. Tnf?, Tumor necrosis factor ?; TTX: Tetrodotoxin; WNV: West Nile virus References

L. Boulanger, Immune Proteins in Brain Development and Synaptic Plasticity, Neuron, vol.64, issue.1, pp.93-109, 2009.
DOI : 10.1016/j.neuron.2009.09.001

URL : http://doi.org/10.1016/j.neuron.2009.09.001

I. Marin and J. Kipnis, Learning and memory ... and the immune system, Learning & Memory, vol.20, issue.10, pp.601-607, 2013.
DOI : 10.1101/lm.028357.112

G. Collingridge, Long-term depression in the CNS, Nature Reviews Neuroscience, vol.59, issue.7, pp.459-73, 2010.
DOI : 10.1007/BF00236625

R. Nicoll and K. Roche, Long-term potentiation: Peeling the onion, Neuropharmacology, vol.74, pp.18-22, 2013.
DOI : 10.1016/j.neuropharm.2013.02.010

D. Feldman, The Spike-Timing Dependence of Plasticity, Neuron, vol.75, issue.4, pp.556-71, 2012.
DOI : 10.1016/j.neuron.2012.08.001

E. Borbely, B. Scheich, and Z. Helyes, Neuropeptides in learning and memory, Neuropeptides, vol.47, issue.6, pp.439-50, 2013.
DOI : 10.1016/j.npep.2013.10.012

A. Van-den-pol, Neuropeptide Transmission in Brain Circuits, Neuron, vol.76, issue.1, pp.98-115, 2012.
DOI : 10.1016/j.neuron.2012.09.014

P. Casillas-espinosa, K. Powell, O. Brien, and T. , Regulators of synaptic transmission: Roles in the pathogenesis and treatment of epilepsy, Epilepsia, vol.245, issue.Suppl. 6, pp.41-58, 2012.
DOI : 10.1016/0922-4106(93)90162-3

M. Baudry, Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning, Brain Research, vol.1621, pp.73-81, 2015.
DOI : 10.1016/j.brainres.2014.11.033

T. Sacktor, How does PKM? maintain long-term memory?, Nature Reviews Neuroscience, vol.16, issue.1, pp.9-15, 2011.
DOI : 10.1523/JNEUROSCI.3789-08.2009

N. Bliim, Transcriptional regulation of long-term potentiation, neurogenetics, vol.324, issue.5924, pp.201-211, 2016.
DOI : 10.1126/science.1168978

C. Nicolas, The JAK/STAT Pathway Is Involved in Synaptic Plasticity, Neuron, vol.73, issue.2, pp.374-90, 2012.
DOI : 10.1016/j.neuron.2011.11.024

K. Kigerl, Pattern recognition receptors and central nervous system repair, Experimental Neurology, vol.258, pp.5-16, 2014.
DOI : 10.1016/j.expneurol.2014.01.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974939

C. Downes and P. Crack, Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS?, British Journal of Pharmacology, vol.23, issue.8, pp.1872-88, 2010.
DOI : 10.1097/01.WCB.0000078322.96027.78

O. Shea, J. Murray, and P. , Cytokine Signaling Modules in Inflammatory Responses, Immunity, vol.28, issue.4, pp.477-87, 2008.
DOI : 10.1016/j.immuni.2008.03.002

G. Delgoffe, P. Murray, and D. Vignali, Interpreting mixed signals: the cell's cytokine conundrum, Current Opinion in Immunology, vol.23, issue.5, pp.632-640, 2011.
DOI : 10.1016/j.coi.2011.07.013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190023

J. Bezbradica and R. Medzhitov, Integration of cytokine and heterologous receptor signaling pathways, Nature Immunology, vol.54, issue.4, pp.333-342, 2009.
DOI : 10.4049/jimmunol.171.1.257

Y. Shirai, On the transplantation of the rat sarcoma in adult heterogenous animals, Jap Med World, vol.1, pp.14-19, 1921.

