J. Guillerme, M. Gregoire, F. Tangy, and J. Fonteneau, Antitumor Virotherapy by Attenuated Measles Virus (MV), Biology, vol.2, issue.2, pp.587-602, 2013.
DOI : 10.3390/biology2020587

URL : http://doi.org/10.3390/biology2020587

B. Anderson, T. Nakamura, S. Russell, and K. Peng, High CD46 Receptor Density Determines Preferential Killing of Tumor Cells by Oncolytic Measles Virus, Cancer Research, vol.64, issue.14, pp.4919-260008, 2004.
DOI : 10.1158/0008-5472.CAN-04-0884

C. Achard, N. Boisgerault, T. Delaunay, D. Roulois, S. Nedellec et al., Sensitivity of human pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response, Oncotarget, vol.6, pp.44892-9046285, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01285131

L. Heinzerling, V. Kunzi, P. Oberholzer, T. Kundig, H. Naim et al., Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells, Blood, vol.106, issue.7, pp.2287-94, 2005.
DOI : 10.1182/blood-2004-11-4558

E. Galanis, L. Hartmann, W. Cliby, H. Long, P. Peethambaram et al., Phase I Trial of Intraperitoneal Administration of an Oncolytic Measles Virus Strain Engineered to Express Carcinoembryonic Antigen for Recurrent Ovarian Cancer, Cancer Research, vol.70, issue.3, pp.875-82, 2010.
DOI : 10.1158/0008-5472.CAN-09-2762

E. Galanis, P. Atherton, M. Maurer, K. Knutson, S. Dowdy et al., Oncolytic Measles Virus Expressing the Sodium Iodide Symporter to Treat Drug-Resistant Ovarian Cancer, Cancer Research, vol.75, issue.1, pp.22-30, 2015.
DOI : 10.1158/0008-5472.CAN-14-2533

S. Russell, M. Federspiel, K. Peng, C. Tong, D. Dingli et al., Remission of Disseminated Cancer After Systemic Oncolytic Virotherapy, Mayo Clinic Proceedings, vol.89, issue.7, pp.926-959, 2014.
DOI : 10.1016/j.mayocp.2014.04.003

B. Lichty, C. Breitbach, D. Stojdl, and J. Bell, Going viral with cancer immunotherapy, Nature Reviews Cancer, vol.15, issue.8, pp.559-67, 2014.
DOI : 10.1038/nrc3770

J. Fonteneau, C. Achard, C. Zaupa, J. Foloppe, and P. Erbs, Oncolytic immunotherapy: the new clinical outbreak PMID:26942085, Oncoimmunology, vol.5, 2016.
DOI : 10.1080/2162402x.2015.1066961

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4760340

A. Gauvrit, S. Brandler, C. Sapede-peroz, N. Boisgerault, F. Tangy et al., Measles Virus Induces Oncolysis of Mesothelioma Cells and Allows Dendritic Cells to Cross-Prime Tumor-Specific CD8 Response, Cancer Research, vol.68, issue.12, pp.4882-92, 2008.
DOI : 10.1158/0008-5472.CAN-07-6265

URL : https://hal.archives-ouvertes.fr/pasteur-00330770

O. Donnelly, F. Errington-mais, L. Steele, E. Hadac, V. Jennings et al., Measles virus causes immunogenic cell death in human melanoma, Gene Therapy, vol.14, issue.1, pp.7-15205, 2011.
DOI : 10.1038/sj.gt.3302609

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378495

J. Guillerme, N. Boisgerault, D. Roulois, J. Menager, C. Combredet et al., Measles Virus Vaccine-Infected Tumor Cells Induce Tumor Antigen Cross-Presentation by Human Plasmacytoid Dendritic Cells, Clinical Cancer Research, vol.19, issue.5, pp.1147-58, 2013.
DOI : 10.1158/1078-0432.CCR-12-2733

M. Durand and E. Segura, The known unknowns of the human dendritic cell network PMID:25852695, Front Immunol, vol.6, p.129, 2015.

