P. Matzinger, Tolerance, Danger, and the Extended Family, Annual Review of Immunology, vol.12, issue.1, pp.991-1045, 1994.
DOI : 10.1146/annurev.iy.12.040194.005015

J. Banchereau and R. Steinman, Dendritic cells and the control of immunity, Nature, vol.392, issue.6673, pp.245-52, 1998.
DOI : 10.1038/32588

G. Barber, Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses, Current Opinion in Immunology, vol.23, issue.1, pp.10-20, 2011.
DOI : 10.1016/j.coi.2010.12.015

C. Desmet and K. Ishii, Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination, Nature Reviews Immunology, vol.8, issue.7, pp.479-91, 2012.
DOI : 10.1038/nri3247

R. Barbalat, S. Ewald, M. Mouchess, and G. Barton, Nucleic Acid Recognition by the Innate Immune System, Annual Review of Immunology, vol.29, issue.1, pp.185-214, 2011.
DOI : 10.1146/annurev-immunol-031210-101340

C. Lee, A. Avalos, and H. Ploegh, Accessory molecules for Toll-like receptors and their function, Nature Reviews Immunology, vol.268, issue.3, pp.168-79, 2012.
DOI : 10.1038/nri3151

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677579

T. Dubensky, J. Reed, and S. , Adjuvants for cancer vaccines, Seminars in Immunology, vol.22, issue.3, pp.155-61, 2010.
DOI : 10.1016/j.smim.2010.04.007

E. Aarntzen, C. Figdor, G. Adema, C. Punt, and I. De-vries, Dendritic cell vaccination and immune monitoring, Cancer Immunology, Immunotherapy, vol.183, issue.Suppl 1, pp.1559-68, 2008.
DOI : 10.1007/s00262-008-0553-y

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2491428

P. Kalinski, R. Muthuswamy, and J. Urban, Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies, Expert Review of Vaccines, vol.12, issue.3, pp.285-95, 2013.
DOI : 10.1586/erv.13.22

K. Palucka and J. Banchereau, Cancer immunotherapy via dendritic cells, Nature Reviews Cancer, vol.29, issue.4, pp.265-77, 2012.
DOI : 10.1038/nrc3258

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433802

G. Schuler, Dendritic cells in cancer immunotherapy, European Journal of Immunology, vol.111, issue.8, pp.2123-2153, 2010.
DOI : 10.1002/eji.201040630

A. Krieg, Development of TLR9 agonists for cancer therapy, Journal of Clinical Investigation, vol.117, issue.5, pp.1184-94, 2007.
DOI : 10.1172/JCI31414

T. Boon, P. Coulie, B. Van-den-eynde, and P. Van-der-bruggen, HUMAN T CELL RESPONSES AGAINST MELANOMA, Annual Review of Immunology, vol.24, issue.1, pp.175-208, 2006.
DOI : 10.1146/annurev.immunol.24.021605.090733

D. Speiser, P. Baumgaertner, V. Voelter, E. Devevre, C. Barbey et al., Unmodified self antigen triggers human CD8 T cells with stronger tumor reactivity than altered antigen, Proceedings of the National Academy of Sciences, vol.105, issue.10, pp.3849-54, 2008.
DOI : 10.1073/pnas.0800080105

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268830

S. Rosenberg, R. Sherry, K. Morton, W. Scharfman, J. Yang et al., Tumor Progression Can Occur despite the Induction of Very High Levels of Self/Tumor Antigen-Specific CD8+ T Cells in Patients with Melanoma, The Journal of Immunology, vol.175, issue.9, pp.6169-76, 2005.
DOI : 10.4049/jimmunol.175.9.6169

E. Janssen, N. Droin, E. Lemmens, M. Pinkoski, S. Bensinger et al., CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death, Nature, vol.131, issue.7029, pp.88-93, 2005.
DOI : 10.1074/jbc.M208167200

P. Filipazzi, L. Pilla, L. Mariani, R. Patuzzo, C. Castelli et al., Limited Induction of Tumor Cross-Reactive T Cells without a Measurable Clinical Benefit in Early Melanoma Patients Vaccinated with Human Leukocyte Antigen Class I-Modified Peptides, Clinical Cancer Research, vol.18, issue.23, pp.6485-96, 2012.
DOI : 10.1158/1078-0432.CCR-12-1516