J. Murphy and E. Sturm, CONDITIONS DETERMINING THE TRANSPLANTABILITY OF TISSUES IN THE BRAIN, Journal of Experimental Medicine, vol.38, issue.2, pp.183-97, 1923.
DOI : 10.1084/jem.38.2.183

I. Galea, I. Bechmann, and V. Perry, What is immune privilege (not)? Trends Immunol, pp.12-20, 2007.
DOI : 10.1016/j.it.2006.11.004

B. Engelhardt, P. Vajkoczy, and R. Weller, The movers and shapers in immune privilege of the CNS, Nature Immunology, vol.213, issue.2, pp.123-154, 2017.
DOI : 10.1111/j.1600-065X.2006.00441.x

F. Ginhoux, Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages, Science, vol.56, issue.2, pp.841-846, 2010.
DOI : 10.1016/S0301-0082(98)00035-5

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719181

D. Davalos, ATP mediates rapid microglial response to local brain injury in vivo, Nature Neuroscience, vol.19, issue.6, pp.752-760, 2005.
DOI : 10.1523/JNEUROSCI.2294-04.2004

A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo, Science, vol.308, issue.5726, pp.1314-1322, 2005.
DOI : 10.1126/science.1110647

H. Wake, Resting Microglia Directly Monitor the Functional State of Synapses In Vivo and Determine the Fate of Ischemic Terminals, Journal of Neuroscience, vol.29, issue.13, pp.3974-80, 2009.
DOI : 10.1523/JNEUROSCI.4363-08.2009

M. Tremblay, R. Lowery, and A. Majewska, Microglial Interactions with Synapses Are Modulated by Visual Experience, PLoS Biology, vol.27, issue.Pt 17, p.1000527, 2010.
DOI : 10.1371/journal.pbio.1000527.s021

A. Suzumura, Neuron-Microglia Interaction in Neuroinflammation, Current Protein & Peptide Science, vol.14, issue.1, pp.16-20, 2013.
DOI : 10.2174/1389203711314010004

M. Czeh, P. Gressens, and A. Kaindl, The Yin and Yang of Microglia, Developmental Neuroscience, vol.33, issue.3-4, pp.3-4199, 2011.
DOI : 10.1159/000328989

M. Tremblay, The Role of Microglia in the Healthy Brain, Journal of Neuroscience, vol.31, issue.45, pp.16064-16073, 2011.
DOI : 10.1523/JNEUROSCI.4158-11.2011

C. Li, Astrocytes: Implications for Neuroinflammatory Pathogenesis of Alzheimers Disease, Current Alzheimer Research, vol.8, issue.1, pp.67-80, 2011.
DOI : 10.2174/156720511794604543

M. Pekny and M. Pekna, Astrocyte Reactivity and Reactive Astrogliosis: Costs and Benefits, Physiological Reviews, vol.94, issue.4, pp.1077-98, 2014.
DOI : 10.1152/physrev.00041.2013

A. Kaindl, Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain, Annals of Neurology, vol.43, issue.4, pp.536-585, 2012.
DOI : 10.1016/S0304-3940(98)00029-9

D. Wraith and L. Nicholson, The adaptive immune system in diseases of the central nervous system, Journal of Clinical Investigation, vol.122, issue.4, pp.1172-1181, 2012.
DOI : 10.1172/JCI58648

E. Pedemonte, Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases, Pharmacology & Therapeutics, vol.111, issue.3, pp.555-66, 2006.
DOI : 10.1016/j.pharmthera.2005.11.007

R. Ransohoff and B. Engelhardt, The anatomical and cellular basis of immune surveillance in the central nervous system, Nature Reviews Immunology, vol.130, issue.9, pp.623-658, 2012.
DOI : 10.1093/brain/awm038

A. London, M. Cohen, and M. Schwartz, Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair, Frontiers in Cellular Neuroscience, vol.7, p.34, 2013.
DOI : 10.3389/fncel.2013.00034

A. Louveau, Structural and functional features of central nervous system lymphatic vessels, Nature, vol.14, issue.7560, pp.337-378, 2015.
DOI : 10.1097/00019052-200106000-00006

A. Louveau, T. Harris, and J. Kipnis, Revisiting the Mechanisms of CNS Immune Privilege, Trends in Immunology, vol.36, issue.10, pp.569-77, 2015.
DOI : 10.1016/j.it.2015.08.006