L. Ziegler-heitbrock, P. Ancuta, S. Crowe, M. Dalod, V. Grau et al., Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, issue.16, pp.74-80, 2010.
DOI : 10.1182/blood-2010-02-258558

URL : https://hal.archives-ouvertes.fr/hal-00611173

J. Tel, S. Anguille, C. Waterborg, E. Smits, C. Figdor et al., Tumoricidal activity of human dendritic cells, Trends in Immunology, vol.35, issue.1, pp.38-46, 2014.
DOI : 10.1016/j.it.2013.10.007

F. Gonzalvez and A. Ashkenazi, New insights into apoptosis signaling by Apo2L/TRAIL, Oncogene, vol.173, issue.34, pp.4752-65, 2010.
DOI : 10.1038/onc.2010.221

R. Johnstone, A. Frew, and M. Smyth, The TRAIL apoptotic pathway in cancer onset, progression and therapy, Nature Reviews Cancer, vol.3, issue.10, pp.782-98, 2008.
DOI : 10.1038/sj.leu.2403491

P. Vidalain, O. Azocar, B. Lamouille, A. Astier, C. Rabourdin-combe et al., Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells, Journal of Virology, vol.74, issue.1, pp.556-565, 2000.
DOI : 10.1128/JVI.74.1.556-559.2000

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC111571

P. Vidalain, O. Azocar, C. Rabourdin-combe, and C. Servet-delprat, Measle Virus-Infected Dendritic Cells Develop Immunosuppressive and Cytotoxic Activities, Immunobiology, vol.204, issue.5, pp.629-667, 2001.
DOI : 10.1078/0171-2985-00102

L. Chaperot, A. Blum, O. Manches, G. Lui, J. Angel et al., Virus or TLR Agonists Induce TRAIL-Mediated Cytotoxic Activity of Plasmacytoid Dendritic Cells, The Journal of Immunology, vol.176, issue.1, pp.248-55, 2006.
DOI : 10.4049/jimmunol.176.1.248

URL : https://hal.archives-ouvertes.fr/inserm-00286442

G. Stary, I. Klein, S. Kohlhofer, F. Koszik, T. Scherzer et al., Plasmacytoid dendritic cells express TRAIL and induce CD4+ T-cell apoptosis in HIV-1 viremic patients, Blood, vol.114, issue.18, pp.3854-63, 2009.
DOI : 10.1182/blood-2009-04-217927

M. Kalb, A. Glaser, G. Stary, F. Koszik, and G. Stingl, TRAIL+ Human Plasmacytoid Dendritic Cells Kill Tumor Cells In Vitro: Mechanisms of Imiquimod- and IFN-??-Mediated Antitumor Reactivity, The Journal of Immunology, vol.188, issue.4, pp.1583-91, 2012.
DOI : 10.4049/jimmunol.1102437

J. Tel, E. Smits, S. Anguille, R. Joshi, C. Figdor et al., Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities, Blood, vol.120, issue.19, pp.3936-3980, 2012.
DOI : 10.1182/blood-2012-06-435941

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen Recognition and Innate Immunity, Cell, vol.124, issue.4, pp.783-801, 2006.
DOI : 10.1016/j.cell.2006.02.015

S. Ikegame, M. Takeda, S. Ohno, Y. Nakatsu, Y. Nakanishi et al., Both RIG-I and MDA5 RNA Helicases Contribute to the Induction of Alpha/Beta Interferon in Measles Virus-Infected Human Cells, Journal of Virology, vol.84, issue.1, pp.372-901690, 2010.
DOI : 10.1128/JVI.01690-09

S. Runge, K. Sparrer, C. Lassig, K. Hembach, A. Baum et al., In Vivo Ligands of MDA5 and RIG-I in Measles Virus-Infected Cells, PLoS Pathogens, vol.86, issue.4, 2014.
DOI : 10.1371/journal.ppat.1004081.s013

D. Goubau, S. Deddouche, R. Sousa, and C. , Cytosolic Sensing of Viruses, Immunity, vol.38, issue.5, pp.855-69, 2013.
DOI : 10.1016/j.immuni.2013.05.007

M. Chawla-sarkar, D. Lindner, Y. Liu, B. Williams, G. Sen et al., Apoptosis and interferons: role of interferonstimulated genes as mediators of apoptosis, Apoptosis, vol.8, issue.3, pp.237-491023668705040, 2003.
DOI : 10.1023/A:1023668705040

F. Barrat, T. Meeker, J. Gregorio, J. Chan, S. Uematsu et al., Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus, The Journal of Experimental Medicine, vol.32, issue.8, pp.1131-1140, 2005.
DOI : 10.4049/jimmunol.171.6.3296

K. Clark, M. Peggie, L. Plater, R. Sorcek, E. Young et al., Novel cross-talk within the IKK family controls innate immunity, Biochemical Journal, vol.5, issue.1, pp.93-104, 2011.
DOI : 10.1128/MCB.01101-07

URL : https://hal.archives-ouvertes.fr/hal-00560693

T. Duhen, F. Herschke, O. Azocar, J. Druelle, S. Plumet et al., Cellular receptors, differentiation and endocytosis requirements are key factors for type I IFN response by human epithelial, conventional and plasmacytoid dendritic infected cells by measles virus, Virus Research, vol.152, issue.1-2, pp.115-140, 2010.
DOI : 10.1016/j.virusres.2010.06.013

