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ABSTRACT 

Purpose: In mixed models, the relative standard errors (RSE) and shrinkage of 

individual parameters can be predicted from the individual Bayesian information matrix (MBF). 

We proposed an approach accounting for data below the limit of quantification (LOQ) in MBF. 

Methods: MBF is the sum of the expectation of the individual Fisher information (MIF) 

which can be evaluated by First-Order linearization and the inverse of random effect variance. 

We expressed the individual information as a weighted sum of predicted MIF for every possible 

design composing of measurements above and/or below LOQ. When evaluating MIF, we 

derived the likelihood expressed as the product of the likelihood of observed data and the 
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probability for data to be below LOQ. The relevance of RSE and shrinkage predicted by MBF 

in absence or presence of data below LOQ were evaluated by simulations, using a 

pharmacokinetic/viral kinetic model defined by differential equations.  

Results: Simulations showed good agreement between predicted and observed RSE and 

shrinkage in absence or presence of data below LOQ. We found that RSE and shrinkage 

increased with sparser designs and with data below LOQ. 

Conclusions: The proposed method based on MBF adequately predicted individual RSE 

and shrinkage, allowing for evaluation of a large number of scenarios without extensive 

simulations. 

 

KEYWORDS: Bayesian Fisher information matrix; Data below the limit of quantification; 

Nonlinear mixed effect models; Optimal design; Shrinkage. 

ABBREVIATIONS: 

FO First-order linearization 

LOQ Limit of quantification 

MAP Maximum A Posteriori 

MF Fisher information matrix 

MBF Bayesian Fisher information matrix 

MIF Individual Fisher information matrix 

MPF Population Fisher information matrix 

NLMEM Nonlinear mixed effect models 

ODE Ordinary differential equation 

Peg-IFN Pegylated-Interferon 

PK Pharmacokinetic 

PD Pharmacodynamic 

RSE Relative standard error 

VK Viral kinetic 
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designs for standard individual regression or population analysis, respectively. Beside MIF and 

MPF, the expected Bayesian Fisher information matrix (MBF) was also developed to evaluate 

the estimation error of individual parameters obtained by MAP [9,10]. In addition to the 

estimation error, MBF can also be used to predict the shrinkage [10,11] a metric quantifying the 

informativeness of the individual data and the reliability of individual parameter estimates [12–

14]. These developments on MBF were recently implemented in PFIM, an R program for design 

evaluation and optimization [15]. 

Data below the limit of quantification (LOQ) are frequently observed in PK/PD studies. While 

these data can be limited in well-designed PK/PD studies, they are present at large proportion 

in several situations, in particular when they are used as a marker of treatment effectiveness. 

For instance, the efficacy of the treatment of hepatitis virus or human immunodeficiency virus 

is evaluated as the ability of the treatment to clear the virus or to maintain the viral load under 

the detection levels. In such case, data below the LOQ cannot be avoided and can have 

significant impact on the estimation error and shrinkage of individual parameters [16] and 

therefore, by the methods used to account for these data.  

Several approaches have been proposed to handle data below LOQ in parameter estimation 

[17–20] and model evaluation [21].  At the study design step, the impact of these censored data 

can be taken into account in clinical trial simulation approach but this method is time-

consuming. When using the MF-based approach, some methods have been proposed to handle 

data below LOQ in MPF [22,23] but to our knowledge, no such approach has been proposed for 

MBF.  

The main objective of this work was to propose and evaluate a method to account for data below 

LOQ in MIF and MBF. Relative standard error (RSE) and/or shrinkage of individual parameters 

were predicted from MIF or MBF in absence or presence of data below LOQ and compared with 
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The expectation  can be evaluated by first order linearization of the model 

around the expectation of random effects (i.e., 0) in the expression of the likelihood.  It has been 

shown that )(  is then approximated as 

1),()(  (9) 

where M is the pp identity matrix I if the individual parameters follow a normal distribution  

or the pp diagonal matrix ),...,( 1 pdiag  if the individual parameters follow a log-normal 

distribution  [10]. 

The standard error (SE) for individual and Bayesian estimation can be derived from the 

square root of the diagonal terms of MIF
-1 and MBF

-1 respectively. The shrinkage (Sh) for MAP 

estimation is quantified by the ratio of the estimation variance predicted by MBF
-1 and the 

variance-covariance matrix of the random effects , and can be calculated as the diagonal 

elements of the matrix 
11)()( [10,11]. These developments were 

implemented in the R tool PFIM 4.0 [26]  and its interface version PFIM Interface 4.0 

(www.pfim.biostat.fr). 

Extension to account for data below LOQ  

Data below LOQ can be taken into account in maximum likelihood estimation for nonlinear 

models as left-censored observations [17–21]. To account for these data in the expected 

individual Fisher information matrix as well, we first wrote the probability density of the data 

y given the parameters  as 

 (10) 

as the observations in each individual are assumed to be independent. When jy  is above LOQ, 

its value obs

jy  can be observed. When jy is below LOQ, we can only observe the censored value 
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LOQ and we denote by cens

jy  the unknown value of jy . Then the probability ) |(  for an 

individual can be written as 

 
(11) 

where and , 

with  and   being the probability density function and the cumulative density function 

respectively of the standard normal distribution. 