M. Heneka, M. Kummer, and E. Latz, Innate immune activation in neurodegenerative disease, Nature Reviews Immunology, vol.87, issue.7, pp.463-77, 2014.
DOI : 10.1016/S0092-8674(00)81369-0

K. Riazi, Microglia-Dependent Alteration of Glutamatergic Synaptic Transmission and Plasticity in the Hippocampus during Peripheral Inflammation, Journal of Neuroscience, vol.35, issue.12, pp.4942-52, 2015.
DOI : 10.1523/JNEUROSCI.4485-14.2015

M. Lynch, Neuroinflammatory changes negatively impact on LTP: A focus on IL-1?, Brain Research, vol.1621, pp.197-204, 2015.
DOI : 10.1016/j.brainres.2014.08.040

S. Patterson, Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1?, BDNF and synaptic plasticity, Neuropharmacology, vol.96, pp.11-19, 2015.
DOI : 10.1016/j.neuropharm.2014.12.020

R. Nisticò, Inflammation Subverts Hippocampal Synaptic Plasticity in Experimental Multiple Sclerosis, PLoS ONE, vol.31, issue.1, p.54666, 2013.
DOI : 10.1371/journal.pone.0054666.g007

J. Jankowsky, B. Derrick, and P. Patterson, Cytokine Responses to LTP Induction in the Rat Hippocampus: A Comparison of In Vitro and In Vivo Techniques, Learning & Memory, vol.7, issue.6, pp.400-412, 2000.
DOI : 10.1101/lm.32600

D. Balschun, Interleukin-6: a cytokine to forget, The FASEB Journal, vol.18, issue.14, pp.1788-90, 2004.
DOI : 10.1096/fj.04-1625fje

URL : https://lirias.kuleuven.be/bitstream/123456789/129134/2/Balschun_2004.pdf

F. Gardoni, Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin-1? and NMDA stimulation, Journal of Neuroinflammation, vol.8, issue.1, p.14, 2011.
DOI : 10.1186/1742-2094-8-14

A. Lai, Interleukin-1 beta modulates AMPA receptor expression and phosphorylation in hippocampal neurons, Journal of Neuroimmunology, vol.175, issue.1-2, pp.97-106, 2006.
DOI : 10.1016/j.jneuroim.2006.03.001

A. Vezzani and B. Viviani, Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability, Neuropharmacology, vol.96, pp.70-82, 2015.
DOI : 10.1016/j.neuropharm.2014.10.027

A. Clark, Selective Activation of Microglia Facilitates Synaptic Strength, Journal of Neuroscience, vol.35, issue.11, pp.4552-70, 2015.
DOI : 10.1523/JNEUROSCI.2061-14.2015

J. Zhang, Microglial CR3 Activation Triggers Long-Term Synaptic Depression in the Hippocampus via NADPH Oxidase, Neuron, vol.82, issue.1, pp.195-207, 2014.
DOI : 10.1016/j.neuron.2014.01.043

E. Hewitt, The MHC class I antigen presentation pathway: strategies for viral immune evasion, Immunology, vol.2, issue.2, pp.163-172, 2003.
DOI : 10.1006/viro.2002.1365

R. Corriveau, G. Huh, and C. Shatz, Regulation of Class I MHC Gene Expression in the Developing and Mature CNS by Neural Activity, Neuron, vol.21, issue.3, pp.505-525, 1998.
DOI : 10.1016/S0896-6273(00)80562-0

O. Lidman, T. Olsson, and F. Piehl, Expression of nonclassical MHC class I (RT1-U) in certain neuronal populations of the central nervous system, European Journal of Neuroscience, vol.310, issue.12, pp.4468-72, 1999.
DOI : 10.1038/310688a0

G. Huh, Functional Requirement for Class I MHC in CNS Development and Plasticity, Science, vol.2, issue.1, pp.2155-2164, 2000.
DOI : 10.3109/02699058809150929

C. Goddard, D. Butts, and C. Shatz, Regulation of CNS synapses by neuronal MHC class I, Proceedings of the National Academy of Sciences, vol.269, issue.5223, pp.6828-6861, 2007.
DOI : 10.1126/science.7624779

