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Abstract

Background: Joint models of longitudinal and time-to-event data are increasingly used to perform individual
dynamic prediction of a risk of event. However the difficulty to perform inference in nonlinear models and to calculate
the distribution of individual parameters has long limited this approach to linear mixed-effect models for the
longitudinal part. Here we use a Bayesian algorithm and a nonlinear joint model to calculate individual dynamic
predictions. We apply this approach to predict the risk of death in metastatic castration-resistant prostate cancer
(mCRPC) patients with frequent Prostate-Specific Antigen (PSA) measurements.

Methods: A joint model is built using a large population of 400 mCRPC patients where PSA kinetics is described by a
biexponential function and the hazard function is a PSA-dependent function. Using Hamiltonian Monte Carlo
algorithm implemented inStan software and the estimated population parameters in this population as priors, thea
posterioridistribution of the hazard function is computed for a new patient knowing his PSA measurements until a
given landmark time. Time-dependent area under the ROC curve (AUC) and Brier score are derived to assess
discrimination and calibration of the model predictions, first on 200 simulated patients and then on 196 real patients
that are not included to build the model.

Results: Satisfying coverage probabilities of Monte Carlo prediction intervals are obtained for longitudinal and
hazard functions. Individual dynamic predictions provide good predictive performances for landmark times larger
than 12 months and horizon time of up to 18 months for both simulated and real data.

Conclusions: As nonlinear joint models can characterize the kinetics of biomarkers and their link with a time-to-event,
this approach could be useful to improve patient•s follow-up and the early detection of most at risk patients.

Keywords: Calibration, Discrimination, Hamiltonian Monte Carlo, Individual dynamic prediction, Nonlinear joint model

Background
One potential major application of mathematical mod-
elling to personalized medicine is to provide dynamic
prediction of a disease progression and occurrence of a
severe clinical event. For that purpose an increasingly
popular approach in the statistical community is to use
joint models, which simultaneously handle longitudinal
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and time-to-event data by maximizing the joint likelihood
of both processes to avoid the bias due to informative
dropouts or measurements error [1…3]. In this approach,
the longitudinal part is described by a mixed-effect model
and the survival part is described by a parametric or
semi-parametric hazard function which depends on the
true, unobserved, biomarker kinetics. After the param-
eters have been estimated, they can be used as priors
to make •individual dynamic predictionsŽ of the disease
progression [4…6], i.e., prospective predictions that can
be updated over the patient•s follow-up. Nevertheless the
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numerical difficulties have long limited the use of joint
models, and hence of dynamic predictions, to linear mod-
els for the longitudinal processes. Although this approach
can be made more flexible by using splines [3, 7], it does
not handle models that are nonlinear in the parameters,
i.e., nonlinear mixed-effect models (NLMEM), such as
mechanistic models defined by differential equations.

Recently, we and others have shown that the SAEM
algorithm, initially developed for inference in NLMEM,
could be used to provide precise estimates of nonlinear
joint models [8, 9]. However, even after the population
parameters have been estimated, one still needs to char-
acterize the entirea posteriori distribution of the indi-
vidual parameters, which has no analytical form, in order
to perform individual dynamic predictions. In that con-
text, Bayesian inference using Markov Chain Monte Carlo
(MCMC) appears naturally suited. Nevertheless, tradi-
tional MCMC are based on random walk which provides
estimators with good properties of convergence, but in
practice and especially in a high-dimensional context, this
asymptotic behavior is of limited use because of finite
computational resources. In that case, the Halmitonian
Monte Carlo (HMC), implemented in Stan [10], uses
the geometry of the parameters space to generate effec-
tive and rapid exploration of this space, and stronger
guarantees on the convergence [11…14].

Here we propose to use nonlinear joint model and HMC
to characterize thea posteriori distribution of the indi-
vidual survival probability. We apply in this nonlinear
context novel tools that have been developed to assess
time-dependent discrimination and calibration metrics of
dynamic models, such as the Area under the Receiver
Operating Characteristic (ROC) curve (AUC) and the
Brier score (BS) [5, 15, 16].

