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Gain of power of the general regression
model compared to Cochran-Armitage
Trend tests: simulation study and
application to bipolar disorder
Marie-Hélène Dizier1, Florence Demenais1 and Flavie Mathieu2*

Abstract

Background: Most genome-wide association studies assumed an additive model of inheritance which may result
in significant loss of power when there is a strong departure from additivity. The General Regression Model (GRM),
which allows performing an assumption-free test for association by testing for both additive effect and deviation
from additive effect, may be more appropriate for association tests. Additionally, GRM allows testing the underlying
genetic model. We compared the power of GRM association test to additive and other Cochran-Armitage Trend
(CAT) tests through simulations and by applying GRM to a large case/control sample, the bipolar Welcome Trust
Case Control Cohort data. Simulations were performed on two sets of case/control samples (1000/1000 and 2000/
2000), using a large panel of genetic models. Four association tests (GRM and additive, recessive and dominant CAT
tests) were applied to all replicates.

Results: We showed that GRM power to detect association was similar or greater than the additive CAT test, in
particular in case of recessive inheritance, with up to 67% gain in power. GRM analysis of genome-wide bipolar
disorder Welcome Trust Consortium data (1998 cases/3004 controls) showed significant association in the 16p12
region (rs420259; P = 3.4E-7) which has not been identified using the additive CAT test. As expected, rs42025 fitted
a non-additive (recessive) model.

Conclusions: GRM provides increased power compared to the additive CAT test for association studies and is easily
applicable.
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Background
During the last decades, numerous genetic association
studies for diseases or traits have been applied to large
panels of SNPs (for single-nucleotide polymorphism), ei-
ther at the genome-wide level (Genome Wide Associ-
ation Studies (GWAS)) or in candidate regions. To limit
the multiple testing problem, association studies were
usually based on a single association test statistic be-
tween each SNP and disease. However, it is not obvious

which test should be used. The simplest association test
is allele-based and requires the strong assumption of
Hardy Weinberg (HW) equilibrium. Model-based tests
such as the Cochran-Armitage Trend (CAT) tests [1]
have the advantage of not requiring this assumption and
have thus been recommended for association studies [2].
CAT tests have been designed for different genetic
models of the SNP effect on disease: additive (CAT_-
ADD), dominant (CAT_DOM) and recessive (CAT_REC),
depending on the coding scheme assigned to the three ge-
notypes. As the true genetic model is often unknown,
CAT_ADD test is commonly used as it can represent an
intermediate test between recessive and dominant tests. A
major disadvantage of CAT tests is their sensitivity to
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model misspecification, as they are model-based. In case
of deviation from additivity, the power of CAT_ADD test
to detect association may be decreased [3–5]. A new
likelihood-based method, which compares allelic frequen-
cies between cases and controls and does not require spe-
cification of the genetic model or HW equilibrium
assumption has recently been proposed. However the
power of this approach did not exceed that of the CAT_-
ADD test [6].
Other tests, such as the “maximin efficiency robusts

tests” (MERT and MAX), which are based on efficiency
robustness theory, have relatively high power for any of
the three commonly used genetic models (additive, re-
cessive and dominant) [4]. The MERT test is a linear
combination of the standardized optimal tests (additive,
recessive and dominant) while the MAX test is the max-
imum of the standardized optimal tests. However, these
tests are computationally intensive.
When the underlying genetic model is unknown, the

General Regression Model (GRM), which includes both
a term for additive effect and a term for deviation from
additivity (dominance term) may be more appropriate
for association tests. The GRM allows to first testing for
association without making assumption on the mode of
transmission and then testing for the underlying genetic
model. The goal of this study was to compare the power
of the GRM test for association with those of the most
commonly used CAT_ADD test as well as CAT_DOM
and CAT_REC tests through a simulation study that
considered a large panel of genetic models. We then ap-
plied GRM and CAT_ADD tests to the bipolar disorder
Wellcome Trust Cases-Controls Cohort’ data (WTCCC),
in order to assess whether GRM was able to replicate
CAT_ADD test results and to detect additional loci.