C. Melief, T. Van-hall, R. Arens, F. Ossendorp, and S. Van-der-burg, Therapeutic cancer vaccines, Journal of Clinical Investigation, vol.125, issue.9, pp.3401-3413, 2015.
DOI : 10.1172/JCI80009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588240

L. Zitvogel, A. Tesniere, and G. Kroemer, Cancer despite immunosurveillance: immunoselection and immunosubversion, Nature Reviews Immunology, vol.65, issue.10, pp.715-742, 2006.
DOI : 10.1038/nri1936

S. Topalian, M. Sznol, D. Mcdermott, H. Kluger, R. Carvajal et al., Survival, Durable Tumor Remission, and Long-Term Safety in Patients With Advanced Melanoma Receiving Nivolumab, Journal of Clinical Oncology, vol.32, issue.10, pp.1020-1050, 2014.
DOI : 10.1200/JCO.2013.53.0105

C. Robert, G. Long, B. Brady, C. Dutriaux, M. Maio et al., Mutation, New England Journal of Medicine, vol.372, issue.4, pp.320-350, 2015.
DOI : 10.1056/NEJMoa1412082

URL : https://hal.archives-ouvertes.fr/hal-00699117

S. Gurunathan, D. Klinman, and R. Seder, DNA Vaccines: Immunology, Application, and Optimization, Annual Review of Immunology, vol.18, issue.1, pp.927-74, 2000.
DOI : 10.1146/annurev.immunol.18.1.927

H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato et al., A Novel Toll-Like Receptor that Recognizes Bacterial DNA, Nature, vol.408, issue.6813, pp.740-745, 2000.
DOI : 10.1385/1-59259-305-4:039

A. Krieg and J. Vollmer, Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity, Immunological Reviews, vol.160, issue.1, pp.251-69, 2007.
DOI : 10.1073/pnas.231606698

A. Marshak-rothstein, The role of toll-like receptors in systemic autoimmune disease, International Congress Series, vol.1285, issue.11, pp.823-858, 2006.
DOI : 10.1016/j.ics.2005.07.101

H. Ishikawa and G. Barber, STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling, Nature, vol.80, issue.7213, pp.674-682, 2008.
DOI : 10.1038/nature07317

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804933

H. Ishikawa, Z. Ma, and G. Barber, STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity, Nature, vol.80, issue.7265, pp.788-92, 2009.
DOI : 10.1038/nature08476

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664154

G. Barber, STING: infection, inflammation and cancer, Nature Reviews Immunology, vol.900, issue.12, pp.760-70, 2015.
DOI : 10.1371/journal.pone.0077846

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004891

L. Unterholzner, The interferon response to intracellular DNA: Why so many receptors?, Immunobiology, vol.218, issue.11, pp.1312-1333, 2013.
DOI : 10.1016/j.imbio.2013.07.007

Q. Chen, L. Sun, and Z. Chen, Regulation and function of the cGAS???STING pathway of cytosolic DNA sensing, Nature Immunology, vol.17, issue.10, pp.1142-1151, 2016.
DOI : 10.1038/nature18268

L. Sun, J. Wu, F. Du, X. Chen, and Z. Chen, Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway, Science, vol.339, issue.6121, pp.786-91, 2013.
DOI : 10.1126/science.1232458

J. Wu, L. Sun, X. Chen, F. Du, H. Shi et al., Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA, Science, vol.339, issue.6121, pp.826-856, 2013.
DOI : 10.1126/science.1229963

T. Abe and G. Barber, Cytosolic-DNA-Mediated, STING-Dependent Proinflammatory Gene Induction Necessitates Canonical NF-??B Activation through TBK1, Journal of Virology, vol.88, issue.10, pp.5328-5369, 2014.
DOI : 10.1128/JVI.00037-14

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019140

T. Kondo, J. Kobayashi, T. Saitoh, K. Maruyama, K. Ishii et al., DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking, Proceedings of the National Academy of Sciences, vol.110, issue.8, pp.2969-74, 2013.
DOI : 10.1073/pnas.1222694110

S. Paludan and A. Bowie, Immune Sensing of DNA, Immunity, vol.38, issue.5, pp.870-80, 2013.
DOI : 10.1016/j.immuni.2013.05.004