The approach is applied to a phase III clinical trial in
metastatic castration-resistant prostate cancer (mCRPC)
patients [17] where prostate-specific antigen (PSA) is fre-
quently measured. The priors are obtained using a non-
linear joint model whose parameters are estimated on a
training dataset of 400 patients using the SAEM algo-
rithm implemented in Monolix. We show how dynamic
predictions can be performed by characterizing the fulla
posteriori distribution of the risk of death for new indi-
viduals using 200 simulated patients and 196 mCRPC
patients from a validation dataset. The time-dependent
metrics for discrimination and calibration are obtained for
different landmark and horizon times and we discuss the
potential applications of this approach.

Methods
General framework
Joint model with a nonlinear longitudinal biomarker
Let N the number of patients andyi = { yi1, . . ., yini } the
vector of the longitudinal observations in patienti, where

yij denotes thejth measurement of the biomarker for the
individual i at time tij , wherei = 1,. . . , N, j = 1,. . . , ni ,
and ni is the total number of measurements in subjecti.
The observations are given by:

yij = b(tij , � i ) + eij (1)

where b(t, � i ) is the true and unobserved value of the
biomarker at time point t, nonlinear in regards to the indi-
vidual parameters� i , andeij is the residual Gaussian error
of mean 0 and variance� 2. � i = g(µ , � i ) depends on
the fixed effectsµ identical for all patients and on the
random effects� i specific for each individual, and the
function g defines the transformations of the individual
parameters. The random effects are assumed to be nor-
mally distributed with mean zero and variance-covariance
matrix � (� i � N (0, �) ), and are assumed independent
of the residual erroreij .

Let Xi denote the time-to-event andCi the censoring
time for the patient i. Only Ti = min(Xi , Ci ) is observed
and we note� i=1 if Xi � Ci and 0 otherwise. The individ-
ual hazard function of the risk of death can be written as
follows:

hi (t |B (t, � i )) = h0(t)exp
�
� f(t, � i ) + � T wi

�

whereB (t, � i ) = {b (u, � i ) ; 0 � u < t} denotes the his-
tory of the true unobserved longitudinal process up to
t, h0 is a parametric baseline hazard function of vector
of parameters denotedp0, and � is the vector of coeffi-
cients associated with a vector of baseline covariateswi .
The link function f depends on the true biomarker kinet-
ics B (t, � i ) and the parameter� quantifies the strength
of the association between the biomarker kinetics and the
risk of event.

The log-likelihood for subjecti is given by:

LLi (	 ) = log
�

p(yi |� i ; 	 ) p(Ti , � i |� i ; 	 ) p(� i ; 	 ) d� i (2)

where	 = { µ , � , � ,p0, � , � } is the vector of parameters to
estimate,p(yi |� i ; 	 ) is the probability density function of
the longitudinal observations conditionally on the random
effects� i , p(� i ; 	 ) is the probability density function of the
random effects and

p(Ti , � i |� i ; 	 ) = hi (Ti |B(Ti , � i ); 	 ) � i Si (Ti |� i ; 	 )

is the likelihood of the survival part, with:

Si (t | � i ; 	 ) = P(Xi > t|B (t, � i ) ; 	 )

= exp
�

Š
� t

0
hi (u|B (t, � i ) ; 	 )du

� (3)

the survival function conditionally on the random effects.
In a NLMEM framework, the Stochastic Approximation

Expectation-Maximization (SAEM) algorithm [18] imple-
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mented in Monolix (www.lixoft.eu) provides unbiased
estimates for both longitudinal and survival parameters
[8, 9]. As in other EM algorithms, this algorithm is an
iterative process where each iteration is divided into a
step where the complete likelihood conditional on obser-
vations is calculated (E-step), and a step where the com-
plete likelihood is maximized (M-step). In addition, in the
SAEM algorithm, the E-step is divided into two parts: a
simulation of individual parameters using a Markov Chain
Monte Carlo (MCMC) algorithm (S-step), and then a
calculation of the expected likelihood using a stochastic
approximation (A-step). Once parameters are estimated,
the Fisher information matrix (FIM) can be stochas-
tically approximated to obtain the relative standard
errors (r.s.e).