Methods
Association tests
CAT tests
The CAT tests can be applied to different genetic
models. They are based on a logistic regressive model
such that: logit(P) = α + β (X), where X is equal to 0, 1
and 2 for each of three SNP genotypes (AA, Aa, aa re-
spectively) in case of an additive model (CAT_ADD); 0,
0, 1 for a recessive model (CAT_REC) and 0, 1, 1, for a
dominant model (CAT_DOM) (see Table 1 for details on
the coding scheme). The association test (β = 0 under

H0) is a likelihood-ratio test which asymptotically fol-
lows a Chi-square distribution with one degree of free-
dom (df ).

General regression model
The General Regression Model (GRM), which includes
two terms, an additive term and a dominance term (de-
viation from additivity), as proposed by Fisher and Wil-
son [7], allows testing for association without making
assumption on the genetic model. The logistic regression
model is written as:

logit Pð Þ ¼ αþ βAdd Addð Þ þ βDomDev Domdevð Þ

where βAdd is the regression coefficient for the additive
effect (coded as 0, 1, 2 for the three genotypes AA, Aa,
aa, see Table 1) and βDomDev is the regression coefficient
for the dominance term (coded as 0, 1, 0, see Table 1).
The test for association (βAdd = βDomDev = 0 under H0) is
a likelihood-ration test which is assumed to follow a chi-
square distribution with 2 df.
If there is significant evidence for association, the fol-

lowing genetic models can then be examined: by setting
βDomDev = 0 for the additive model, βDomDev = βAdd for
the dominant model βDomDev = - βAdd for the recessive
model. The decision tree is shown in Fig. 1.
The underlying genetic model is only tested if the as-

sociation test is significant. First the additive model
(Under H0, βDomDev = 0) is tested. If H0 is not rejected,
the additive model is retained. If the additive model is
rejected, the dominant and recessive models are then
tested: 1/if (βDomDev = βAdd) is not rejected, the dominant
model is retained and 2/if (βDomDev = -βAdd) is not
rejected, the recessive model is retained (see Fig. 1).

Simulation studies
A total of 200 000 or 1.0E8 replicates (for power or type
1 error estimation respectively) of samples of 1000 cases
and 1000 controls were simulated. A binary trait was
generated, using three different prevalence of disease
(1%, 5 and 10%). We considered three genetic models
(additive, dominant and recessive) for the causal variant.
For each of these models, the minor allele frequency
(MAF) was set at 0.1, 0.2, 0.3 or 0.4, and, for each MAF,
the Odds-Ratios (OR) were varied between 1.0 and 3.2
(with a step of 0.2). Association analyses were performed

Table 1 Coding scheme of each genotype used for each CAT model and GRM

CAT models GRM

Genotypes Additive (CAT_ADD) Dominant (CAT_DOM) Recessive (CAT_REC) Add DomDev

AA 0 0 0 0 0

Aa 1 1 0 1 1

aa 2 1 1 2 0
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for all simulated replicates using GRM and the CAT
tests (CAT_ADD, CAT_DOM and CAT_REC). Thresh-
olds of 1.0E-5 and 1.0E-7 were used to declare signifi-
cance as currently used in association studies of large
panels of markers.

Type one error rate
To estimate the type one error rate, simulations were
done under the null hypothesis of no association (OR =
1.0 under H0). The type one error rate was estimated by
the proportion of replicates showing significant associ-
ation using either GRM or the CAT tests, for three sig-
nificance thresholds: 5, 1% and 1.0E-5.

Comparison of power of association tests
Empirical power of each statistical test was estimated by
the proportion of simulated replicates showing signifi-
cant association.

Test of genetic model
For each simulated model (additive, dominant or reces-
sive), the proportion of replicates retaining the true
model was estimated among all replicates showing sig-
nificant association.

