K. Boatright and G. Salvesen, Mechanisms of caspase activation, Current Opinion in Cell Biology, vol.15, issue.6, pp.725-756, 2003.
DOI : 10.1016/j.ceb.2003.10.009

A. Strasser, C. S. Adams, J. Katz, and S. , Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases, The EMBO Journal, vol.90, issue.18, pp.3667-83, 2011.
DOI : 10.1016/S0092-8674(00)80501-2

K. Otsu, T. Murakawa, and O. Yamaguchi, BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32, Autophagy, vol.11, issue.10, pp.1932-1935, 2015.
DOI : 10.1080/15548627.2015.1084459

R. Schweers, J. Zhang, and M. Randall, NIX is required for programmed mitochondrial clearance during reticulocyte maturation, Proceedings of the National Academy of Sciences, vol.121, issue.3, pp.19500-19505, 2007.
DOI : 10.1002/jcp.1041210311

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2148318

P. Li, D. Nijhawan, and I. Budihardjo, Cytochrome c and dATP-dependent formation of

S. Tait and D. Green, Mitochondria and cell death: outer membrane permeabilization and beyond, Nature Reviews Molecular Cell Biology, vol.19, issue.9, pp.621-653, 2010.
DOI : 10.1042/bj3290095

P. Czabotar, G. Lessene, A. Strasser, and J. Adams, Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy, Nature Reviews Molecular Cell Biology, vol.5, issue.1, pp.49-63, 2014.
DOI : 10.1038/sj.cdd.4402178

R. Rooswinkel, B. Van-de-kooij, and E. De-vries, Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance bcl-2 transgene inhibits T cell death and perturbs thymic selfcensorship, Blood Blood Cell, vol.123, issue.675, pp.2806-2821, 1991.

L. Chen, S. Willis, and A. Wei, Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function ??First article to show differential binding activities between Bcl-2 like and BH3 members 13 Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins Can the analysis of BH3-only protein knockout mice clarify the issue of 'direct versus indirect' activation of Bax and Bak?, Mol Cell Genes Dev Cell Death Differ, vol.17, issue.1810, pp.393-403, 2005.

E. Cheng, M. Wei, and S. Weiler, BCL-2, BCL-XL Sequester BH3 Domain-Only Molecules Preventing BAX- and BAK-Mediated Mitochondrial Apoptosis, Molecular Cell, vol.8, issue.3, pp.705-716, 2001.
DOI : 10.1016/S1097-2765(01)00320-3

URL : http://doi.org/10.1016/s1097-2765(01)00320-3

D. Ren, H. Tu, and H. Kim, BID, BIM, and PUMA Are Essential for Activation of the BAX- and BAK-Dependent Cell Death Program, Science, vol.94, issue.6, pp.1390-1393, 2010.
DOI : 10.1016/S0092-8674(00)81733-X

S. Willis, J. Fletcher, and T. Kaufmann, Apoptosis Initiated When BH3 Ligands Engage Multiple Bcl-2 Homologs, Not Bax or Bak, Science, vol.315, issue.5813, pp.856-865, 2007.
DOI : 10.1126/science.1133289

M. Doerflinger, J. Glab, and H. Puthalakath, BH3-only proteins: a 20-year stock-take, The FEBS Journal, vol.101, issue.6, pp.1006-1022, 2015.
DOI : 10.1182/blood-2002-07-2132

T. Gallenne, F. Gautier, and L. Oliver, Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members, The Journal of Cell Biology, vol.185, issue.2, pp.279-90, 2009.
DOI : 10.1084/jem.20051736

URL : https://hal.archives-ouvertes.fr/hal-00450677

H. Du, J. Wolf, B. Schafer, T. Moldoveanu, J. Chipuk et al., BH3 Domains other than Bim and Bid Can Directly Activate Bax/Bak, Journal of Biological Chemistry, vol.14, issue.1, pp.491-501, 2011.
DOI : 10.1172/JCI28281

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013008

H. Dai, A. Smith, X. Meng, P. Schneider, Y. Pang et al., Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization, The Journal of Cell Biology, vol.14, issue.1, pp.39-48, 2011.
DOI : 10.1038/nrm2308