L. Needleman, MHC class I molecules are present both pre- and postsynaptically in the visual cortex during postnatal development and in adulthood, Proceedings of the National Academy of Sciences, vol.104, issue.30, pp.16999-7004, 2010.
DOI : 10.1073/pnas.0705320104

H. Lee, Synapse elimination and learning rules co-regulated by MHC class I H2-Db, Nature, vol.99, issue.7499, pp.195-200, 2014.
DOI : 10.1073/pnas.042693699

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016165

P. Nelson, MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression, Learning & Memory, vol.20, issue.9, pp.505-522, 2013.
DOI : 10.1101/lm.031351.113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744042

M. Glynn, MHCI negatively regulates synapse density during the establishment of cortical connections, Nature Neuroscience, vol.23, issue.4, pp.442-51, 2011.
DOI : 10.1038/nn1677

T. Dixon-salazar, MHC Class I Limits Hippocampal Synapse Density by Inhibiting Neuronal Insulin Receptor Signaling, Journal of Neuroscience, vol.34, issue.35, pp.11844-56, 2014.
DOI : 10.1523/JNEUROSCI.4642-12.2014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468138

M. Perez-alcazar, Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3, Experimental Neurology, vol.253, pp.154-64, 2014.
DOI : 10.1016/j.expneurol.2013.12.013

M. Vasek, A complement?microglial axis drives synapse loss during virus-induced memory impairment, Nature, vol.79, issue.7608, pp.538-581, 2016.
DOI : 10.1128/JVI.79.21.13350-13361.2005

H. Kettenmann, F. Kirchhoff, and A. Verkhratsky, Microglia: New Roles for the Synaptic Stripper, Neuron, vol.77, issue.1, pp.10-18, 2013.
DOI : 10.1016/j.neuron.2012.12.023

J. Hua and S. Smith, Neural activity and the dynamics of central nervous system development, Nature Neuroscience, vol.7, issue.4, pp.327-359, 2004.
DOI : 10.1038/nn1218

B. Hooks and C. Chen, Distinct Roles for Spontaneous and Visual Activity in Remodeling of the Retinogeniculate Synapse, Neuron, vol.52, issue.2, pp.281-91, 2006.
DOI : 10.1016/j.neuron.2006.07.007

T. Wiesel, The postnatal development of the visual cortex and the influence of environment, Bioscience Reports, vol.185, issue.5, pp.351-77, 1982.
DOI : 10.1113/jphysiol.1975.sp010995

B. Stevens, The Classical Complement Cascade Mediates CNS Synapse Elimination, Cell, vol.131, issue.6, pp.1164-78, 2007.
DOI : 10.1016/j.cell.2007.10.036

URL : http://doi.org/10.1016/j.cell.2007.10.036

D. Schafer, Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner, Neuron, vol.74, issue.4, pp.691-705, 2012.
DOI : 10.1016/j.neuron.2012.03.026

G. Sipe, Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex, Nature Communications, vol.10, pp.2-15, 2016.
DOI : 10.1016/S0896-6273(03)00286-1

URL : http://doi.org/10.1038/ncomms10905

R. Paolicelli, Synaptic Pruning by Microglia Is Necessary for Normal Brain Development, Science, vol.107, issue.17, pp.1456-1464, 2011.
DOI : 10.1073/pnas.0913449107

Y. Zhan, Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior, Nature Neuroscience, vol.19, issue.3, pp.400-406, 2014.
DOI : 10.1006/cbmr.1996.0014

J. Rogers, CX3CR1 Deficiency Leads to Impairment of Hippocampal Cognitive Function and Synaptic Plasticity, Journal of Neuroscience, vol.31, issue.45, pp.16241-50, 2011.
DOI : 10.1523/JNEUROSCI.3667-11.2011

A. Stephan, B. Barres, and B. Stevens, The Complement System: An Unexpected Role in Synaptic Pruning During Development and Disease, Annual Review of Neuroscience, vol.35, issue.1, pp.369-89, 2012.
DOI : 10.1146/annurev-neuro-061010-113810