Sample size effect
To assess the sensitivity of our results to sample size,
samples of 2000 cases and 2000 controls were also gen-
erated for all genetic models and combinations of par-
ameter values (MAF, ORs).

Results
Type one error rate
Under the null hypothesis of no association, the esti-
mated type I error rate was equal or close to the three
theoretical thresholds considered of 5, 1% and 1.0E-5.
Results are provided in Table 2.

Comparison of power of association tests
Results were similar for the three disease prevalence
(1%, 5 and 10%). For sake of simplicity, only results ob-
tained for a prevalence of 5% are provided. Results for
simulated samples of 1000 cases/1000 controls are
shown in Fig. 2 for MAFs of 0.2 and 0.4 and in Tables 3
and 4 for all MAFs.
When the simulated model was additive, the power of

GRM and CAT_ADD tests to detect association were
similar, for both critical thresholds of 1.0E-5 and 1.0E-7.
For ORs less than or equal to 1.8, the CAT_ADD was
slightly more powerful than GRM only for a few situa-
tions, with an increase in power never exceeding 15%,
for all MAFs and P-value thresholds. For highest ORs,
there was no difference as all power estimates reached 1.
When the simulated model was dominant, the GRM

test was as powerful as the CAT_ADD test for a MAF of
0.2. For a MAF of 0.4, GRM was slightly more powerful,
with highest gains in power reaching 18% for OR = 1.6

Fig. 1 Statistical decisional diagram to test the genetic model using GRM. S and NS: significant and non-significant respectively

Table 2 Type one error rate

Theoretical
thresholds

Type one error

CAT_ADD CAT_REC CAT_DOM GRM

5% 5.0% 5.0% 5.0% 4.8%

1% 1.0% 1.0% 1.0% 0.9%

1.0E-5 1.0E-5 0.7E-5 1.0E-5 0.6E-5
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and significance threshold of 1.0E-5 or 25% for OR = 1.8
and threshold of 1.0E-7. As expected the CAT_DOM
test had always the highest power when the simulated
model was dominant, but the difference with the GRM
never exceeded 12%.
When the simulated model was recessive, the GRM

test was always more powerful than the CAT_ADD test,
especially for SNP allele frequency of 0.2, with a gain in
power of 52% (for OR = 2.6 and P =1.0E-5) or 59% (for
OR = 3.2 and P =1.0E-7). When the MAF was 0.4, the
gains in power were smaller but were obtained for lower
ORs (30% for OR = 1.8 and P =1.0E-5 or 35% for OR = 2
and P =1.0E-7). As expected, the CAT_REC test also
had the highest power when the simulated model was
recessive, but the difference in power with respect to
GRM never exceeded 22%. For ORs less than 1.4, there
was no difference as all power estimates were close to 0
for all tests.
Using a larger sample size of 2000 cases/2000 controls

(results provided in Fig. 2, Additional file 1: Table S1
and S2), similar conclusions could be drawn for the
power comparison between GRM and CAT_ADD tests,
for all simulated model. However, the strongest gain in
power of GRM test versus CAT_ADD test increased and
was obtained for smaller ORs. For example, for a MAF
of 0.2 the highest gain in power with a recessive simu-
lated model reached 67% (OR = 2.4 and P =1.0E-7) and,

when the MAF was 0.4, the power gain reached 40%
(OR = 1.6 and P =1.0E-7).

Tests of genetic model
Results for both simulated sample sizes are provided in
Fig. 3. The genetic model was tested only for SNP(s) sig-
nificantly associated with the disease at the critical
threshold of 1.0E-5. The test of the genetic model was
based on a less stringent threshold of 0.01, as it only ap-
plies to SNP(s) showing significant association. When
the power to detect association was less than 1%, tests of
genetic models were not performed to avoid a bias in
the estimation of the true model detection. For a sample
of 1000 cases/1000 controls, when data were simulated
under an additive model, the true model was retained in
most replicates. As expected, the proportion of replicates
retaining the true model was close to [1 - type 1 error]
ranging between 98 and 99%.
When data were simulated under a dominant model,