Individual dynamic predictions
Let assume that the set of parameters	 has been previ-
ously estimated in a large dataset, called •training datasetŽ
hereafter. Now we are interested in a new subjecti with
longitudinal biomarker measurements available until a
landmark time s � 0: Yi (s) = { yij ; 0 � tij � s}, for
whom we aim to predict the risk of death until times+ t,
where t > 0 is called the horizon time. Since the patient
is alive at times, we focus on the conditional probabil-
ity of death betweens and the prediction horizon s + t
given by:


 i (s+ t | s) = P(Xi < s+ t|Xi > s, Yi(s); 	 )

For each landmark times, the biomarker measurements
of patient i up to time s are used to compute thea pos-
teriori distribution of the individual parameters and infer
the survival probability with a prediction interval taking
into account the uncertainty of the individual parameter
estimation. For that purpose, a Monte Carlo estimate of

 i (s+ t | s) can be obtained using the Bayesian approach
proposed by Rizopoulos (2011) [4] which consists in
repeatingL times the following loop, whereL denotes the
number of Monte Carlo realizations: for� = 1,. . . ,L,

1. Draw a realization� (�)
i from the posterior

distribution of the random effects:

{� i | Xi > s,Yi (s); 	 } �

�
�

	

ni (s)


j= 1

p(yij | � i ; 	 )

�
�


Si

�
s | g(µ , � i ); 	

�
p(� i ; 	 )

(4)

whereni (s) is the number of longitudinal
measurements of patienti available at the landmark
time s.

2. Infer � (�)
i = g

�
µ , � (�)

i

�

3. Compute:y(�)
i (u) = b

�
u, � (�)

i

�
with u > 0

And: 
 (�)
i (s+ t | s) =

Si

�
s|� (�)

i ;	
�
ŠSi

�
s+ t|� (�)

i ;	
�

Si

�
s|� (�)

i ;	
�

The difficulty is the first step since the posterior dis-
tribution of the random effects has no analytical solution
when the model for the biomarker is nonlinear in regard to
the parameters. We use Hamiltonian Monte Carlo (HMC)
algorithm implemented inStan software version 2.8 [10]
and itsR(version 3.1.3) interface. Thea priori distribution
of the random effects is assumed to be normal of mean
zero and variance-covariance matrix� , estimated on the
training dataset. Thea posterioridistribution of the indi-
vidual random effects defined by the Eq. (4) requires the
integration of the hazard function in Eq. (3) of the survival.
For that purpose, we use a Gauss-Legendre quadrature
of order 8. Of note, and unlike what was proposed by
Rizopoulos (2011) [4] the uncertainty in	 is neglected (see
•ResultsŽ).

The L realizations
�
y(�)

i (u), � = 1,. . . ,L
�

and
�

 (�)

i (s+ t | s) , � = 1,. . . ,L
�

can be used to derive
estimates of the biomarker kinetics and estimates of

 i (s+ t | s) as:

�yi (u) = median
�
y(�)

i (u), � = 1, . . . , L
�

And:

�
 i (s+ t | s) = median
�

 (�)

i (s+ t | s) , � = 1, . . . , L
�

(5)

And 95% prediction intervals for the individual predic-
tions are obtained using the 2.5% and 97.5% Monte Carlo
sample percentiles.

Model discrimination and calibration
The discrimination, i.e., the capacity of the model to dis-
tinguish patients of low and high risk of death, and the
calibration, i.e., the capacity of the model to predict time-
to-event, are classical notions for assessing the predictive
accuracy, but require specific definitions in the context
of dynamic prediction. We use the definition of time-
dependent AUC corresponding to a cumulative sensitivity
and a dynamic specificity [19, 20] and the definition of
time-dependent Brier score (BS) presented in Schoop
et al. [21]. At landmark timesand for a prediction horizon
t, these metrics are defined as follows:
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AUC(s, t) = P
�

 i (s+ t | s) > 
 j (s+ t | s)| s< Xi < s+ t,Xj > s+ t

�

BS(s, t) = E
� �

1{s< X< s+ t} Š 
( s+ t|s)
� 2|X > s

�

In the context of dynamic prediction, AUC measures
the capacity of the model prediction
 i (s+ t | s) to dis-
tinguish between patients of low and high risk of death
in the horizon time t, while BS measures the average
discrepancy between vital status and the prediction in a
patient. For AUC, the larger the better, whereas for BS,
the smaller the better. With these definitions, a dummy
model such that
 i (s+ t | s) = 0.5 for all i, s and t will
lead to AUC=0.5 and BS=0.25. Note that AUC does not
depend on the number of events while BS does. Therefore,
the BS obtained with different landmark timess cannot
be directly compared [15]. In order to compare BS values
over time, one can use a scaled Brier score (sBS) defined
in [16, 22]:

sBS(s, t) =
BSKM (s, t) Š BS(s, t)

BSKM (s, t)

whereBSKM (s, t) is the Brier score obtained with Kaplan-
Meier estimates of the survival function in the train-
ing dataset. ThussBS(s, t) measures the improvement in
model prediction over a prediction that could be done
using only the information from the training dataset (the
larger the better).

To estimate these metrics, we use weighted estimators
to account for right censoring using Inverse Probability
of Censoring Weights (IPCW) [23, 24]. Thus the IPCW
estimators are:

�AUC (s, t) =
� N

i= 1
� N

j=1 1{ �
 i (s+ t|s)> �
 j (s+ t|s)} �Di (s, t)(1Š �Dj (s, t)) �Wi (s, t) �Wj(s, t)
� N

i= 1
� N

j= 1
�Di (s, t)(1 Š �Dj (s, t)) �Wi (s, t) �Wj(s, t)

and:

�BS(s, t) =
1

� N
i= 1 1{Ti> s}

N�

i= 1

�Wi(s, t)( �Di (s, t)Š �
 i (s+ t | s))
2

where �Di (s, t) = 1{s< Ti � s+ t} and the weights �Wi (s, t) =
1{Ti > s+ t}

�G(s+ t|s)
+

�Di (s,t)� i
�G(Ti |s)

take into account censor, with �G(u)

the Kaplan-Meier estimator of survival function of the

censoring time at timeu, i.e., P(C > u) and � u > s,
�G(u | s) = �G(u)/ �G(s) and �
 i (s+ t | s) is defined in the
formula (5). Thus, once�
 i (s+ t | s) has been obtained in
a dataset ofN� new patients, as AUC and BS are model
free, they can be calculated using packages developed in
the context of linear models, and here we use the package
timeROC of R[25].

The scaled Brier score is obtained using the estimated

Brier score:�sBS(s, t) =
�BSKM (s,t)Š �BS(s,t)

�BSKM (s,t)
where�BSKM (s, t) is

the Brier Score obtained using the Kaplan-Meier estimate
at s+ t in the training dataset.

Application to risk of death in patients with metastatic
prostate cancer
Illustration focuses on metastatic Castration-Resistant
Prostate Cancer (mCRPC) for which PSA is frequently
measured and survival is the primary endpoint. First we
develop a reference nonlinear joint model on a training
dataset, second we simulate mCRPC patients to evaluate
dynamic predictions when the model is known and last
we apply this approach to real mCRPC patients from a
validation dataset.

Building a reference nonlinear joint model
Real data come from mCRPC patients of the control
arm of a phase III clinical trial [17] that included 598
men treated with the first-line reference chemotherapy
(docetaxel in combination with prednisone). All PSA mea-
surements at baseline (i.e., measured within 8 days before
treatment initiation) and after treatment initiation are
used. Two patients that have no PSA measurements are
not included in the analysis. PSA was measured every 3
weeks during treatment and every 12 weeks after treat-
ment cessation, and the date of death or last visit was
obtained for all patients. Data are randomly split into two
datasets as described in [26]: a training dataset contain-
ing N = 400 patients to develop the reference nonlinear
joint model and to estimate the population parameters	 ,
and a validation dataset containing theN� = 196 remain-
ing patients to provide individual dynamic predictions and
assess the predictability of the model on real data.