Thus we can write the log-likelihood of the individual data as  

 
(12) 

The contribution of all censored observations to the Fisher information is given by 

 (13) 

To calculate ),(
 j y| LOQjIF

cens

M , we derived the log-probability of a measurement yj to be below 

LOQ with respect to each element p  of the individual parameter vector, using 

 (14) 

Thus               (15) 

where )(/)()( zzz .  

 

The number of sampling times j at which yj are above LOQ, denoted k, can vary from 0 to n, 

Therefore, ),(  accounting for data below LOQ is a weighted sum of the expected 
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contributions of observed and censored data respectively in the likelihood as given in Eq. 11 & 

12. The package marqLevAlg was used for likelihood maximization [27]. To calculate the RSE 

for each parameter in the simulation study, we computed the standard deviation of the 1000 

individual parameter estimates and divided them by the value of the corresponding fixed effect 

parameter that was used to simulate data.  

Similarly, for the evaluation of MBF without or with of data below LOQ, we predicted RSE and 

shrinkage using MBF and then compared these predictions with those obtained by simulation. 

For this evaluation, 1000 profiles of 1000 individuals were simulated as follows: first, we 

simulated 1000 individual parameters using the fixed effect parameters and the inter-individual 

variability. Second, we added simulated residual errors to the individual profiles obtained from 

the simulated individual parameters and the model. Data below LOQ were kept at the simulated 

values in the “absence of data below LOQ” scenarios and were censored at LOQ values in the 

“presence of data below LOQ” scenarios. Each individual parameters pi ,
ˆ  and random effects 

pi ,
ˆ for each simulated individual i (i = 1,…, 1000) were estimated as MAP [28] by fixing the 

population parameters at the values used for simulation. MAP estimation was performed using 

MONOLIX 4.3.3 (http://www.lixoft.eu/). The observed RSE of each individual parameter 

estimate was calculated by dividing the standard deviation of the posterior distribution 

))ˆ(( , piSE  by the estimated value ( pi ,
ˆ ). The observed shrinkage for parameter p was 

calculated from the empirical variance of 1000 estimated random effects pi ,
ˆ  and the simulated 

inter-individual variance [13] as 
2

, )ˆvar(
1

p

pi

pSh .  

Data simulation as well as calculation of MIF and MBF were performed using R 3.2.  
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parameters. MBF also under-predicted the RSE of the parameters ka and EC50 in the very sparse 

design and of the parameter c in all three designs. Although the RSE and shrinkages were 

slightly underpredicted for some parameters or scenarios, in general, MIF and MBF computed 

by FO approximation performed quite well as the predicted RSE and shrinkage were close to 

those obtained by simulation for several parameters. However, in this simulation, we only 

considered a moderate variance for random effects (30%). It was already shown that increase 

of inter-individual variability could deteriorate the predictions of RSE and shrinkage predicted 

from MBF obtained with FO approximation [10]. In such case as well as for more complex 

nonlinear models or studies with discrete data, alternatives to FO approximation are needed. A 

perspective of this work is to use Markov Chains Monte Carlo approach to evaluate the 

expectation  over the distribution of the random effects, which may help 

to obtain better evaluation of MBF and therefore more accurate predictions of RSE and 

shrinkage. Moreover, calculation of the contribution of data below LOQ to MIF and MBF could 

be extended to the population Fisher information matrix by using Markov Chains Monte Carlo 

to integrate the derivatives of log-likelihood over the random effects and Monte Carlo 

simulation to evaluate its expectation [32]. It would also be useful to combine both population 

FIM (MPF) and Bayesian FIM (MBF) using a compound optimality criterion [33,34] to set a 

balance between the two matrices and optimize individual and population parameters at the 

same time. 

Finally, we illustrated the influence of different types of variability on the shrinkage and 

RSE of individual parameters, for the first time in an ODE multiple response model. In 

accordance with previous results for single response PK models [10,14], we found that 

shrinkage had a direct relationship with the residual variability and an inverse relationship with 

the inter-individual variability: an increase of residual errors led to higher shrinkage but a larger 

inter-individual variability would lead to a reduced shrinkage. On the contrary, RSE always had 
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a direct relationship with the two types of variability and hence, would increase with residual 

errors and inter-individual variability. This result once again illustrated that shrinkage was a 

relative measurement of the ratio between individual information and prior information 

contained in the population model. Therefore, a shrinkage value of a parameter should be 

interpreted in regard of its inter-individual variability and a common level defining a high or 

low shrinkage may not exist. RSE may be a better criterion to evaluate the quality of individual 

parameter estimation. 

In conclusion, MBF obtained by FO linearization is a useful and rapid method to predict standard 

errors and shrinkages of individual parameters, in absence or presence of data below the 

quantification limit. It allows for evaluation of a large number of scenarios without extensive 

simulations. These developments will be implemented in the next version of PFIM. 
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