the true model was retained in most replicates; for an
OR greater than 2, the proportion of replicates retaining
the true model ranged between 62 and 87%. For an OR
less than or equal to 2, this proportion was smaller and
depended on the MAF: ranging between 10 and 48% for
a MAF of 0.2 and between 45 and 81% for a MAF of 0.4.
When data were simulated under a recessive model,

the true model was retained by GRM in more than 70%

Fig. 2 Differences of power between GRM and CAT_ADD tests to detect association depending on Odds-ratio and minor allele frequency
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of replicates (ranging between 72 and 99%) for an OR
greater than or equal to 1.6, for all MAFs.
When the data were generated in a larger sample size

of 2000 cases/2000 controls, the proportion of replicates

retaining the true model was increased for all simulated
models (see Fig. 3).
We can notice that not concluding to the true model,

when it was dominant or recessive, was mostly due to

Table 3 Power of GRM and CAT tests to detect association for a P-value threshold of 1.0E-5 using a sample size of 1000 cases/1000
controls

Simulated model: Additive Simulared model: Dominant Simulated model: Recessive

Tests : Tests : Tests :

MAF OR CAT_DOM CAT_REC CAT_ADD GRM CAT_DOM CAT_REC CAT_ADD GRM CAT_DOM CAT_REC CAT_ADD GRM

0.1 1.2 0 0 0.01 0 0 0 0 0 0 0 0 0

0.1 1.4 0.17 0 0.20 0.11 0.12 0 0.11 0.07 0 0 0 0

0.1 1.6 0.71 0.01 0.77 0.64 0.59 0 0.54 0.47 0 0 0 0

0.1 1.8 0.97 0.06 0.99 0.96 0.93 0 0.91 0.88 0 0 0 0

0.1 2 1 0.23 1 1 1 0 0.99 0.99 0 0 0 0

0.1 2.2 1 0.51 1 1 1 0 1 1 0 0.01 0 0

0.1 2.4 1 0.78 1 1 1 0 1 1 0 0.01 0 0

0.1 2.6 1 0.93 1 1 1 0 1 1 0 0.03 0 0

0.1 2.8 1 0.99 1 1 1 0 1 1 0 0.06 0 0

0.1 3 1 1 1 1 1 0.01 1 1 0 0.10 0 0

0.1 3.2 1 1 1 1 1 0.01 1 1 0 0.16 0 0

0.2 1.2 0.02 0 0.03 0.01 0.01 0 0.01 0 0 0 0 0

0.2 1.4 0.49 0.05 0.61 0.48 0.29 0 0.22 0.20 0 0 0 0

0.2 1.6 0.96 0.39 0.99 0.97 0.85 0 0.75 0.76 0 0.02 0 0.01

0.2 1.8 1 0.83 1 1 0.99 0 0.98 0.98 0 0.08 0.01 0.03