In order to describe the kinetics of PSA, we use the
biexponential model already described in [9]. In brief, this
model assumes that PSA is produced by prostatic cells
and that chemotherapy inhibits prostatic cells prolifera-
tion with a constant effectiveness� until the time Tesc.
This leads to the following analytical solution for PSA
kinetics:

PSA(t, � ) =

�
�

	

� PSA0
r(1Š� )Šd+ � e(r(1Š� )Šd)t +

�
PSA0 Š � PSA0

r(1Š� )Šd+ �

�
eŠ� t if t � Tesc

� PSA0
rŠd+ � e(rŠd)tŠr� Tesc+

�
PSA

�
Tesc,�

�
Š � PSA0e(r(1Š� )Šd)Tesc

rŠd+ �

�
eŠ�( tŠTesc) if t > Tesc

(6)
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wherePSA0 (ng.mLŠ1) is the PSA value at treatment ini-
tiation, � (dayŠ1) is the rate of PSA elimination,r (dayŠ1)
the rate of prostatic cells proliferation in absence of treat-
ment andd (dayŠ1) the rate of prostatic cells elimination.�
is the constant treatment effect andTescthe time at which
treatment has no longer an effect.

Because only 4 parameters can be identified from
Eq. (6), we fixd to 0.046 dayŠ1, corresponding to a half-
life of tumor cells of 15 days, consistent with an apoptotic
index of 5% in metastatic prostate cancer [27]. Moreover
we fix � to 0.23 dayŠ1, corresponding to a PSA half-life in
blood of about 3 days [28]. Finally PSA kinetics is defined
by the vector of parameters� = { r, PSA0, � , Tesc}.

Here in the NLMEM (Eq. (1)), the observed biomarker
yij corresponds to thejth measurement of log(PSA+ 1)
for the patient i at time tij and b(t, �) is log(PSA(t, �) +
1), consistent transformation with an additive residual
error. Log-normal distributions for r, PSA0 and Tesc(i.e.
� i = log(µ) + � i ) and logit-normal distribution for �

(i.e. � i = logit(µ) + � i with logit(x) = log
�

x
1Šx

�
for

0 < x < 1) are assumed. The variance-covariance matrix
of the random effects is diagonal with parameters:� =

diag
�
 2

r ,  2
PSA0

,  2
� ,  2

Tesc

�
.

For the survival process, we use a Weibull function

for the baseline hazard function
�
h0(t) = k

�

� t
�

� kŠ1
�
; fur-

ther, as no covariate is found statistically significant in
univariate selection using a parametric Weibull survival
model [26], no covariate is included in the survival model
(� = 0). Lastly different models of link between PSA and
survival are tested:

€ No link: f (t, � i ) = 0
€ Current PSA:f (t, � i ) = log(PSA(t, � i ) + 1)
€ Current PSA slope:f (t, � i ) = d log(PSA(t, � i )+ 1)

dt
€ Area under PSA:

f (t, � i ) =
� t

0 log(PSA(u, � i ) + 1)du

The joint likelihood is maximized using the SAEM algo-
rithm implemented in the software Monolix version 4.3.2.
Model selection is based on BIC and the best model
is evaluated using residuals for longitudinal (Individual
weighted residuals (IWRES)) and survival (Cox-Snell and
Martingale residuals) parts and by plotting the mean sur-
vival curves compared to the Kaplan-Meier curve in the
training and validation datasets [26] (see Additional file 1).
This model is called the •reference nonlinear joint modelŽ
hereafter and parameters are given in Table 1.

Simulation
PSA and time-to-death are simulated forNsim = 200
patients using the vector	 estimated with the refer-
ence nonlinear joint model. PSA was measured every 3
weeks for 30 months or until the simulated time-to-death,

Table 1 BIC and parameters estimates (r.s.e (%)) of PSA kinetics
and survival in theN = 400 patients for the 4 joint models

Models No link Current PSA PSA slope Area under PSA

BIC 14350 14192 14291 14327

r
�
dayŠ1�

0.054 (1) 0.054 (1) 0.055 (1) 0.054 (1)

PSA0
�
ng.mLŠ1�

74.6 (8) 73.9 (8) 73.4 (8) 74.9 (8)