U. Nagerl, Bidirectional Activity-Dependent Morphological Plasticity in Hippocampal Neurons, Neuron, vol.44, issue.5, pp.759-67, 2004.
DOI : 10.1016/j.neuron.2004.11.016

Y. Shinoda, Repetition of mGluR-dependent LTD causes slowly developing persistent reduction in synaptic strength accompanied by synapse elimination, Brain Research, vol.1042, issue.1, pp.99-107, 2005.
DOI : 10.1016/j.brainres.2005.02.028

Y. Kamikubo, Long-lasting synaptic loss after repeated induction of LTD: independence to the means of LTD induction, European Journal of Neuroscience, vol.436, issue.6, pp.1606-1622, 2006.
DOI : 10.1113/jphysiol.1978.sp012482

Y. Ramiro-cortés and I. Israely, Long Lasting Protein Synthesis- and Activity-Dependent Spine Shrinkage and Elimination after Synaptic Depression, PLoS ONE, vol.7, issue.8, p.71155, 2013.
DOI : 10.1371/journal.pone.0071155.s001

J. Wiegert and T. Oertner, Long-term depression triggers the selective elimination of weakly integrated synapses, Proceedings of the National Academy of Sciences, vol.272, issue.5262, pp.4510-4519, 2013.
DOI : 10.1126/science.272.5262.716

S. Hasegawa, Dendritic spine dynamics leading to spine elimination after repeated inductions of LTD, Scientific Reports, vol.15, issue.1, pp.1-6, 2015.
DOI : 10.1016/S0165-0270(02)00152-8

Z. Chen, Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain, Nature Communications, vol.20, p.4486, 2014.
DOI : 10.1016/j.jneumeth.2012.12.010

Z. Chen and B. Trapp, Microglia and neuroprotection, Journal of Neurochemistry, vol.120, issue.Suppl, pp.10-17, 2016.
DOI : 10.1172/JCI33144

B. Trapp, Evidence for synaptic stripping by cortical microglia, Glia, vol.84, issue.4, pp.360-368, 2007.
DOI : 10.1093/jnen/61.1.23

V. Perry, O. Connor, and V. , The Role of Microglia in Synaptic Stripping and Synaptic Degeneration: A Revised Perspective, ASN Neuro, vol.962, issue.5, p.47, 2010.
DOI : 10.1111/j.1749-6632.2002.tb04061.x

J. Delpech, Microglia in neuronal plasticity: Influence of stress, Neuropharmacology, vol.96, pp.19-28, 2015.
DOI : 10.1016/j.neuropharm.2014.12.034

G. Tyzack, Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression, Nature Communications, vol.45, p.4294, 2014.
DOI : 10.1002/cne.20822

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104454

C. Parkhurst, Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor, Cell, vol.155, issue.7, pp.1596-609, 2013.
DOI : 10.1016/j.cell.2013.11.030

URL : http://doi.org/10.1016/j.cell.2013.11.030

A. Miyamoto, Microglia contact induces synapse formation in developing somatosensory cortex, Nature Communications, vol.34, p.12540, 2016.
DOI : 10.1523/JNEUROSCI.1346-14.2014

G. Turrigiano, Activity-dependent scaling of quantal amplitude in neocortical neurons, Nature, vol.391, issue.6670, pp.892-898, 1998.
DOI : 10.1038/36103

G. Turrigiano, The dialectic of Hebb and homeostasis, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.41, issue.1715, p.20160258, 1715.
DOI : 10.1007/7854_2014_305

D. Stellwagen and R. Malenka, Synaptic scaling mediated by glial TNF-?, Nature, vol.37, issue.7087, pp.1054-1063, 2006.
DOI : 10.1016/0165-0270(91)90128-M

L. Cingolani, Activity-Dependent Regulation of Synaptic AMPA Receptor Composition and Abundance by ??3 Integrins, Neuron, vol.58, issue.5, pp.749-62, 2008.
DOI : 10.1016/j.neuron.2008.04.011

C. Aizenman and K. Pratt, There's More Than One Way to Scale a Synapse, Neuron, vol.58, issue.5, pp.651-654, 2008.
DOI : 10.1016/j.neuron.2008.05.017