0.2 2 1 0.98 1 1 1 0.01 1 1 0 0.24 0.02 0.12

0.2 2.2 1 1 1 1 1 0.02 1 1 0 0.46 0.05 0.29

0.2 2.4 1 1 1 1 1 0.03 1 1 0 0.70 0.12 0.53

0.2 2.6 1 1 1 1 1 0.04 1 1 0.01 0.86 0.22 0.74

0.2 2.8 1 1 1 1 1 0.06 1 1 0.01 0.95 0.36 0.88

0.2 3 1 1 1 1 1 0.08 1 1 0.02 0.98 0.51 0.96

0.2 3.2 1 1 1 1 1 0.11 1 1 0.03 1 0.65 0.99

0.3 1.2 0.03 0.01 0.06 0.03 0.01 0 0.01 0.01 0 0 0 0

0.3 1.4 0.61 0.25 0.81 0.71 0.31 0 0.19 0.22 0 0.02 0 0.01

0.3 1.6 0.98 0.83 1 1 0.85 0 0.68 0.77 0 0.17 0.03 0.10

0.3 1.8 1 0.99 1 1 0.99 0.01 0.95 0.98 0 0.51 0.12 0.38

0.3 2 1 1 1 1 1 0.01 1 1 0 0.83 0.32 0.73

0.3 2.2 1 1 1 1 1 0.03 1 1 0.02 0.97 0.57 0.93

0.3 2.4 1 1 1 1 1 0.04 1 1 0.03 1 0.80 0.99

0.3 2.6 1 1 1 1 1 0.07 1 1 0.07 1 0.93 1

0.3 2.8 1 1 1 1 1 0.09 1 1 0.12 1 0.98 1

0.3 3 1 1 1 1 1 0.12 1 1 0.19 1 1 1

0.3 3.2 1 1 1 1 1 0.15 1 1 0.28 1 1 1

0.4 1.2 0.03 0.02 0.08 0.04 0.01 0 0 0 0 0 0 0

0.4 1.4 0.61 0.47 0.87 0.80 0.23 0 0.10 0.15 0 0.09 0.02 0.05

0.4 1.6 0.98 0.96 1 1 0.75 0 0.46 0.64 0 0.48 0.16 0.36

0.4 1.8 1 1 1 1 0.97 0.01 0.81 0.94 0.01 0.88 0.50 0.80

0.4 2 1 1 1 1 1 0.01 0.96 1 0.03 0.99 0.82 0.97

0.4 2.2 1 1 1 1 1 0.02 0.99 1 0.06 1 0.96 1

0.4 2.4 1 1 1 1 1 0.03 1 1 0.13 1 1 1

0.4 2.6 1 1 1 1 1 0.05 1 1 0.23 1 1 1

0.4 2.8 1 1 1 1 1 0.07 1 1 0.36 1 1 1

0.4 3 1 1 1 1 1 0.09 1 1 0.50 1 1 1

0.4 3.2 1 1 1 1 1 0.11 1 1 0.64 1 1 1
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lack of power to reject an additive model (βDomDev = 0,
see Additional file 2: Figure S1). This lack of power was
observed for smallest ORs and decreased when the sam-
ple size increased.

Application to the WTCCC Bipolar data
Sample description
We obtained approval for using the raw genotype and
phenotypic data for the original WTCCC bipolar

Table 4 Power of GRM and CAT tests to detect association for a P-value threshold of 1.0E-7 using a sample size of 1000 cases/1000
controls

Simulated model: Additive Simulated model: Dominant Simulated model: Recessive

Tests: Tests: Tests:

MAF OR CAT_DOM CAT_REC CAT_ADD GRM CAT_DOM CAT_REC CAT_ADD GRM CAT_DOM CAT_REC CAT_ADD GRM

0.1 1.2 0 0 0 0.00 0 0 0 0 0 0 0 0

0.1 1.4 0.03 0 0.04 0.02 0.02 0 0.02 0.01 0 0 0 0

0.1 1.6 0.36 0 0.42 0.27 0.25 0 0.21 0.16 0 0 0 0

0.1 1.8 0.85 0 0.89 0.80 0.72 0 0.66 0.60 0 0 0 0

0.1 2 0.99 0.03 1 0.99 0.96 0 0.94 0.92 0 0 0 0

0.1 2.2 1 0.14 1 1 1 0 0.99 0.99 0 0 0 0

0.1 2.4 1 0.38 1 1 1 0 1 1 0 0 0 0

0.1 2.6 1 0.67 1 1 1 0 1 1 0 0 0 0

0.1 2.8 1 0.88 1 1 1 0 1 1 0 0 0 0

0.1 3 0.99 0.96 1 1 1 0 1 1 0 0.01 0 0

0.1 3.2 0.99 0.99 1 1 1 0 1 1 0 0.02 0 0

0.2 1.2 0 0 0 0 0 0 0 0 0 0 0 0

0.2 1.4 0.17 0 0.26 0.17 0.07 0 0.04 0.04 0 0 0 0

0.2 1.6 0.81 0.10 0.91 0.84 0.54 0 0.41 0.43 0 0 0 0

0.2 1.8 0.99 0.50 1 1 0.93 0 0.85 0.88 0 0.01 0 0

0.2 2 1 0.88 1 1 1 0 0.99 0.99 0 0.05 0 0.01

0.2 2.2 1 0.99 1 1 1 0 1 1 0 0.14 0.01 0.05

0.2 2.4 1 1 1 1 1 0 1 1 0 0.33 0.02 0.15

0.2 2.6 1 1 1 1 1 0 1 1 0 0.55 0.04 0.33

0.2 2.8 1 1 1 1 1 0.01 1 1 0 0.75 0.10 0.54

0.2 3 1 1 1 1 1 0.01 1 1 0 0.89 0.18 0.74

0.2 3.2 1 1 1 1 1 0.01 1 1 0 0.96 0.29 0.88

0.3 1.2 0 0 0.01 0 0 0 0 0 0 0 0 0

0.3 1.4 0.27 0.05 0.48 0.36 0.08 0 0.04 0.05 0 0 0 0

0.3 1.6 0.90 0.52 0.98 0.96 0.55 0 0.33 0.44 0 0.03 0 0.01

0.3 1.8 1 0.94 1 1 0.93 0 0.77 0.88 0 0.18 0.02 0.10

0.3 2 1 1 1 1 1 0 0.96 0.99 0 0.51 0.08 0.36

0.3 2.2 1 1 1 1 1 0 1 1 0 0.81 0.23 0.69

0.3 2.4 1 1 1 1 1 0 1 1 0 0.96 0.46 0.91

0.3 2.6 1 1 1 1 1 0.01 1 1 0.01 0.99 0.70 0.98

0.3 2.8 1 1 1 1 1 0.01 1 1 0.02 1 0.87 1

0.3 3 1 1 1 1 1 0.02 1 1 0.04 1 0.95 1

0.3 3.2 1 1 1 1 1 0.03 1 1 0.07 1 0.99 1

0.4 1.2 0 0 0.01 0 0 0 0 0 0 0 0 0

0.4 1.4 0.26 0.16 0.58 0.47 0.05 0 0.01 0.03 0 0.01 0 0

0.4 1.6 0.88 0.80 0.99 0.98 0.40 0 0.16 0.30 0 0.17 0.03 0.10

0.4 1.8 1 0.99 1 1 0.83 0 0.49 0.74 0 0.59 0.18 0.47

0.4 2 1 1 1 1 0.98 0 0.79 0.95 0 0.91 0.50 0.85

0.4 2.2 1 1 1 1 1 0 0.94 0.99 0.01 0.99 0.80 0.98

0.4 2.4 1 1 1 1 1 0 0.99 1 0.02 1 0.95 1

0.4 2.6 1 1 1 1 1 0.01 1 1 0.05 1 0.99 1

0.4 2.8 1 1 1 1 1 0.01 1 1 0.10 1 1 1

0.4 3 1 1 1 1 1 0.01 1 1 0.18 1 1 1
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disorder (BD) data set. The dataset consisted of 1998 BD
cases and 3004 controls genotyped using the Affymetrix
500K array (see WTCCC 2007 [8] for details). We ap-
plied similar quality control (QC) filtering as the original
WTCCC 2007 study, i.e. 1) individual samples excluded
in case of missing data across all SNPs >3% or genome-
wide heterozygosity greater than 30% or lower than 23%,
2) SNPs excluded in case of MAF < 5% or significant de-
viation from HW equilibrium in controls (P <5.7E-7) or
between the two controls groups (P <5.7E-7). A total of
371 137 SNPs were retained for analysis.

