S. B. Charge and M. A. Rudnicki, Cellular and Molecular Regulation of Muscle Regeneration, Physiological Reviews, vol.84, issue.1, pp.209-238, 2004.
DOI : 10.1152/physrev.00019.2003

R. B. White, A. S. Bierinx, V. F. Gnocchi, and P. S. Zammit, Dynamics of muscle fibre growth during postnatal mouse development, BMC Developmental Biology, vol.10, issue.1, p.21, 2010.
DOI : 10.1186/1471-213X-10-21

G. Messina, Nfix Regulates Fetal-Specific Transcription in Developing Skeletal Muscle, Cell, vol.140, issue.4, pp.554-566, 2010.
DOI : 10.1016/j.cell.2010.01.027

URL : http://doi.org/10.1016/j.cell.2010.01.027

F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, A Pax3/Pax7-dependent population of skeletal muscle progenitor cells, Nature, vol.72, issue.7044, pp.948-953, 2005.
DOI : 10.1242/dev.01617

URL : https://hal.archives-ouvertes.fr/pasteur-00176824

R. Sambasivan and S. Tajbakhsh, Skeletal muscle stem cell birth and properties, Seminars in Cell & Developmental Biology, vol.18, issue.6, pp.870-882, 2007.
DOI : 10.1016/j.semcdb.2007.09.013

F. Rahimov and L. M. Kunkel, Cellular and molecular mechanisms underlying muscular dystrophy, The Journal of Cell Biology, vol.108, issue.4, pp.499-510, 2013.
DOI : 10.1016/S1534-5807(01)00070-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653356

D. G. Allen and N. P. Whitehead, Duchenne muscular dystrophy ??? What causes the increased membrane permeability in skeletal muscle?, The International Journal of Biochemistry & Cell Biology, vol.43, issue.3, pp.290-294, 2010.
DOI : 10.1016/j.biocel.2010.11.005

R. Matsuda, A. Nishikawa, and H. Tanaka, Visualization of Dystrophic Muscle Fibers in Mdx Mouse by Vital Staining with Evans Blue: Evidence of Apoptosis in Dystrophin-Deficient Muscle, Journal of Biochemistry, vol.118, issue.5, pp.959-964, 1995.
DOI : 10.1093/jb/118.5.959

O. Friedrich, Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle, Biophysical Journal, vol.98, issue.4, pp.606-616, 2010.
DOI : 10.1016/j.bpj.2009.11.005

URL : http://doi.org/10.1016/j.bpj.2009.11.005

I. Minami, A Small Molecule that Promotes Cardiac Differentiation of Human Pluripotent Stem Cells under Defined, Cytokine- and Xeno-free Conditions, Cell Reports, vol.2, issue.5, pp.1448-1460, 2012.
DOI : 10.1016/j.celrep.2012.09.015

S. Biressi, M. Molinaro, and G. Cossu, Cellular heterogeneity during vertebrate skeletal muscle development, Developmental Biology, vol.308, issue.2, pp.281-293, 2007.
DOI : 10.1016/j.ydbio.2007.06.006

URL : http://doi.org/10.1016/j.ydbio.2007.06.006

M. Eiraku, Self-organizing optic-cup morphogenesis in three-dimensional culture, Nature, vol.80, issue.7341, pp.51-56, 2011.
DOI : 10.1038/nature09941

K. W. Mccracken, Modelling human development and disease in pluripotent stem-cell-derived gastric organoids, Nature, vol.12, issue.7531, pp.400-404, 2014.
DOI : 10.1038/nature13863

W. Li and S. Ding, Human Pluripotent Stem Cells: Decoding the Naive State, Science Translational Medicine, vol.3, issue.76, pp.76-86, 2011.
DOI : 10.1126/scitranslmed.3000996

D. Merrick, L. K. Stadler, D. Larner, and J. Smith, Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation, Disease Models & Mechanisms, vol.2, issue.7-8, pp.374-388, 2009.
DOI : 10.1242/dmm.001008