URL : http://doi.org/10.1016/j.neuron.2008.05.017

M. Kaneko, Tumor Necrosis Factor-?? Mediates One Component of Competitive, Experience-Dependent Plasticity in Developing Visual Cortex, Neuron, vol.58, issue.5, pp.673-80, 2008.
DOI : 10.1016/j.neuron.2008.04.023

R. Sonneville, Understanding brain dysfunction in sepsis, Annals of Intensive Care, vol.3, issue.1, p.15, 2013.
DOI : 10.1097/CCM.0b013e31823779ca

URL : https://hal.archives-ouvertes.fr/pasteur-00830839

G. Wang, W. Li, and K. Li, Acute encephalopathy and encephalitis caused by influenza virus infection, Current Opinion in Neurology, vol.23, issue.3, pp.305-316, 2010.
DOI : 10.1097/WCO.0b013e328338f6c9

D. Chiara and G. , Infectious Agents and Neurodegeneration, Molecular Neurobiology, vol.105, issue.Suppl 2, pp.614-652, 2012.
DOI : 10.1371/journal.pone.0020495

H. Jurgens, K. Amancherla, and R. Johnson, Influenza Infection Induces Neuroinflammation, Alters Hippocampal Neuron Morphology, and Impairs Cognition in Adult Mice, Journal of Neuroscience, vol.32, issue.12, pp.3958-68, 2012.
DOI : 10.1523/JNEUROSCI.6389-11.2012

J. Brask, Changes in calcium currents and GABAergic spontaneous activity in cultured rat hippocampal neurons after a neurotropic influenza A virus infection, Brain Research Bulletin, vol.55, issue.3, pp.421-430, 2001.
DOI : 10.1016/S0361-9230(01)00536-6

J. Brask, Effects on synaptic activity in cultured hippocampal neurons by influenza A viral proteins, Journal of Neurovirology, vol.76, issue.4, pp.395-402, 2005.
DOI : 10.1080/13550280500186916

R. Piacentini, HSV-1 promotes Ca2+ ?mediated APP phosphorylation and Abeta accumulation in rat cortical neurons, Neurobiol Aging, vol.32, issue.12, pp.2323-2336, 2011.
DOI : 10.1016/j.neurobiolaging.2010.06.009

A. Liou, To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways, Progress in Neurobiology, vol.69, issue.2, pp.103-145, 2003.
DOI : 10.1016/S0301-0082(03)00005-4

C. Angeloni, Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship, Oxidative Medicine and Cellular Longevity, vol.24, issue.2, p.370312, 2015.
DOI : 10.1523/jneurosci.2246-12.2012

URL : http://doi.org/10.1155/2015/370312

B. Aertker, S. Bedi, C. Cox, and . Jr, Strategies for CNS repair following TBI, Experimental Neurology, vol.275, pp.411-437, 2016.
DOI : 10.1016/j.expneurol.2015.01.008

K. Corps, T. Roth, and D. Mcgavern, Inflammation and Neuroprotection in Traumatic Brain Injury, JAMA Neurology, vol.72, issue.3, pp.355-62, 2015.
DOI : 10.1001/jamaneurol.2014.3558

M. Hemphill, Traumatic Brain Injury and the Neuronal Microenvironment: A Potential Role for Neuropathological Mechanotransduction, Neuron, vol.85, issue.6, pp.1177-92, 2015.
DOI : 10.1016/j.neuron.2015.02.041

A. Vezzani, Epilepsy and brain inflammation, Experimental Neurology, vol.244, pp.11-21, 2013.
DOI : 10.1016/j.expneurol.2011.09.033

A. Vezzani, The role of inflammation in epilepsy, Nature Reviews Neurology, vol.36, issue.1, pp.31-40, 2011.
DOI : 10.1016/S0165-0173(01)00102-3

C. Savin, J. Triesch, and M. Meyer-hermann, Epileptogenesis due to glia-mediated synaptic scaling, Journal of The Royal Society Interface, vol.71, issue.4, pp.655-68, 2009.
DOI : 10.1128/IAI.71.4.2288-2291.2003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839938