Test of association
For a critical threshold of 5.0E-7 (as used in the original
WTCCC 2007) the GRM test showed significant associ-
ation of BD with one SNP located in the 16p12 region:
rs420259 (P =3.4E-7) (see Table 5 for details), whereas
the CAT_ADD test did not (P =9.3E-4). Note that no
other SNP was detected by either GRM or CAT_ADD
test.
Using a less stringent threshold (5.0E-5) to detect

“suggestive” association, 10 SNPs (in addition to
rs420259) were detected by GRM test. Results are de-
tailed in Table 5a. Among them, 9 SNPs were detected
by both CAT_ADD and GRM tests and 1 SNP was de-
tected only by the GRM test.

Test of genetic model
For the SNP rs420259 significantly associated to BD
using GRM, the additive model was rejected (P =1.6E-7)
and the recessive model was retained (i.e. βADD = -βDom-

Dev was not rejected). A lower risk was observed for the
risk allele homozygote carriers, with an Odds-ratio of
0.75 IC (95%) = [0.67 - 0.84]) (see Table 5b for details).

Discussion
Genetic association studies are usually conducted using
the CAT_ADD test which is model based and known to
be sensitive to model misspecification. Indeed, when
there is departure from additivity, this test may lead to
decrease in power to detect association [3–5].
Our simulation study showed that the GRM test,

which does not make any assumption on the genetic
model, is as powerful as or even more powerful to detect
association than the CAT_ADD test. An important find-
ing is that GRM and CAT_ADD tests had similar power
when the true model was additive. In the latter situation,
the decrease in power never exceeded 15%, although the
GRM test has an additional degree of freedom as com-
pared to the CAT_ADD test. We also showed that the
GRM association test may be more powerful than the
CAT_ADD test when the true model was dominant and
even more when it was recessive. The gain in power

Fig. 3 Proportion of replicates retaining the true model at P = 1%, among replicated showing significant association (P = 1.0E-5)

Dizier et al. BMC Genetics  (2017) 18:24 Page 7 of 10



reached 67% for a recessive model when using a signifi-
cance threshold of 1.0E-7, as currently done in GWAS.
This increase in power was higher for increased sample
size, especially for low ORs. Thus, the advantage of
GRM test over CAT_ADD test will be particularly im-
portant for multifactorial diseases where most associated
variants have small ORs and which require large sample
sizes to detect association.
The two maximin efficiency robust tests which were

developed by Freidlin et al [4] to have relatively high
power for any of the three additive, dominant and reces-
sive models, are computationally very intensive because
of permutation testing. The MAX test which is generally
more powerful but even more computationally intensive
than MERT [4], has been extended to derive the exact
and/or the asymptotic distribution of the test statistic to
be less computationally intensive [9]. Note however that
this test remains twice as computationally intensive as
the logistic regression-based test [10]. Moreover, MAX
test is very sensitive to allele frequency: for a frequency
lower than 0.3, it has smallest power than CAT_ADD
under dominant and additive models [10] whereas GRM
has similar power as CAT_ADD. Under other models,
MAX test is always less powerful than the genotypic test
[10] and consequently than the GRM test, as the geno-
typic and GRM tests have similar power, as expected
(personal data). Based on these findings, we can argue
that the power of the MAX test never exceeds the power
of the GRM test. Moreover, a power comparison be-
tween MAX and GRM tests for a few number of models
showed similar or higher power of GRM comparing to
MAX (results not shown).

A major advantage of the GRM test is that it allows to
test the underlying genetic model in the same modelling
framework, whereas the genotypic test, CATs and the
MAX tests do not. GRM might also be further devel-
oped to estimate and test more complex models, as it
has already been done in case of gene x gene interaction
[11]. GRM can be applied to association studies of large
panels of markers but can also be used to perform gene-
based or pathway-based analyses.
Re-analysis of WTCCC cases-controls bipolar disorder

data illustrates the gain in power of GRM association test
as compared to CAT_ADD test, especially when there is
deviation from additivity. Using the classical GWAS
threshold of 5.0E-7, the GRM test detected one SNP, sig-
nificantly associated with BP, whereas CAT_ADD test did
not. As expected, deviation from additivity was observed
for this SNP and the recessive model was retained.
Ten additional SNPs showed suggestive association at