S. Chan and S. I. Head, The role of branched fibres in the pathogenesis of Duchenne muscular dystrophy, Experimental Physiology, vol.24, issue.6, pp.564-571, 2011.
DOI : 10.1113/expphysiol.2010.056713

M. H. Goodall, C. W. Ward, S. J. Pratt, R. J. Bloch, and R. M. Lovering, Structural and functional evaluation of branched myofibers lacking intermediate filaments, AJP: Cell Physiology, vol.303, issue.2, pp.224-232, 2012.
DOI : 10.1152/ajpcell.00136.2012

T. Nagai, A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications Derivation of completely cell culture-derived mice from early-passage embryonic stem cells, Online References 51, pp.87-90, 1993.

F. Relaix, The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo, Genes & Development, vol.17, issue.23, pp.2950-2965, 2003.
DOI : 10.1101/gad.281203

C. Kress, S. Vandormael-pournin, P. Baldacci, M. Cohen-tannoudji, and C. Babinet, Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129/Sv strain: establishment of ES cell lines bearing the Om d conditional lethal mutation, Mammalian Genome, vol.9, issue.12, pp.998-1001, 1998.
DOI : 10.1007/s003359900914

T. C. Cheng, M. C. Wallace, J. P. Merlie, and E. N. Olson, Separable regulatory elements governing myogenin transcription in mouse embryogenesis, Science, vol.261, issue.5118, pp.215-218, 1993.
DOI : 10.1126/science.8392225

R. Sambasivan, Distinct Regulatory Cascades Govern Extraocular and Pharyngeal Arch Muscle Progenitor Cell Fates, Developmental Cell, vol.16, issue.6, pp.810-821, 2009.
DOI : 10.1016/j.devcel.2009.05.008

URL : https://hal.archives-ouvertes.fr/hal-00428975

Q. L. Ying, The ground state of embryonic stem cell self-renewal, Nature, vol.113, issue.7194, pp.519-523, 2008.
DOI : 10.1038/nature06968

G. L. Boulting, A functionally characterized test set of human induced pluripotent stem cells, Nature Biotechnology, vol.29, issue.3, pp.279-286, 2011.
DOI : 10.1016/j.ydbio.2006.03.026

J. A. Thomson, Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, vol.282, issue.5391, pp.1145-1147, 1998.
DOI : 10.1126/science.282.5391.1145

M. L. Dequeant, A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock, Science, vol.314, issue.5805, pp.1595-1598, 2006.
DOI : 10.1126/science.1133141

M. Reich, GenePattern 2.0, Nature Genetics, vol.4, issue.5, pp.500-501, 2006.
DOI : 10.1126/science.286.5439.531

O. Tassy and O. Pourquie, Manteia, a predictive data mining system for vertebrate genes and its applications to human genetic diseases, Nucleic Acids Research, vol.42, issue.D1, 2013.
DOI : 10.1093/nar/gkt807

D. Henrique, Expression of a Delta homologue in prospective neurons in the chick Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation, Nature Genes Dev, vol.375, issue.11, pp.787-790, 1995.

K. Niederreither, V. Subbarayan, P. Dolle, and P. Chambon, Embryonic retinoic acid synthesis is essential for early mouse post-implantation development, Nature Genetics, vol.21, issue.4, pp.444-448, 1999.
DOI : 10.1038/7788

P. H. Crossley and G. Martin, The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo, Development, vol.121, pp.439-451, 1995.

S. J. Mathew, Connective tissue fibroblasts and Tcf4 regulate myogenesis, Development, vol.138, issue.2, pp.371-384, 2011.
DOI : 10.1242/dev.057463

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005608

Y. Yasuhiko, Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression, Proceedings of the National Academy of Sciences, vol.103, issue.10, pp.3651-3656, 2006.
DOI : 10.1073/pnas.0508238103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1450137

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-682, 2012.
DOI : 10.1038/nmeth.2019

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855844