T. Moldoveanu, C. Grace, and F. Llambi, BID-induced structural changes in BAK promote apoptosis, Nature Structural & Molecular Biology, vol.81, issue.5, pp.589-97, 2013.
DOI : 10.1016/S0006-3495(00)76713-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683554

H. Chen, M. Kanai, and A. Inoue-yamauchi, An interconnected hierarchical model of cell death regulation by the BCL-2 family, Nature Cell Biology, vol.14, issue.10, pp.1270-81, 2015.
DOI : 10.1074/jbc.M306289200

M. Vogler, BCL2A1: the underdog in the BCL2 family, Cell Death and Differentiation, vol.72, issue.1, pp.67-74, 2012.
DOI : 10.1038/onc.2010.248

E. Barile, G. Marconi, and S. De, hBfl-1/hNOXA Interaction Studies Provide New Insights on the Role of Bfl-1 in Cancer Cell Resistance and for the Design of Novel Anticancer Agents, ACS Chemical Biology, vol.12, issue.2, pp.444-55, 2017.
DOI : 10.1021/acschembio.6b00962

Q. Zhong, W. Gao, F. Du, and X. Wang, Mule/ARF-BP1, a BH3-Only E3 Ubiquitin Ligase, Catalyzes the Polyubiquitination of Mcl-1 and Regulates Apoptosis, Cell, vol.121, issue.7, pp.1085-95, 2005.
DOI : 10.1016/j.cell.2005.06.009

Q. Ding, X. He, and J. Hsu, Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization Mcl-1 ubiquitination and destruction Trim17-mediated ubiquitination and degradation of Mcl-1 initiate apoptosis in neurons, Molecular and cellular biology Oncotarget Magiera MM Cell death and differentiation, vol.27, issue.202, pp.4006-4023, 2007.

M. Schwickart, X. Huang, and J. Lill, Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival, Nature, vol.51, issue.7277, pp.103-110, 2010.
DOI : 10.1177/002215540305100503

M. Warr, G. Shore, T. Song, Z. Wang, and F. Ji, Deactivation of Mcl-1 by Dual-Function Small-Molecule Inhibitors Targeting the Bcl-2 Homology 3 Domain and Facilitating Mcl-1 Ubiquitination 14250-6. ?Description of MCL1 targeting compounds, highlighting also the conformational shifts of a QRN motif that determines subsequent ubiquitination Noxa controls Mule-dependent Mcl-1 ubiquitination through the regulation of the Mcl-1/USP9X interaction. Biochemical and biophysical research communications Regulation of heat-induced apoptosis by Mcl-1 degradation and its inhibition by Hsp70 Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer, Current molecular medicine Angewandte ChemieInternational ed in English) Cell death and differentiation Cancer Res, vol.8, issue.7418, pp.138-185, 2008.

A. Craxton, M. Butterworth, and N. Harper, NOXA, a sensor of proteasome integrity, is degraded by 26S proteasomes by an ubiquitin-independent pathway that is blocked by MCL-1, Cell Death and Differentiation, vol.1786, issue.9, pp.1424-1458, 2012.
DOI : 10.1172/JCI39964

M. Baou, S. Kohlhaas, and M. Butterworth, Role of NOXA and its ubiquitination in proteasome inhibitor-induced apoptosis in chronic lymphocytic leukemia cells, Haematologica, vol.95, issue.9, pp.1510-1518, 2010.
DOI : 10.3324/haematol.2010.022368

W. Zhou, J. Xu, and H. Li, Neddylation E2 UBE2F Promotes the Survival of Lung Cancer Cells by Activating CRL5 to Degrade NOXA via the K11 Linkage, Clinical Cancer Research, vol.23, issue.4, pp.1104-1116, 2017.
DOI : 10.1158/1078-0432.CCR-16-1585