the threshold of 5.0E-5, 9 of these SNPs were detected
by both GRM and CAT_ADD tests and one SNP was
detected by GRM test only. This shows once again that
GRM can not only replicate results of CAT_ADD test
but also allows detecting additional SNPs.
Association of BD with the rs420259 SNP, as found here

using GRM test, has been initially reported by the Wel-
come Trust Consortium by applying the genotypic test
[8], which represents a general modeling framework as
GRM and genotypic tests has similar power. Interestingly,
association of the same SNP with BD was also reported by
applying either the MAX test [12] or a score-based non-
parametric test [13] to the same WTCCC case-control BD
data. Moreover, a meta-analysis (including WTCCC,

Table 5 Results of GRM association test in bipolar disorder WTCCC case-control sample (WTCCC 20007)

A: Test for association

Chromosome SNP id Rsid Position GRM P-value CAT_ADD P-value

2 SNP_A-1964333 rs7570682 104349699 4,26E-6 7,91E-7

2 SNP_A-1916900 rs11123306 115948251 4,77E-6 7,53E-7

2 SNP_A-2300074 rs1375144 115957416 8,18E-6 1,25E-6

3 SNP_A-2266670 rs4276227 32305690 2,16E-5 3,47E-6

6 SNP_A-4217035 rs6458307 42839093 3,38E-6 0,28

9 SNP_A-2106829 rs10982256 114340388 3,73E-5 6,59E-6

14 SNP_A-2284698 rs10134944 57188949 2,67E-6 1,91E-6

14 SNP_A-4304670 rs11622475 103578829 1,11E-5 2,17E-6

16 SNP_A-2248415 rs420259 23541527 3,37E-7 9.3E-4

16 SNP_A-2306762 rs1344484 51469800 6,81E-6 1,03E-6

20 SNP_A-1909934 rs3761218 3724175 9,96E-6 2,24E-5

B Test for genetic model

SNP id rsid β_ADD ICβ_ADD (99%) β_ADD P-value β_DomDev β_DomDev P-value Genetic Model

SNP_A-2248415 rs420259 −0.33 −0.49 1.32 1.57E-7 0.35 5.56E-6 Recessive

In bold: p < 5.0E-7

Dizier et al. BMC Genetics  (2017) 18:24 Page 8 of 10



STEP-BD, Iceland and Scandinavia samples; n = 5547 BD
cases and 20241 controls) [14] suggested association be-
tween rs420259 and BD (P =1.2E-5). However, such asso-
ciation was not further reported by GWAS in extended
datasets ([15], see Craddock and Sklar for review [16]),
which were based on the CAT_ADD test.
The rs420259 is located in an intron of PALB2 gene

which is involved in tumor suppression. Interestingly, the
DCTN5 gene is in the immediate vicinity of the PALB2
gene. DCTN5 is known to be involved in intracellular
transport, and its knockdown in vitro leads to an abnormal
hyper-activity and disrupted development of neural net-
works [17]. DCTN5 also interacts with DISC1 gene (Dis-
rupted in schizophrenia 1), a gene associated with bipolar
disorder in several studies [18].

Conclusions
Overall, the GRM modeling framework is a user-friendly
and powerful approach which allows testing for associ-
ation with disease and for the underlying genetic model.
This association test is easy and quick to apply and thus
particularly appropriate for association studies of large
panels of markers in simple and complex situations.
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Additional file 1: Table S1. and Table S2. reported the power of GRM
and CAT tests to detect association for a P-value threshold of 1.0E-5
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Additional file 2: Figure S1. reported the proportion of replicates
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Additional file 3: Appendix S1. and Appendix S2. reported shell and
Pearl scripts which included PLINK commands [19]) used to analyze real
dataset and to perform all simulations, computation of type I error and
power estimations. (ZIP 33 kb)
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