A. Wall, Tumor necrosis factor-?? potentiates long-term potentiation in the rat dentate gyrus after acute hypoxia, Journal of Neuroscience Research, vol.46, issue.5, pp.815-844, 2015.
DOI : 10.1021/jm030152f

G. Petit, Binge Drinking in Adolescents: A Review of Neurophysiological and Neuroimaging Research, Alcohol and Alcoholism, vol.49, issue.2, pp.198-206, 2014.
DOI : 10.1093/alcalc/agt172

G. Riedel, B. Platt, and J. Micheau, Glutamate receptor function in learning and memory, Behavioural Brain Research, vol.140, issue.1-2, pp.1-47, 2003.
DOI : 10.1016/S0166-4328(02)00272-3

R. Ward, F. Lallemand, and P. De-witte, Biochemical and Neurotransmitter Changes Implicated in Alcohol-Induced Brain Damage in Chronic or 'Binge Drinking' Alcohol Abuse, Alcohol and Alcoholism, vol.44, issue.2, pp.128-163, 2009.
DOI : 10.1093/alcalc/agn100

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.695.779

C. Guerri and M. Pascual, Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence, Alcohol, vol.44, issue.1, pp.15-26, 2010.
DOI : 10.1016/j.alcohol.2009.10.003

R. Vetreno, L. Qin, and F. Crews, Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking, Neurobiology of Disease, vol.59, pp.52-62, 2013.
DOI : 10.1016/j.nbd.2013.07.002

R. Philpot and C. Kirstein, Developmental Differences in the Accumbal Dopaminergic Response to Repeated Ethanol Exposure, Annals of the New York Academy of Sciences, vol.7, issue.1, pp.422-428, 2004.
DOI : 10.1196/annals.1308.056

D. Lemarquand, R. Pihl, and C. Benkelfat, Serotonin and alcohol intake, abuse, and dependence: Findings of animal studies, Biological Psychiatry, vol.36, issue.6, pp.395-421, 1994.
DOI : 10.1016/0006-3223(94)91215-7

H. Edenberg, Variations in GABRA2, Encoding the ?2 Subunit of the GABAA Receptor, Are Associated with Alcohol Dependence and with Brain Oscillations, The American Journal of Human Genetics, vol.74, issue.4, pp.705-719, 2004.
DOI : 10.1086/383283

M. Kervern, Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus, Hippocampus, vol.34, issue.8, pp.912-935, 2015.
DOI : 10.1111/j.1460-9568.2011.07776.x

J. Jacobus and S. Tapert, Neurotoxic Effects of Alcohol in Adolescence, Annual Review of Clinical Psychology, vol.9, issue.1, pp.703-724, 2013.
DOI : 10.1146/annurev-clinpsy-050212-185610

S. Bava, Longitudinal Changes in White Matter Integrity Among Adolescent Substance Users, Alcoholism: Clinical and Experimental Research, vol.194, pp.181-190, 2013.
DOI : 10.1007/s00213-007-0823-y

J. Giedd, Structural Magnetic Resonance Imaging of the Adolescent Brain, Annals of the New York Academy of Sciences, vol.11, issue.1
DOI : 10.1001/archneur.1994.00540210046012

J. Giedd, The Teen Brain: Insights from Neuroimaging, Journal of Adolescent Health, vol.42, issue.4, pp.335-378, 2008.
DOI : 10.1016/j.jadohealth.2008.01.007

C. Guerri, A. Bazinet, and E. Riley, Foetal Alcohol Spectrum Disorders and Alterations in Brain and Behaviour, Alcohol and Alcoholism, vol.44, issue.2, pp.108-122, 2009.
DOI : 10.1093/alcalc/agn105

S. Alfonso-loeches, M. Pascual, and C. Guerri, Gender differences in alcohol-induced neurotoxicity and brain damage, Toxicology, vol.311, issue.1-2, pp.27-34, 2013.
DOI : 10.1016/j.tox.2013.03.001

D. Centonze, The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis, Cell Death and Differentiation, vol.80, issue.7, pp.1083-91, 2010.
DOI : 10.1093/hmg/ddm189