D. Wei, H. Li, and J. Yu, Radiosensitization of Human Pancreatic Cancer Cells by MLN4924, an Investigational NEDD8-Activating Enzyme Inhibitor, Cancer Research, vol.72, issue.1, pp.282-93, 2012.
DOI : 10.1158/0008-5472.CAN-11-2866

Y. Wang, Z. Luo, and Y. Pan, Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells, Cancer Biology & Therapy, vol.32, issue.3, pp.420-429, 2015.
DOI : 10.1006/meth.2001.1262

J. Godbersen, L. Humphries, and O. Danilova, The Nedd8-Activating Enzyme Inhibitor MLN4924 Thwarts Microenvironment-Driven NF-??B Activation and Induces Apoptosis in Chronic Lymphocytic Leukemia B Cells, Clinical Cancer Research, vol.20, issue.6, pp.1576-89, 1990.
DOI : 10.1158/1078-0432.CCR-13-0987

Z. Wang and Y. Sun, Identification and characterization of two splicing variants of human Noxa, Anticancer research, vol.28, issue.3a, pp.1667-74, 2008.

C. Ploner, R. Kofler, and A. Villunger, Noxa: at the tip of the balance between life and death, Oncogene, vol.28, issue.1, pp.84-92, 2008.
DOI : 10.1016/j.cell.2005.06.009

P. Fei, E. Bernhard, and W. El-deiry, Tissue-specific induction of p53 targets in vivo, Cancer Res, vol.62, issue.24, pp.7316-7343, 2002.

E. Oda, R. Ohki, and H. Murasawa, Noxa, a BH3-Only Member of the Bcl-2 Family and Candidate Mediator of p53-Induced Apoptosis, Science, vol.288, issue.5468, pp.1053-1061, 2000.
DOI : 10.1126/science.288.5468.1053

?. Villunger, A. Michalak, E. Coultas, and L. , p53- and Drug-Induced Apoptotic Responses Mediated by BH3-Only Proteins Puma and Noxa, Science, vol.302, issue.5647, pp.1036-1044, 2003.
DOI : 10.1126/science.1090072

T. Shibue, S. Suzuki, and H. Okamoto, Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways, The EMBO Journal, vol.53, issue.20, pp.4952-62, 2006.
DOI : 10.1083/jcb.200302084

?. Naik, E. Michalak, E. Villunger, A. Adams, J. Strasser et al., Ultraviolet radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa, The Journal of Cell Biology, vol.14, issue.4, pp.415-439, 2007.
DOI : 10.1038/372773a0

M. Haschka, C. Soratroi, and S. Kirschnek, The NOXA???MCL1???BIM axis defines lifespan on extended mitotic arrest, Nature Communications, vol.26, issue.3317, pp.6891-1960, 2014.
DOI : 10.1038/sj.emboj.7601533

L. Grande, G. Bretones, and M. Rosa-garrido, Transcription Factors Sp1 and p73 Control the Expression of the Proapoptotic Protein NOXA in the Response of Testicular Embryonal Carcinoma Cells to Cisplatin, Journal of Biological Chemistry, vol.3, issue.32, pp.26495-505, 2005.
DOI : 10.1172/JCI41939

S. Tonino, J. Van-laar, M. Van-oers, J. Wang, E. Eldering et al., ROS-mediated upregulation of Noxa overcomes chemoresistance in chronic lymphocytic leukemia, Oncogene, vol.57, issue.6, pp.701-714, 2011.
DOI : 10.1182/blood-2002-08-2512

C. Sheridan, G. Brumatti, M. Elgendy, M. Brunet, and S. Martin, An ERK-dependent pathway to Noxa expression regulates apoptosis by platinum-based chemotherapeutic drugs, Oncogene, vol.13, issue.49, pp.6428-6469, 2010.
DOI : 10.1038/onc.2010.380

M. Yamashita, M. Kuwahara, and A. Suzuki, Bmi1 regulates memory CD4 T cell survival via repression of the Noxa gene ?First article to show that a transcriptional repressor Bmi1, can repress NOXA. 59 Targeting the cancer epigenome for therapy, The Journal of experimental medicine Nature reviews Genetics, vol.205, issue.1710, pp.1109-1129, 2008.