URL : https://hal.archives-ouvertes.fr/ensl-00815605

H. Lee, J. Lund, B. Ramanathan, N. Mizushima, and A. Iwasaki, Autophagy-Dependent Viral Recognition by Plasmacytoid Dendritic Cells, Science, vol.315, issue.5817, pp.1398-401, 2007.
DOI : 10.1126/science.1136880

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.657.3208

P. Veron, S. Boutin, S. Martin, L. Chaperot, J. Plumas et al., Highly efficient transduction of human plasmacytoid dendritic cells without phenotypic and functional maturation, Journal of Translational Medicine, vol.7, issue.1, pp.1479-5876, 2009.
DOI : 10.1186/1479-5876-7-10

URL : https://hal.archives-ouvertes.fr/inserm-00367719

A. Lepelley, S. Louis, M. Sourisseau, H. Law, J. Pothlichet et al., Innate Sensing of HIV-Infected Cells, PLoS Pathogens, vol.178, issue.2, 2011.
DOI : 10.1371/journal.ppat.1001284.s002

URL : https://hal.archives-ouvertes.fr/pasteur-00590930

R. Rua, A. Lepelley, A. Gessain, and O. Schwartz, Innate Sensing of Foamy Viruses by Human Hematopoietic Cells, Journal of Virology, vol.86, issue.2, pp.909-927, 2012.
DOI : 10.1128/JVI.06235-11

URL : https://hal.archives-ouvertes.fr/pasteur-01372487

D. Bruni, M. Chazal, L. Sinigaglia, L. Chauveau, O. Schwartz et al., Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons, Science Signaling, vol.8, issue.366, 2015.
DOI : 10.1126/scisignal.aaa1552

URL : https://hal.archives-ouvertes.fr/hal-01285424

D. Domizio, J. Blum, A. Gallagher-gambarelli, M. Molens, J. Chaperot et al., TLR7 stimulation in human plasmacytoid dendritic cells leads to the induction of early IFN-inducible genes in the absence of type I IFN, Blood, vol.114, issue.9, pp.1794-802, 2009.
DOI : 10.1182/blood-2009-04-216770

URL : https://hal.archives-ouvertes.fr/inserm-00419344

H. Kato, S. Sato, M. Yoneyama, M. Yamamoto, S. Uematsu et al., Cell Type-Specific Involvement of RIG-I in Antiviral Response, Immunity, vol.23, issue.1, pp.19-28, 2005.
DOI : 10.1016/j.immuni.2005.04.010

K. Matsui, Y. Kumagai, H. Kato, S. Sato, T. Kawagoe et al., Cutting Edge: Role of TANK-Binding Kinase 1 and Inducible I??B Kinase in IFN Responses against Viruses in Innate Immune Cells, The Journal of Immunology, vol.177, issue.9, pp.5785-5794, 2006.
DOI : 10.4049/jimmunol.177.9.5785

Q. Sun, L. Sun, H. Liu, X. Chen, R. Seth et al., The Specific and Essential Role of MAVS in Antiviral Innate Immune Responses, Immunity, vol.24, issue.5, pp.633-675, 2006.
DOI : 10.1016/j.immuni.2006.04.004

V. Hornung, J. Schlender, M. Guenthner-biller, S. Rothenfusser, S. Endres et al., Replication-Dependent Potent IFN-?? Induction in Human Plasmacytoid Dendritic Cells by a Single-Stranded RNA Virus, The Journal of Immunology, vol.173, issue.10, pp.5935-5978, 2004.
DOI : 10.4049/jimmunol.173.10.5935

K. Clark, O. Takeuchi, S. Akira, and P. Cohen, The TRAF-associated protein TANK facilitates cross-talk within the I??B kinase family during Toll-like receptor signaling, Proceedings of the National Academy of Sciences, vol.108, issue.41, pp.17093-17101, 2011.
DOI : 10.1073/pnas.1114194108

G. Oganesyan, S. Saha, B. Guo, J. He, A. Shahangian et al., Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response, Nature, vol.199, issue.7073, pp.208-219, 2006.
DOI : 10.1038/nature04374

H. Hacker, V. Redecke, B. Blagoev, I. Kratchmarova, L. Hsu et al., Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6, Nature, vol.18, issue.7073, pp.204-211, 2006.
DOI : 10.1038/nature04369

C. Hemont, A. Neel, M. Heslan, C. Braudeau, and R. Josien, Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness, Journal of Leukocyte Biology, vol.93, issue.4, pp.599-609, 2013.
DOI : 10.1189/jlb.0912452