J. Ahn and G. Barber, Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease, Current Opinion in Immunology, vol.31, pp.121-127, 2014.
DOI : 10.1016/j.coi.2014.10.009

H. Lemos, L. Huang, T. Mcgaha, and A. Mellor, Cytosolic DNA sensing via the stimulator of interferon genes adaptor: Yin and Yang of immune responses to DNA, European Journal of Immunology, vol.8, issue.10, pp.2847-53, 2014.
DOI : 10.1002/eji.201344407

L. Huang, L. Li, H. Lemos, P. Chandler, G. Pacholczyk et al., Cutting Edge: DNA Sensing via the STING Adaptor in Myeloid Dendritic Cells Induces Potent Tolerogenic Responses, The Journal of Immunology, vol.191, issue.7, pp.3509-3522, 2013.
DOI : 10.4049/jimmunol.1301419

H. Lemos, E. Mohamed, L. Huang, R. Ou, G. Pacholczyk et al., STING Promotes the Growth of Tumors Characterized by Low Antigenicity via IDO Activation, Cancer Research, vol.76, issue.8, pp.2076-81, 2016.
DOI : 10.1158/0008-5472.CAN-15-1456

J. Ahn, T. Xia, H. Konno, K. Konno, P. Ruiz et al., Inflammation-driven carcinogenesis is mediated through STING, Nature Communications, vol.2013, p.5166, 2014.
DOI : 10.1126/science.1211600

URL : http://doi.org/10.1038/ncomms6166

G. Dunn, A. Bruce, K. Sheehan, V. Shankaran, R. Uppaluri et al., A critical function for type I interferons in cancer immunoediting, Nature Immunology, vol.92, issue.7, pp.722-731, 2005.
DOI : 10.1146/annurev.immunol.21.120601 .141007

M. Diamond, M. Kinder, H. Matsushita, M. Mashayekhi, G. Dunn et al., Type I interferon is selectively required by dendritic cells for immune rejection of tumors, The Journal of Experimental Medicine, vol.134, issue.10, pp.1989-2003, 2011.
DOI : 10.4049/jimmunol.0803214

S. Woo, M. Fuertes, L. Corrales, S. Spranger, M. Furdyna et al., STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors, Immunity, vol.41, issue.5, pp.830-872, 2014.
DOI : 10.1016/j.immuni.2014.10.017

W. Sun, Y. Li, L. Chen, H. Chen, F. You et al., ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization, Proceedings of the National Academy of Sciences, vol.106, issue.21, pp.8653-8661, 2009.
DOI : 10.1073/pnas.0900850106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689030

B. Zhong, Y. Yang, S. Li, Y. Wang, Y. Li et al., The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation, Immunity, vol.29, issue.4, pp.538-50, 2008.
DOI : 10.1016/j.immuni.2008.09.003

L. Jin, P. Waterman, K. Jonscher, C. Short, N. Reisdorph et al., MPYS, a Novel Membrane Tetraspanner, Is Associated with Major Histocompatibility Complex Class II and Mediates Transduction of Apoptotic Signals, Molecular and Cellular Biology, vol.28, issue.16, pp.5014-5040, 2008.
DOI : 10.1128/MCB.00640-08

O. Demaria, D. Gassart, A. Coso, S. Gestermann, N. et al., STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity, Proceedings of the National Academy of Sciences, vol.112, issue.50, pp.15408-15421, 2015.
DOI : 10.1073/pnas.1512832112

M. Fuertes, A. Kacha, J. Kline, S. Woo, D. Kranz et al., dendritic cells, The Journal of Experimental Medicine, vol.61, issue.10, pp.2005-2021, 2011.
DOI : 10.1158/0008-5472.CAN-07-5324

L. Deng, H. Liang, M. Xu, X. Yang, B. Burnette et al., STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors, Immunity, vol.41, issue.5, pp.843-52, 2014.
DOI : 10.1016/j.immuni.2014.10.019

J. Klarquist, C. Hennies, M. Lehn, R. Reboulet, S. Feau et al., STING-Mediated DNA Sensing Promotes Antitumor and Autoimmune Responses to Dying Cells, The Journal of Immunology, vol.193, issue.12, pp.6124-6158, 2014.
DOI : 10.4049/jimmunol.1401869