L. Zhou, V. Ruvolo, and T. Mcqueen, HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key proapoptotic proteins in AML Analysis of apoptosis regulatory genes altered by histone deacetylase inhibitors in chronic lymphocytic leukemia cells Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis, Leukemia Epigenetics Nature, vol.27, issue.3946692, pp.1358-68, 1998.

J. Kim, H. Ahn, J. Ryu, K. Suk, J. Park et al., BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha Hypoxia signalling through mTOR and the unfolded protein response in cancer Endoplasmic reticulum stress as a novel therapeutic target in heart diseases, The Journal of experimental medicine Nat Rev Cancer Cardiovascular & hematological disorders drug targets, vol.199, issue.73, pp.113-137, 2004.

H. Puthalakath, O. Reilly, L. Gunn, and P. , ER stress triggers apoptosis by activating BH3-only protein Bim ??Thorough article that addresses the mechanism of cell death by ER stress, with focus on BIM 67 Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa, Cell J Biol Chem, vol.129, issue.28142, pp.1337-1386, 2006.

J. Armstrong, R. Flockhart, G. Veal, P. Lovat, and C. Redfern, Regulation of Endoplasmic Reticulum Stress-induced Cell Death by ATF4 in Neuroectodermal Tumor Cells, Journal of Biological Chemistry, vol.59, issue.9, pp.6091-100, 2010.
DOI : 10.1016/j.canlet.2008.07.005

T. Albershardt, B. Salerni, and R. Soderquist, Multiple BH3 Mimetics Antagonize Antiapoptotic MCL1 Protein by Inducing the Endoplasmic Reticulum Stress Response and Up-regulating BH3-only Protein NOXA, Journal of Biological Chemistry, vol.34, issue.28, pp.24882-95, 2011.
DOI : 10.1042/BST0340007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137063

K. Kelly, C. Espitia, and D. Mahalingam, Reovirus therapy stimulates endoplasmic reticular stress, NOXA induction, and augments bortezomib-mediated apoptosis in multiple myeloma, Oncogene, vol.542, issue.25, pp.3023-3061, 2012.
DOI : 10.1016/S0092-8674(01)00611-0

J. Yan, N. Zhong, and G. Liu, Usp9x- and Noxa-mediated Mcl-1 downregulation contributes to pemetrexed-induced apoptosis in human non-small-cell lung cancer cells, Cell Death and Disease, vol.12, issue.7, p.1316, 2014.
DOI : 10.1111/j.1582-4934.2011.01401.x

A. Davis, S. Qiao, and J. Lesson, The Quinone Methide Aurin Is a Heat Shock Response Inducer That Causes Proteotoxic Stress and Noxa-dependent Apoptosis in Malignant Melanoma Cells, Journal of Biological Chemistry, vol.9, issue.3, pp.1623-1661, 2015.
DOI : 10.1016/j.freeradbiomed.2010.12.036

R. Soderquist and A. Eastman, BCL2 Inhibitors as Anticancer Drugs: A Plethora of Misleading BH3 Mimetics, Molecular Cancer Therapeutics, vol.15, issue.9, pp.2011-2018, 2016.
DOI : 10.1158/1535-7163.MCT-16-0031

Q. Wang, H. Mora-jensen, and M. Weniger, ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells, Proceedings of the National Academy of Sciences, vol.307, issue.5711, pp.2200-2205, 2006.
DOI : 10.1126/science.1101902

P. Gomez-bougie, S. Wuilleme-toumi, and E. Menoret, Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma ?Important article showing that Bortezomib-induced ER stress invokes NOXA and MCL1 to induce apoptosis 78 Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status, ??Key article addressing that Bortezomib works by inducing ER stress al. Lower expression of activating transcription factors 3 and 4, pp.5418-5442, 2005.