� 0.35 (5) 0.34 (5) 0.35 (5) 0.35 (5)

Tesc(day) 138 (4) 138 (4) 142 (4) 136 (4)

� (day) 885 (4) 3800 (9) 1500 (9) 1410 (13)

k 1.52 (3) 1.19 (1) 1.33 (9) 1.15 (7)

� - 0.32 (4) 100 (10) 0.00025 (20)

 r 0.098 (5) 0.098 (4) 0.11 (5) 0.10 (5)

 PSA0 1.57 (4) 1.57 (4) 1.55 (4) 1.56 (4)

 � 1.35 (5) 1.34 (5) 1.22 (5) 1.36 (5)

 Tesc 0.68 (5) 0.64 (5) 0.63 (5) 0.66 (5)

� 0.38 (1) 0.38 (1) 0.38 (1) 0.38 (1)

if it occurs before. No other mechanism than death is
considered for dropout. Dynamic individual predictions
are performed usingStan and R (codes available as
Additional file 2) as explained previously in the general
framework with L = 200 the number of Monte Carlo sam-
ples. For each landmarks � { 0, 6, 12, 18} months and each
horizon time t > 2 months, we calculate the coverage
probabilities of the 95% prediction intervals for both PSA
and hazard rate, i.e., the proportion of simulated patients
for whom the true value of interest (either simulated PSA
value or the simulated risk of death) is contained in the
corresponding Monte Carlo 95% prediction interval.

Then, using the packagetimeROC of R [25] we esti-
mate time-dependent AUC, BS and sBS for each landmark
time s and horizon time t, using the Kaplan-Meier esti-
mates computed in theNsim = 200 simulated patients
themselves to calculateBSKM (s, t).

Real data
Individual dynamic predictions are calculated following
the same approach than in the simulation in theN� = 196
mCRPC patients of the validation dataset using the ref-
erence nonlinear joint model andL = 200. Likewise,
time-dependent AUC, BS and sBS are estimated using the
N� = 196 real patients. ForBSKM (s, t) the Kaplan-Meier
estimates in the training dataset are used.

Results
Reference nonlinear joint model
All PSA measurements and vital status in theN = 400
patients from the treatment initiation to the end of follow-
up are used to estimate the population parameters of the 4
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Fig. 1 Coverage probabilities of the 95% prediction intervals for PSA values (dotted lines) and risk of death (solid lines) for 4 values of landmark times
(months) and horizon timest > 2 months in the 200 simulated patients. The 95% prediction intervals of the proportion 95% (grey areas) depend on
the number of patients at risk which is indicated at bottom at each landmark times

Fig. 2 Time-dependent AUC in the 200 simulated patients for 4 values of landmark times(months) and horizon timest > 2 months. The number of
patients at risk in the simulated dataset is indicated at bottom, as well as the median number [minimum-maximum] of PSA observations per patient
at risk



Desméeet al. BMC Medical Research Methodology (2017) 17:105 Page 7 of 12

proposed joint models. Overall 5 710 PSA measurements
are used with median [minimum; maximum] number of
measurements per patient of 13 [1 ; 55]. Regarding sur-
vival, 286 deaths occur (71.5%), leading to a median sur-
vival [Kaplan-Meier 95% confidence interval] of 656 days
[598 ; 741].

Compared to the different forms of link between PSA
and risk of death, the joint model relying on the current
PSA is found to have the lowest BIC (Table 1). Thus the
link function can be written as follows:

f (t, � i ) = log(PSA(t, � i ) + 1)

All parameters are precisely estimated with relative
standard errors (r.s.e) smaller than 9% for both fixed
effects and variance components (Table 1), and thus the
uncertainty on 	 is neglected in the following. Details
of the model evaluation (individual fits, residuals for

longitudinal and survival processes and mean survival
curves for both training and validation datasets) are pro-
vided in the Additional file 1.