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258444

J. Ahn, D. Gutman, S. Saijo, and G. Barber, STING manifests self DNA-dependent inflammatory disease, Proceedings of the National Academy of Sciences, vol.109, issue.47, pp.19386-91, 2012.
DOI : 10.1073/pnas.1215006109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511090

T. Ohkuri, A. Ghosh, A. Kosaka, J. Zhu, M. Ikeura et al., STING Contributes to Antiglioma Immunity via Triggering Type I IFN Signals in the Tumor Microenvironment, Cancer Immunology Research, vol.2, issue.12, pp.1199-208, 2014.
DOI : 10.1158/2326-6066.CIR-14-0099

R. Salcedo, C. Cataisson, U. Hasan, S. Yuspa, and G. Trinchieri, MyD88 and its divergent toll in carcinogenesis, Trends in Immunology, vol.34, issue.8, pp.379-89, 2013.
DOI : 10.1016/j.it.2013.03.008

Q. Zhu, S. Man, P. Gurung, Z. Liu, P. Vogel et al., Cutting Edge: STING Mediates Protection against Colorectal Tumorigenesis by Governing the Magnitude of Intestinal Inflammation, The Journal of Immunology, vol.193, issue.10, pp.4779-82, 2014.
DOI : 10.4049/jimmunol.1402051

S. Huber, N. Gagliani, L. Zenewicz, F. Huber, L. Bosurgi et al., IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine, Nature, vol.10, issue.7423, pp.259-63, 2012.
DOI : 10.1038/nature11535

R. Salcedo, A. Worschech, M. Cardone, Y. Jones, Z. Gyulai et al., MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18, The Journal of Experimental Medicine, vol.62, issue.8, pp.1625-1661, 2010.
DOI : 10.1016/j.ajhg.2008.03.016

J. Ahn, H. Konno, and G. Barber, Diverse roles of STING-dependent signaling on the development of cancer, Oncogene, vol.34, issue.41, pp.5302-5310, 2015.
DOI : 10.1016/j.cell.2011.04.022

B. Burnette, H. Liang, Y. Lee, L. Chlewicki, N. Khodarev et al., The Efficacy of Radiotherapy Relies upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity, Cancer Research, vol.71, issue.7, pp.2488-96, 2011.
DOI : 10.1158/0008-5472.CAN-10-2820

L. Corrales and T. Gajewski, Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer, Clinical Cancer Research, vol.21, issue.21, pp.4774-4783, 2015.
DOI : 10.1158/1078-0432.CCR-15-1362

L. Lau, E. Gray, R. Brunette, and D. Stetson, DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway, Science, vol.350, issue.6260, pp.568-71, 2015.
DOI : 10.1126/science.aab3291

T. Xia, H. Konno, J. Ahn, and G. Barber, Deregulation of STING Signaling in Colorectal Carcinoma Constrains DNA Damage Responses and Correlates With Tumorigenesis, Cell Reports, vol.14, issue.2, pp.282-97, 2016.
DOI : 10.1016/j.celrep.2015.12.029

A. Lam, L. Bert, N. Ho, S. Shen, Y. Tang et al., RAE1 Ligands for the NKG2D Receptor Are Regulated by STING-Dependent DNA Sensor Pathways in Lymphoma, Cancer Research, vol.74, issue.8, pp.2193-203, 2014.
DOI : 10.1158/0008-5472.CAN-13-1703

S. Gasser, S. Orsulic, E. Brown, and D. Raulet, The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor, Nature, vol.19, issue.7054, pp.1186-90, 2005.
DOI : 10.1038/nature03884

S. Ho, W. Zhang, N. Tan, M. Khatoo, M. Suter et al., The DNA Structure-Specific Endonuclease MUS81 Mediates DNA Sensor STING-Dependent Host Rejection of Prostate Cancer Cells, Immunity, vol.44, issue.5, pp.1177-89, 2016.
DOI : 10.1016/j.immuni.2016.04.010

J. Plowman, V. Narayanan, D. Dykes, E. Szarvasi, P. Briet et al., Flavone acetic acid: a novel agent with preclinical antitumor activity against colon adenocarcinoma 38 in mice, Cancer Treat Rep, vol.70, issue.5, pp.631-636, 1986.