F. Parlati, S. Lee, and M. Aujay, Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome, Blood, vol.114, issue.16, pp.3439-3486, 2009.
DOI : 10.1182/blood-2009-05-223677

B. Lamothe, W. Wierda, M. Keating, V. Gandhi, S. Mannava et al., Carfilzomib Triggers Cell Death in Chronic Lymphocytic Leukemia by Inducing Proapoptotic and Endoplasmic Reticulum Stress Responses, Clinical Cancer Research, vol.22, issue.18, pp.4712-4738, 2012.
DOI : 10.1158/1078-0432.CCR-15-2522

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118040

S. Desai, M. Maurin, and M. Smith, PRDM1 Is Required for Mantle Cell Lymphoma Response to Bortezomib, Molecular Cancer Research, vol.8, issue.6, pp.907-925, 2010.
DOI : 10.1158/1541-7786.MCR-10-0131

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891394

N. Alves, I. Derks, E. Berk, R. Spijker, R. Van-lier et al., The Noxa/Mcl-1 Axis Regulates Susceptibility to Apoptosis under Glucose Limitation in Dividing T Cells, Immunity, vol.24, issue.6, pp.703-719, 2006.
DOI : 10.1016/j.immuni.2006.03.018

Y. Zhao, B. Altman, and J. Coloff, Glycogen Synthase Kinase 3?? and 3?? Mediate a Glucose-Sensitive Antiapoptotic Signaling Pathway To Stabilize Mcl-1, Molecular and Cellular Biology, vol.27, issue.12, pp.4328-4367, 2007.
DOI : 10.1128/MCB.00153-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1900055

F. Wensveen, N. Alves, I. Derks, K. Reedquist, and E. Eldering, Apoptosis induced by overall metabolic stress converges on the Bcl-2 family proteins Noxa and Mcl-1, Apoptosis, vol.277, issue.Suppl 2, pp.708-729, 2011.
DOI : 10.1074/jbc.M207951200

X. Lowman, M. Mcdonnell, and A. Kosloske, The Proapoptotic Function of Noxa in Human Leukemia Cells Is Regulated by the Kinase Cdk5 and by Glucose, Molecular Cell, vol.40, issue.5, pp.823-856, 2010.
DOI : 10.1016/j.molcel.2010.11.035

A. Gimenez-cassina and N. Danial, Noxa: A Sweet Twist to Survival and More, Molecular Cell, vol.40, issue.5, pp.687-695, 2010.
DOI : 10.1016/j.molcel.2010.11.037

URL : http://doi.org/10.1016/j.molcel.2010.11.037

A. Santidrian, D. Gonzalez-girones, and D. Iglesias-serret, AICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXA in chronic lymphocytic leukemia cells, Blood, vol.116, issue.16, pp.3023-3055, 2010.
DOI : 10.1182/blood-2010-05-283960

Z. Yang and D. Klionsky, Eaten alive: a history of macroautophagy, Nature Cell Biology, vol.7, issue.9, pp.814-836, 2010.
DOI : 10.1038/ncb0910-823

L. Galluzzi, F. Pietrocola, . Bravo-san, and J. Pedro, Autophagy in malignant transformation and cancer progression Current questions and possible controversies in autophagy. Cell death discovery 2015; 1. ?Summary of various important questions surrounding the link between cell death and autophagy 95 Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1, Embo j Journal of molecular biology, vol.34, issue.3721, pp.856-80, 2007.

A. Oberstein, P. Jeffrey, and Y. Shi, -Beclin 1 Peptide Complex, Journal of Biological Chemistry, vol.2, issue.17, pp.13123-13155, 2007.
DOI : 10.1107/S0021889891004399

URL : https://hal.archives-ouvertes.fr/hal-00552672

D. Tormo, A. Checinska, and D. Alonso-curbelo, Targeted Activation of Innate Immunity for Therapeutic Induction of Autophagy and Apoptosis in Melanoma Cells, Cancer Cell, vol.16, issue.2, pp.103-117, 2009.
DOI : 10.1016/j.ccr.2009.07.004

T. Oltersdorf, S. Elmore, and A. Shoemaker, An inhibitor of Bcl-2 family proteins induces regression of solid tumours, Nature, vol.20, issue.7042, pp.677-81, 2005.
DOI : 10.1016/0014-5793(95)00062-E