S. Amor, Inflammation in neurodegenerative diseases?-?an update, Immunology, vol.15, issue.2, pp.151-66, 2014.
DOI : 10.1038/nn.3163

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008224

R. Nisticò, Targeting Synaptic Dysfunction in Alzheimer???s Disease Therapy, Molecular Neurobiology, vol.21, issue.3, pp.572-87, 2012.
DOI : 10.3233/JAD-2010-100225

M. Pignatelli, Synaptic Plasticity as a Therapeutic Target in the Treatment of Autism-related Single-gene Disorders, Current Pharmaceutical Design, vol.19, issue.36, pp.6480-90, 2013.
DOI : 10.2174/1381612811319360008

R. Nisticò, Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.46, issue.3, p.20130162, 1633.
DOI : 10.1007/s12035-012-8302-9

H. Mcfarland and R. Martin, Multiple sclerosis: a complicated picture of autoimmunity, Nature Immunology, vol.96, issue.9, pp.913-922, 2007.
DOI : 10.1016/j.jns.2005.03.011

F. Mori, Interleukin-1?? Promotes Long-Term Potentiation in Patients with Multiple Sclerosis, NeuroMolecular Medicine, vol.90, issue.5, pp.38-51, 2014.
DOI : 10.1038/labinvest.2010.6

K. Do and Y. , Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis, PLoS ONE, vol.7, issue.5, p.35476, 2012.

A. Sasaki, Microglial activation in early stages of amyloid ?? protein deposition, Acta Neuropathologica, vol.94, issue.4, pp.316-338, 1997.
DOI : 10.1007/s004010050713

Z. Tan, Inflammatory markers and the risk of Alzheimer disease: The Framingham Study, Neurology, vol.68, issue.22, pp.1902-1910, 2007.
DOI : 10.1212/01.wnl.0000263217.36439.da

Q. Wang, ?-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor, European Journal of Neuroscience, vol.274, issue.11, pp.2827-2859, 2005.
DOI : 10.4049/jimmunol.168.6.2644

A. Schmid, M. Lynch, and C. Herron, The effects of IL-1 receptor antagonist on beta amyloid mediated depression of LTP in the rat CA1 in vivo, Hippocampus, vol.78, issue.7, pp.670-676, 2009.
DOI : 10.1002/hipo.20542

L. Kotilinek, Cyclooxygenase-2 inhibition improves amyloid-??-mediated suppression of memory and synaptic plasticity, Brain, vol.131, issue.3, pp.651-64, 2008.
DOI : 10.1093/brain/awn008

R. Jones and M. Lynch, How dependent is synaptic plasticity on microglial phenotype?, Neuropharmacology, vol.96, pp.3-10, 2015.
DOI : 10.1016/j.neuropharm.2014.08.012

S. Hong, Complement and microglia mediate early synapse loss in Alzheimer mouse models, Science, vol.509, issue.6152, pp.712-718, 2016.
DOI : 10.1038/nature13154

M. Diogenes, Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation, Journal of Neuroscience, vol.32, issue.34, pp.11750-62, 2012.
DOI : 10.1523/JNEUROSCI.0234-12.2012

URL : http://goedoc.uni-goettingen.de/goescholar/bitstream/handle/1/9413/11750.full.pdf?sequence=1

E. Hirsch and S. Hunot, Neuroinflammation in Parkinson's disease: a target for neuroprotection?, The Lancet Neurology, vol.8, issue.4, pp.382-97, 2009.
DOI : 10.1016/S1474-4422(09)70062-6

S. Hunot and E. Hirsch, Neuroinflammatory processes in Parkinson's disease, Annals of Neurology, vol.374, issue.S3
DOI : 10.1002/ana.10481

X. Xue, Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of Parkinson's disease, Brain Research Bulletin, vol.103, pp.54-63, 2014.
DOI : 10.1016/j.brainresbull.2014.02.004

D. Filippo and M. , Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders, Trends in Pharmacological Sciences, vol.29, issue.8, pp.402-414, 2008.
DOI : 10.1016/j.tips.2008.06.005