J. Cummings and J. Smyth, Flavone 8-acetic acid: our current understanding of its mechanism of action in solid tumours, Cancer Chemotherapy and Pharmacology, vol.140, issue.5, pp.269-72, 1989.
DOI : 10.1007/BF00304756

J. Liu, L. Ching, M. Goldthorpe, R. Sutherland, B. Baguley et al., Antitumour action of 5,6-dimethylxanthenone-4-acetic acid in rats bearing chemically induced primary mammary tumours, Cancer Chemotherapy and Pharmacology, vol.87, issue.5, pp.661-670, 2007.
DOI : 10.1007/s00280-006-0321-7

B. Baguley and L. Ching, Immunomodulatory Actions of Xanthenone Anticancer Agents, BioDrugs, vol.8, issue.2, pp.119-146, 1997.
DOI : 10.2165/00063030-199708020-00005

P. Lara, J. Douillard, J. Nakagawa, K. Von-pawel, J. Mckeage et al., Randomized Phase III Placebo-Controlled Trial of Carboplatin and Paclitaxel With or Without the Vascular Disrupting Agent Vadimezan (ASA404) in Advanced Non???Small-Cell Lung Cancer, Journal of Clinical Oncology, vol.29, issue.22, pp.2965-71, 2011.
DOI : 10.1200/JCO.2011.35.0660

D. Prantner, D. Perkins, W. Lai, M. Williams, S. Sharma et al., 5,6-Dimethylxanthenone-4-acetic Acid (DMXAA) Activates Stimulator of Interferon Gene (STING)-dependent Innate Immune Pathways and Is Regulated by Mitochondrial Membrane Potential, Journal of Biological Chemistry, vol.287, issue.47, pp.39776-88, 2012.
DOI : 10.1074/jbc.M112.382986

P. Gao, M. Ascano, T. Zillinger, W. Wang, P. Dai et al., Structure-Function Analysis of STING Activation by c[G(2???,5???)pA(3???,5???)p] and Targeting by Antiviral DMXAA, Cell, vol.154, issue.4, pp.748-62, 2013.
DOI : 10.1016/j.cell.2013.07.023

S. Kim, L. Li, Z. Maliga, Q. Yin, H. Wu et al., Anticancer Flavonoids Are Mouse-Selective STING Agonists, ACS Chemical Biology, vol.8, issue.7, pp.1396-401, 2013.
DOI : 10.1021/cb400264n

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815523

J. Conlon, D. Burdette, S. Sharma, N. Bhat, M. Thompson et al., Mouse, but not Human STING, Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid, The Journal of Immunology, vol.190, issue.10, pp.5216-5241, 2013.
DOI : 10.4049/jimmunol.1300097

D. Burdette, K. Monroe, K. Sotelo-troha, J. Iwig, B. Eckert et al., STING is a direct innate immune sensor of cyclic di-GMP, Nature, vol.6, issue.7370, pp.515-523, 2011.
DOI : 10.1038/nature10429

D. Chandra, W. Quispe-tintaya, A. Jahangir, D. Asafu-adjei, I. Ramos et al., STING Ligand c-di-GMP Improves Cancer Vaccination against Metastatic Breast Cancer, Cancer Immunology Research, vol.2, issue.9, pp.901-911, 2014.
DOI : 10.1158/2326-6066.CIR-13-0123

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4264585

Z. Wang and E. Celis, STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice, Cancer Immunology, Immunotherapy, vol.169, issue.8, pp.1057-66, 2015.
DOI : 10.1007/s00262-015-1713-5

G. Yi, V. Brendel, C. Shu, P. Li, S. Palanathan et al., Single Nucleotide Polymorphisms of Human STING Can Affect Innate Immune Response to Cyclic Dinucleotides, PLoS ONE, vol.28, issue.10, p.77846, 2013.
DOI : 10.1371/journal.pone.0077846.s002

E. Diner, D. Burdette, S. Wilson, K. Monroe, C. Kellenberger et al., The Innate Immune DNA Sensor cGAS Produces a Noncanonical Cyclic Dinucleotide that Activates Human STING, Cell Reports, vol.3, issue.5, pp.1355-61, 2013.
DOI : 10.1016/j.celrep.2013.05.009

P. Gao, M. Ascano, Y. Wu, W. Barchet, B. Gaffney et al., Cyclic [G(2???,5???)pA(3???,5???)p] Is the Metazoan Second Messenger Produced by DNA-Activated Cyclic GMP-AMP Synthase, Cell, vol.153, issue.5, pp.1094-107, 2013.
DOI : 10.1016/j.cell.2013.04.046