A. Delbridge, S. Grabow, A. Strasser, and D. Vaux, Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies, Nature Reviews Cancer, vol.17, issue.2, pp.99-109, 2016.
DOI : 10.1101/gad.1103603

K. Mason, M. Carpinelli, and J. Fletcher, Programmed Anuclear Cell Death Delimits Platelet Life Span, Cell, vol.128, issue.6, pp.1173-86, 2007.
DOI : 10.1016/j.cell.2007.01.037

URL : http://doi.org/10.1016/j.cell.2007.01.037

?. Souers, A. Leverson, J. Boghaert, and E. , ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets, Nature Medicine, vol.559, issue.2, pp.202-210, 2013.
DOI : 10.1038/leu.2009.151

?. Roberts, A. Davids, M. Pagel, and J. , Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia, New England Journal of Medicine, vol.374, issue.4, pp.311-333, 2016.
DOI : 10.1056/NEJMoa1513257

G. Lessene, P. Czabotar, and B. Sleebs, Structure-guided design of a selective BCL-XL inhibitor, Nature Chemical Biology, vol.60, issue.6, pp.390-397, 2013.
DOI : 10.1107/S0907444904019158

Z. Tao, L. Hasvold, and L. Wang, Activity, ACS Medicinal Chemistry Letters, vol.5, issue.10, pp.1088-93, 2014.
DOI : 10.1021/ml5001867

URL : https://hal.archives-ouvertes.fr/in2p3-00007672

M. Bruncko, L. Wang, and G. Sheppard, Structure-guided design of a series of MCL-1

J. Leverson, H. Zhang, and J. Chen, Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax), Cell Death and Disease, vol.15, issue.1, p.1590, 2015.
DOI : 10.1172/JCI39964

A. Kotschy, Z. Szlavik, and J. Murray, The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models, Nature, vol.318, issue.7626, pp.477-82, 2016.
DOI : 10.1038/318533a0

W. Pierson, B. Cauwe, and A. Policheni, Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells, Nature Immunology, vol.204, issue.9, pp.959-65, 2013.
DOI : 10.1093/bioinformatics/btm334

URL : https://hal.archives-ouvertes.fr/pasteur-00853340

N. Fu, A. Rios, and B. Pal, EGF-mediated induction of Mcl-1 at the switch to lactation is essential for alveolar cell survival, Nature Cell Biology, vol.431, issue.4, pp.365-75, 2015.
DOI : 10.1126/science.1115079

V. Peperzak, I. Vikstrom, and J. Walker, Mcl-1 is essential for the survival of plasma cells, Nature Immunology, vol.163, issue.3, 2013.
DOI : 10.1038/350423a0

I. Vikstrom, S. Carotta, and K. Luthje, Mcl-1 Is Essential for Germinal Center Formation and B Cell Memory, Science, vol.96, issue.9, pp.1095-1104, 2010.
DOI : 10.1111/j.1600-065X.1987.tb00506.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991396

G. Akcay, M. Belmonte, and B. Aquila, Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain, Nature Chemical Biology, vol.124, issue.11, pp.931-937, 2016.
DOI : 10.1016/0898-5529(90)90156-3

S. Lee, T. Wales, and S. Escudero, Allosteric inhibition of antiapoptotic MCL-1, Nature Structural & Molecular Biology, vol.75, issue.6, pp.600-607, 2016.
DOI : 10.1111/j.1747-0285.2010.00951.x

V. Peperzak, E. Slinger, T. Burg, J. Eldering, and E. , Functional disparities among BCL-2 members in tonsillar and leukemic B-cell subsets assessed by BH3-mimetic profiling, Cell Death and Differentiation, vol.100, issue.1, pp.111-119, 2017.
DOI : 10.1093/nar/gng153

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260491

D. Gaizo-moore, V. Letai, and A. , BH3 profiling ??? Measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions, Cancer Letters, vol.332, issue.2, pp.202-207, 2013.
DOI : 10.1016/j.canlet.2011.12.021