Simulated data
For each simulated patient alive at landmark times, we
obtain predicted PSA kinetics and survival probabilities
for t > 2 months with the Monte Carlo 95% prediction
intervals. The coverage probabilities of these prediction
intervals over the set of horizon timet are included in the
95% envelope for both PSA evolution and risk of death for
s = {0, 6, 12} months (Fig. 1). Fors = 18 months, cover-
age probabilities are smaller than 95%, which suggests that
prediction intervals are too narrow.

For s = 0, AUC values are about 0.6 (Fig. 2) indicat-
ing that the initial PSA value brings some information, but
remains of limited use. In order to achieveAUC � 0.7

Fig. 3 Time-dependent Brier Scores (top) and sBS (bottom) in the 200 simulated patients for 4 values of landmark times(months) and horizon times
t > 2 months
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Fig. 4 Dynamic individual predictions of PSA evolution and survival for 3 typical mCRPC patients of the validation dataset

we find that s � 6 months are needed with a horizon
time of at least 6 months. In order to achieveAUC � 0.8,
a landmark time of at least a year with a horizon time
of 6 months is needed to achieve good individual predic-
tions. For example, withs = 12 months, we find AUC

value of 0.80 and 0.82 for horizont = 6 and t = 12
months respectively; withs = 18 months, AUC values
are equal to 0.79 and 0.90 fort = 6 and t = 12 months,
respectively. For a given landmark time, AUC increases
when t increases, which indicates that the model better
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distinguishes patients of low and high risk of death in the
long term.

BS and sBS estimations are provided in Fig. 3. BS for
s= 0 quickly increases (i.e., deteriorates) up to the level of
0.25, which corresponds to a dummy prediction, consis-
tent with the fact that having only baseline PSA provides
little information on the time-to-death prediction. For a
given landmark time s, BS increases when the horizon
time t increases, consistent with a deterioration of the cal-
ibration in long-term prediction. For s = 12 ands = 18,
BS are smaller than 0.16 and 0.15 respectively, for all hori-
zon times. For s = 0, sBS remains close to 0 for all
horizon times, confirming that baseline value is not suffi-
cient to conduct individual predictions (Fig. 3). Fors > 0,
sBS increases (i.e., improves) whent increases, even if it
never exceeds 0.5. In general, calibration based on indi-
vidual prediction improves compared to calibration using
only Kaplan-Meier estimates, whens increases and this
becomes particularly true fors � 6 ands+ t � 18.

Real data
In the validation dataset, a total of 2,720 PSA measure-
ments are collected and the median [min ; max] number of
measurements per patient is 13 [2 ; 57]. 145 deaths occur
(74.0%), with a median survival time [Kaplan-Meier 95%
confidence interval] of 598 days [547 ; 732].

Figure 4 illustrates dynamic predictions for 3 typi-
cal patients. When the landmark increases, the median
prediction of PSA is closer to the future PSA observa-
tions with shrinking 95% prediction intervals. In these 3
patients, predictions markedly improve once PSA nadir is
attained, due to the fact that all individual parameters can

be precisely identified. As a consequence of this uncer-
tainty on PSA future kinetics, the survival function predic-
tions are accompanied by a large 95% prediction interval
until the upslope of PSA is clearly observed (landmark
times s > 12 months for patients 2073 and 2466 and
landmark timess> 6 months for patient 2558).

Similarly to the simulation study, fors = 0, AUC val-
ues quickly decrease to values lower than 0.6 (Fig. 5). For
s = { 6, 12, 18} months, AUC values remain close to 0.75
regardless of the horizon timet and do not increase to 0.9
as found in the simulation study. Of note, contrary to the
simulation, in real data PSA measurements become less
frequent after stopping treatment according to the proto-
col but patients are still involved in the study and their
vital status is collected, which can explain that AUC values
remain constant.

BS and sBS evolutions (Fig. 6) are very similar to those
of the simulation. Fors = 0, the rapid increase in BS until
0.25 and using only baseline measurement cannot pre-
cisely predict the risk of death at the individual level. For
s > 0, we note thatsBSis positive meaning that the joint
model calibrates better than a Kaplan-Meier estimates.
Nevertheless, thesBSremain lower to the values found in
the simulations (0.29 vs 0.5, respectively), which may be
due to lower amount of data over time and to the model
limitation itself.