T. Li, H. Cheng, H. Yuan, Q. Xu, C. Shu et al., Antitumor Activity of cGAMP via Stimulation of cGAS-cGAMP-STING-IRF3 Mediated Innate Immune Response, Scientific Reports, vol.3, issue.1, 2016.
DOI : 10.1002/0471142735.im0307s86

T. Abe, A. Harashima, T. Xia, H. Konno, K. Konno et al., STING Recognition of Cytoplasmic DNA Instigates Cellular Defense, Molecular Cell, vol.50, issue.1, pp.5-15, 2013.
DOI : 10.1016/j.molcel.2013.01.039

K. Parvatiyar, Z. Zhang, R. Teles, S. Ouyang, Y. Jiang et al., The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response, Nature Immunology, vol.13, issue.12, pp.1155-61, 2012.
DOI : 10.1038/nm1246

X. Zhang, H. Shi, J. Wu, X. Zhang, L. Sun et al., Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High-Affinity Ligand for STING, Molecular Cell, vol.51, issue.2, pp.226-261, 2013.
DOI : 10.1016/j.molcel.2013.05.022

URL : http://doi.org/10.1016/j.molcel.2013.05.022

L. Li, Q. Yin, P. Kuss, Z. Maliga, J. Millan et al., Hydrolysis of 2???3???-cGAMP by ENPP1 and design of nonhydrolyzable analogs, Nature Chemical Biology, vol.10, issue.12, pp.1043-1051, 2014.
DOI : 10.1359/jbmr.070714

L. Corrales, L. Glickman, S. Mcwhirter, D. Kanne, K. Sivick et al., Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity, Cell Reports, vol.11, issue.7, pp.1018-1048, 2015.
DOI : 10.1016/j.celrep.2015.04.031

J. Fu, D. Kanne, M. Leong, L. Glickman, S. Mcwhirter et al., STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade, Science Translational Medicine, vol.7, issue.283, pp.283-52, 2015.
DOI : 10.1126/scitranslmed.aaa4306

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4504692

E. Moore, P. Clavijo, R. Davis, H. Cash, C. Van-waes et al., Established T Cell-Inflamed Tumors Rejected after Adaptive Resistance Was Reversed by Combination STING Activation and PD-1 Pathway Blockade, Cancer Immunology Research, vol.4, issue.12, pp.1061-1071, 2016.
DOI : 10.1158/2326-6066.CIR-16-0104

L. Apetoh, M. Smyth, C. Drake, J. Abastado, R. Apte et al., T cell phenotypes in cancer, OncoImmunology, vol.123, issue.4, p.998538, 2015.
DOI : 10.1038/84701

R. Vargas, T. Humblin, E. Vegran, F. Ghiringhelli, F. Apetoh et al., TH9 cells in anti-tumor immunity, Semin Immunopathol, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01416031

W. Fridman, F. Pages, C. Sautes-fridman, and J. Galon, The immune contexture in human tumours: impact on clinical outcome, Nature Reviews Cancer, vol.29, issue.4, pp.298-306, 2012.
DOI : 10.1038/nrc3245

A. Poltorak, O. Kurmyshkina, and T. Volkova, Stimulator of interferon genes (STING): A ???new chapter??? in virus-associated cancer research. Lessons from wild-derived mouse models of innate immunity, Cytokine & Growth Factor Reviews, vol.29, pp.83-91, 2016.
DOI : 10.1016/j.cytogfr.2016.02.009

K. Monroe, Z. Yang, J. Johnson, X. Geng, G. Doitsh et al., IFI16 DNA Sensor Is Required for Death of Lymphoid CD4 T Cells Abortively Infected with HIV, Science, vol.343, issue.6169, pp.428-460, 2014.
DOI : 10.1126/science.1243640

R. Berg, S. Rahbek, E. Kofod-olsen, C. Holm, J. Melchjorsen et al., T Cells Detect Intracellular DNA but Fail to Induce Type I IFN Responses: Implications for Restriction of HIV Replication, PLoS ONE, vol.14, issue.1, p.84513, 2014.
DOI : 10.1371/journal.pone.0084513.s006