C. difficile 

colonization and infection by preventing the disruption of the gut bacterial microbiota which is known 

to occur during fluoroquinolone treatments (6) and which constitutes the primary risk factor for C. 

difficile infection in humans (7). Therefore DAV132, the human counterpart of DAV131A that has 

recently been developed and tested in human volunteers (27), could represent a promising approach 
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for the prevention of C. difficile infection during antibiotic treatments. A first phase 1 clinical trial in 

human volunteers has recently shown that the active component of DAV131A contained in the human-

directed product DAV132 could be targeted to the ileo-caecal region in humans, and that its 

concomitant use with an orally-administered antibiotic did not impact the plasma pharmacokinetics of 

the antibiotic (27). Studies to expand these results to patients and establish the efficacy of DAV132 to 

prevent C. difficile infections following antibiotic treatments are currently underway.   
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Figures 

Figure 1. Mortality rates at D12 according to DAV131A daily doses administered to the 215 hamsters of 

the 3 pooled studies. Bars represent the exact 95% confidence intervals of observed proportions. 
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Figure 2. Boxplots of the fecal free moxifloxacin concentration measured at D3 according to the 

DAV131A daily dose administered in the 212 hamsters of the 3 pooled studies. Triangles, dots and 

squares represent the observed concentrations in studies 1, 2 and 3, respectively. Whiskers represent 

10th and 90th percentiles. Red symbol represents data below the limit of quantification. 
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Figure 3. Boxplots of the counts of Clostridium difficile measured at D3 according to the DAV131A daily 

dose administered in the 206 hamsters of the 3 pooled studies. Triangles, dots and squares represent 

the observed concentrations in studies 1, 2 and 3, respectively. Whiskers represent 10th and 90th 

percentiles. Red symbols represent data below the limit of quantification. 

 

 



  Page 17 sur 19 

 

Tables 

Table 1. Descriptive statistics on fecal free moxifloxacin concentration at D3, Clostridium difficile log10-counts at D3 and mortality rates at D12 according to 

DAV131A daily dose in the three studies. 

Study 
Group 

number 

 
DAV131A administration 

 Fecal free moxifloxacin 
concentration at D3 [H0-H12] 

(µg/g) 

 
C. diff log10-counts at D3 [H12-H24] (log10 

CFU/g) 

 
Mortality at D12  

Daily dose 
(mg/kg/day) 

Administration 
at D1H-10 

Dosing time  
at D1 

Dosing time  
at D2-D8 

N 
 

N Median Min Max N Median Min Max N (%) 

 
 
 
study 1 
(N1=90) 
 
 

1A  0 (no placebo) no - - 10  10 46.4 24.5 136.5  9 4.9 3.5 6.0  10 (100) 
1B  200 (100 BID) 

200 (100 BID) 
yes H-4, H1 H-4, H1 10  10 47.5 24.5 463.4  8 4.8 <3.3 5.8  10 (100) 

1C  no H-4, H1 H-4, H1 10  8 34.6 24.8 62.9  7 4.4 4 5.5  10 (100) 
1D  600 (300 BID) 

600 (300 BID) 
yes H-4, H1 H-4, H1 10  10 14.8 8.2 30.4  10 <3.3 <3.3 <3.3  0 (0) 

1E  no H-4, H1 H-4, H1 10  10 12.3 9.1 27.8  10 <3.3 <3.3 <3.3  2 (20) 
1F  1200 (600 BID) 

1200 (600 BID) 
yes H-4, H1 H-4, H1 10  10 7.1 3.0 10.8  10 <3.3 <3.3 <3.3  0 (0) 

1G  no H-4, H1 H-4, H1 10  10 6.6 5.1 27  10 <3.3 <3.3 <3.3  0 (0) 
1H  1800 (900 BID) 

1800 (900 BID) 
yes H-4, H1 H-4, H1 10  10 1.5 0.2 4.9  10 <3.3 <3.3 <3.3  0 (0) 

1I  no H-4, H1 H-4, H1 10  10 5.2 1.6 20.3  10 <3.3 <3.3 <3.3  0 (0) 
                    
study 2 
(N2=45) 
 

2A  0 (no placebo) no - - 15  14 42.0 27.7 56.2  12 7.3 5.3 7.8  15 (100) 
2B  1800 (600 TID) yes H-4, H1, H6 H-4, H1, H6 15  15 1.6 1.0 2.0  15 4.6 3.4 5.4  0 (0) 
2C  1800 (900 BID) yes H-4, H1 H-4, H1 15  15 1.9 0.9 3.8  15 4.6 3.7 5.9  0 (0) 

                    

 
 
 
study 3 
(N3=80) 
 
 

3A  0 (placebo) no - - 10  10 90 75.5 211.3  10 5.7 <3.3 7.1  10 (100) 
3B  600 (300 BID) 

600 (300 BID) 
600 (300 BID) 

no H-4, H1 H-4, H1 10  10 19.6 10 24.1  10 <3.3 <3.3 4.0  1 (10) 
3C  no H0, H5 H-4, H1 10  10 23.4 17.3 42.9  10 <3.3 <3.3 3.7  0 (0) 
3D  no H2, H7 H-4, H1 10  10 15.7 11.3 38.9  10 <3.3 <3.3 <3.3  2 (20) 
3E  1200 (600 BID) 

1200 (600 BID) 
1200 (600 BID) 

no H-4, H1 H-4, H1 10  10 8.9 5.6 15.7  10 <3.3 <3.3 <3.3  0 (0) 
3F  no H0, H5 H-4, H1 10  10 5 3.6 14  10 <3.3 <3.3 <3.3  0 (0) 
3G  no H2, H7 H-4, H1 10  10 7.3 3.0 29.6  10 <3.3 <3.3 3.7  0 (0) 
3H  1800 (900 BID) no H2, H7 H-4, H1 10  10 2.4 0.7 16.3  10 <3.3 <3.3 4.9  0 (0) 

All groups 215  212 11.6 0.2 463.4  206 <3.3 <3.3 7.8  60 (27.9) 
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