Discussion
This work is the first one to our knowledge to per-
form individual dynamic predictions in nonlinear joint
models. The following approach is used: i) the priors
for the parameters are found by estimating population

Fig. 5 Time-dependent AUC in theN•=196 real mCRPC patients of the validation dataset for 4 values of landmark times(months) and horizon times
t > 2 months. The number of patients at risk in the validation dataset is indicated atbottom, as well as the median number [minimum-maximum] of
PSA observations per patient at risk
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Fig. 6 Time-dependent Brier Scores (top) and sBS (bottom) in theN•=196 real mCRPC patients of the validation dataset for 4 values of landmark time
s(months) and horizon timest > 2 months

parameters in a large training dataset using the SAEM
algorithm [8, 9], ii) the distribution of the individual
parameters is found using the Hamiltonian Monte Carlo
(HMC) algorithm and prediction interval for the risk of
death is derived accordingly, iii) the predictive perfor-
mances are assessed using time-dependent discrimination
and calibration metrics previously developed in a context
of linear model.

Here we use HMC implemented inStan to characterize
the full a posteriori distribution of the individual ran-
dom effects. Of note softwares for nonlinear mixed-effects
models (R, SAS or more specifically Monolix or Non-
mem in pharmacometrics) can also produce individual
•posthocŽ parameters, typically the mode (or the mean)
of the conditional distribution of the random effects. Yet,
in clinical practice, having only the most likely value of
the prediction does not account for the uncertainty on the

individual parameter estimates. In order to characterize
the prediction interval, one frequent approach is to use
asymptotic Gaussian approximations [29]. However this
may not always be accurate, for instance when the data
are limited and additionally it does not take into account
the correlations between the parameters. We show by sim-
ulation that using HMC implemented in Stan provides
good coverage probabilities, except for long follow-up
where the prediction interval tended to be overoptimistic
(s = 18 months, see Fig. 1). Whether this is specific to
this simulation framework or is a more general pattern
will need to be verified. Likewise a formal comparison
between HMC and traditional MCMC methods in con-
text of individual dynamic prediction using nonlinear joint
model could be of interest. In terms of model prediction
assessment, the AUC and BS metrics are model-free and
thus can be applied to a nonlinear context using existing
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packages [25]. Here, while the AUC and the BS improve
over the landmark time in the simulation study, they tend
to stagnate in the real data. This is likely due to the
fact that in the simulation the amount of data increases
linearly with the landmark time (since we assume mea-
surements every 3 weeks), while in the real data PSA
measurements become less frequent over time in patients
after the end of treatment.

Our model framework contains several limitations.
First the training and the validation dataset come from
the same clinical trial. Second dynamic predictions are
performed neglecting the uncertainty on the popula-
tion parameters	 . In our context this approximation is
reasonable because the training dataset is large and
the relative standard errors are small compared to the
between-patient variability (Table 1). However in other
contexts this may not be true, for instance in the first
steps of adaptive schemes where each new individual is
used to update the model prediction. In this case or in
external validation, a full Bayesian approach, that can
also be done withStan [30], could be relevant. Further,
the biological model, albeit nonlinear, remains very sim-
plistic. For instance effect of covariates like age could
be investigated on the longitudinal process. Moreover
the model does not account for the mechanisms lead-
ing to resistance and then relapse to treatment that we
identified previously [26]. Rather we assume that PSA
kinetics and risk of death are not modified after treat-
ment cessation and continue at the same pace than before.
Moreover PSA kinetics only was assumed to drive the
complex process leading to death. These simplifications
may explain in part why the model is good at identifying
patients at higher risk but does less well at predicting the
time-to-death.

Conclusion
Beside the concrete application shown here, we believe
that this approach can be exemplified to develop more
biologically relevant models in various medical context.
In that respect the recent release ofStan software
for stiff ODEs will make possible to use more mecha-
nistic joint models naturally integrating the correlation
between several longitudinal processes. Thus, the devel-
opment of nonlinear models that will accompany the
collection of new biomarkers in routine [31] may be an
important step towards a better prediction of the risk of
death and improve the early identification of patients at
greater risk.
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