M. Albert, K. Brinkmann, and H. Kashkar, Noxa and cancer therapy, Molecular & Cellular Oncology, vol.11, issue.1, p.29906, 2014.
DOI : 10.1038/cdd.2013.6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905168

A. Bolomsky, K. Schlangen, W. Schreiner, N. Zojer, and H. Ludwig, Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment, Journal of Hematology & Oncology, vol.8, issue.1, p.17, 2016.
DOI : 10.1186/s13045-014-0105-1

P. Gomez-bougie and M. Amiot, Apoptotic Machinery Diversity in Multiple Myeloma Molecular Subtypes, Frontiers in Immunology, vol.4, p.467, 2013.
DOI : 10.3389/fimmu.2013.00467

URL : http://doi.org/10.3389/fimmu.2013.00467

L. Bodet, E. Menoret, and G. Descamps, BH3-only protein Bik is involved in both apoptosis induction and sensitivity to oxidative stress in multiple myeloma, British Journal of Cancer, vol.108, issue.12, pp.1808-1822, 2010.
DOI : 10.4049/jimmunol.179.6.3417

S. Derenne, B. Monia, and N. Dean, Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-xL is an essential survival protein of human myeloma cells, Blood, vol.100, issue.1, pp.194-203, 2002.
DOI : 10.1182/blood.V100.1.194

J. Gong, T. Khong, and D. Segal, Hierarchy for targeting pro-survival BCL2 family proteins in multiple myeloma: pivotal role of MCL1, Blood, 2016.

K. Ponder, S. Matulis, and S. Hitosugi, Dual inhibition of Mcl-1 by the combination of carfilzomib and TG02 in multiple myeloma, Cancer Biology & Therapy, vol.126, issue.7, pp.769-77, 2016.
DOI : 10.1182/blood-2011-01-327197

T. Kiziltepe, T. Hideshima, and L. Catley, 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells, Molecular Cancer Therapeutics, vol.6, issue.6, pp.1718-1745, 2007.
DOI : 10.1158/1535-7163.MCT-07-0010

J. Tromp, S. Tonino, and J. Elias, Dichotomy in NF-??B signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering, Oncogene, vol.9, issue.36, pp.5071-82, 2010.
DOI : 10.4049/jimmunol.174.6.3749

Y. Herishanu, P. Perez-galan, and D. Liu, The lymph node microenvironment promotes B-cell receptor signaling, NF-??B activation, and tumor proliferation in chronic lymphocytic leukemia, Blood, vol.117, issue.2, pp.563-74, 2011.
DOI : 10.1182/blood-2010-05-284984

A. Morales, A. Olsson, F. Celsing, A. Osterborg, M. Jondal et al., Expression and transcriptional regulation of functionally distinct Bmf isoforms in B-chronic lymphocytic leukemia cells, Leukemia, vol.18, issue.1, 2003.
DOI : 10.1038/sj.leu.2403183

W. Mackus, A. Kater, and A. Grummels, Chronic lymphocytic leukemia cells display p53-dependent drug-induced Puma upregulation, Leukemia, vol.19, issue.3, pp.427-461, 2005.
DOI : 10.1038/sj.leu.2403623

L. Smit, D. Hallaert, and R. Spijker, Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity, Blood, vol.109, issue.4, pp.1660-1668, 2007.
DOI : 10.1182/blood-2006-05-021683

J. Byrd, R. Furman, and S. Coutre, Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia, New England Journal of Medicine, vol.369, issue.1, pp.32-42, 2013.
DOI : 10.1056/NEJMoa1215637

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772525

E. Ten-hacken and J. Burger, Molecular Pathways: Targeting the Microenvironment in Chronic Lymphocytic Leukemia--Focus on the B-Cell Receptor, Clinical Cancer Research, vol.20, issue.3, pp.548-56, 2014.
DOI : 10.1158/1078-0432.CCR-13-0226

F. Wensveen, I. Derks, and K. Van-gisbergen, BH3-only protein Noxa regulates apoptosis in activated B cells and controls high-affinity antibody formation, Blood, vol.119, issue.6, pp.1440-1449, 2012.
DOI : 10.1182/blood-2011-09-378877

E. Slinger, F. Wensveen, J. Guikema, A. Kater, and E. Eldering, Chronic lymphocytic leukemia development is accelerated in mice with deficiency of the pro-apoptotic regulator NOXA, Haematologica, vol.101, issue.9, pp.374-381, 2016.
DOI : 10.3324/haematol.2016.142323

Y. Herishanu, P. Perez-galan, and D. Liu, The lymph node microenvironment promotes B-cell receptor signaling, NF-??B activation, and tumor proliferation in chronic lymphocytic leukemia, ?Microarray study of CLL lymph node versus peripheral blood, highlighting BCR, NF-?B and proliferative pathways, pp.563-74, 2011.
DOI : 10.1182/blood-2010-05-284984

F. Liu, S. Agrawal, and Z. Movasaghi, Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib, Blood, vol.112, issue.9, pp.3835-3881, 2008.
DOI : 10.1182/blood-2008-04-150227

R. Wickremasinghe, Why is CLL refractory to bortezomib?, Blood, vol.112, issue.9, pp.3540-3541, 2008.
DOI : 10.1182/blood-2008-07-171231

S. Faderl, K. Rai, and J. Gribben, Phase II study of single-agent bortezomib for the treatment of patients with fludarabine-refractory B-cell chronic lymphocytic leukemia, Cancer, vol.105, issue.5, pp.916-940, 2006.
DOI : 10.1038/bjc.1998.183

J. Tromp, C. Geest, and E. Breij, Tipping the Noxa/Mcl-1 Balance Overcomes ABT-737 Resistance in Chronic Lymphocytic Leukemia, Clinical Cancer Research, vol.18, issue.2, pp.487-98, 2012.
DOI : 10.1158/1078-0432.CCR-11-1440

R. Thijssen, E. Slinger, and K. Weller, Resistance to ABT-199 induced by microenvironmental signals in chronic lymphocytic leukemia can be counteracted by CD20 antibodies or kinase inhibitors, Haematologica, 2015.
DOI : 10.3324/haematol.2015.124560

D. Hallaert, R. Spijker, and M. Jak, Crosstalk among Bcl-2 family members in B-CLL: seliciclib acts via the Mcl-1/Noxa axis and gradual exhaustion of Bcl-2 protection, Cell Death and Differentiation, vol.23, issue.11, pp.1958-67, 2007.
DOI : 10.1038/sj.cdd.4402211

P. Wiernik, Alvocidib (flavopiridol) for the treatment of chronic lymphocytic leukemia, Expert Opinion on Investigational Drugs, vol.9, issue.6, pp.729-763, 2016.
DOI : 10.3324/haematol.2011.047324

M. De-rooij, A. Kuil, and C. Geest, The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia, Blood, vol.119, issue.11, pp.2590-2594, 2012.
DOI : 10.1182/blood-2011-11-390989

M. Spaargaren, M. De-rooij, A. Kater, and E. Eldering, BTK inhibitors in chronic lymphocytic leukemia: a glimpse to the future, Oncogene, vol.122, issue.19, pp.2426-2462, 2015.
DOI : 10.1182/blood-2013-08-523514

E. Eldering, V. Peperzak, H. Ter-burg, S. Fernandes, J. Brown et al., Bcl-2 Members As Drug Target and Biomarkers for Response to Ibrutinib and Venetoclax in CLL, Blood, vol.128, issue.22, p.2043, 2016.

S. Ohshima-hosoyama, M. Davare, T. Hosoyama, L. Nelon, and C. Keller, Bortezomib stabilizes NOXA and triggers ROS-associated apoptosis in medulloblastoma, Journal of Neuro-Oncology, vol.114, issue.3, pp.475-83, 2011.
DOI : 10.1182/blood-2009-05-223677

B. Tessoulin, G. Descamps, and P. Moreau, PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance, Blood, vol.124, issue.10, pp.1626-1662, 2014.
DOI : 10.1182/blood-2014-01-548800