V. Flacher, M. Bouschbacher, E. Verronese, C. Massacrier, V. Sisirak et al., Human Langerhans Cells Express a Specific TLR Profile and Differentially Respond to Viruses and Gram-Positive Bacteria, The Journal of Immunology, vol.177, issue.11, pp.7959-67, 2006.
DOI : 10.4049/jimmunol.177.11.7959

URL : https://hal.archives-ouvertes.fr/hal-00180965

T. Ito, R. Amakawa, T. Kaisho, H. Hemmi, K. Tajima et al., Interferon-?? and Interleukin-12 Are Induced Differentially by Toll-like Receptor 7 Ligands in Human Blood Dendritic Cell Subsets, The Journal of Experimental Medicine, vol.163, issue.11, pp.1507-1519, 2002.
DOI : 10.1038/79747

D. Jarrossay, G. Napolitani, M. Colonna, F. Sallusto, and A. Lanzavecchia, Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells, 11%3c3388::AID-IMMU3388%3e3.0.CO, pp.3388-931521, 2001.
DOI : 10.1002/1521-4141(200111)31:11<3388::AID-IMMU3388>3.0.CO;2-Q

N. Kadowaki, S. Ho, S. Antonenko, R. Malefyt, R. Kastelein et al., Subsets of Human Dendritic Cell Precursors Express Different Toll-like Receptors and Respond to Different Microbial Antigens, The Journal of Experimental Medicine, vol.161, issue.6, pp.863-872, 2001.
DOI : 10.4049/jimmunol.166.1.249

S. Ning, J. Pagano, and G. Barber, IRF7: activation, regulation, modification and function, Genes and Immunity, vol.178, issue.6, pp.399-414, 2011.
DOI : 10.1038/nature07986

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437765

A. Izaguirre, B. Barnes, S. Amrute, W. Yeow, N. Megjugorac et al., Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells, Journal of Leukocyte Biology, vol.74, issue.6, pp.1125-1163, 2003.
DOI : 10.1189/jlb.0603255

O. 'brien, M. Manches, O. Sabado, R. Baranda, S. Wang et al., Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype, J Clin Invest, vol.121, pp.1088-101, 2011.

G. Stary, C. Bangert, M. Tauber, R. Strohal, T. Kopp et al., Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells, The Journal of Experimental Medicine, vol.52, issue.6, pp.1441-51, 2007.
DOI : 10.1016/0022-1759(96)00063-4

O. Susanto, J. Trapani, and D. Brasacchio, Controversies in granzyme biology, Tissue Antigens, vol.1, issue.6, pp.477-87, 2012.
DOI : 10.1111/tan.12014

M. Prakash, M. Munoz, R. Jain, P. Tong, A. Koskinen et al., Granzyme B Promotes Cytotoxic Lymphocyte Transmigration via Basement Membrane Remodeling, Immunity, vol.41, issue.6, pp.960-72, 2014.
DOI : 10.1016/j.immuni.2014.11.012

URL : http://doi.org/10.1016/j.immuni.2014.11.012

D. Roulois, V. Vignard, F. Gueugnon, N. Labarriere, M. Gregoire et al., Recognition of pleural mesothelioma by mucin-1(950-958)/human leukocyte antigen A*0201-specific CD8+ T-cells, European Respiratory Journal, vol.38, issue.5, pp.1117-1143, 2011.
DOI : 10.1183/09031936.00160210

F. Palamara, S. Meindl, M. Holcmann, P. Luhrs, G. Stingl et al., Identification and Characterization of pDC-Like Cells in Normal Mouse Skin and Melanomas Treated with Imiquimod, The Journal of Immunology, vol.173, issue.5, pp.3051-61, 2004.
DOI : 10.4049/jimmunol.173.5.3051

B. Drobits, M. Holcmann, N. Amberg, M. Swiecki, R. Grundtner et al., Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells, Journal of Clinical Investigation, vol.122, issue.2, pp.575-85, 2012.
DOI : 10.1172/JCI61034DS1

L. Zitvogel, L. Galluzzi, O. Kepp, M. Smyth, and G. Kroemer, Type I interferons in anticancer immunity, Nature Reviews Immunology, vol.5, issue.7, pp.405-419, 2015.
DOI : 10.1056/NEJM198411013111803

D. Coulais, C. Panterne, J. Fonteneau, and M. Gregoire, Purification of circulating plasmacytoid dendritic cells using counterflow centrifugal elutriation and immunomagnetic beads, Cytotherapy, vol.14, issue.7, pp.887-96, 2012.
DOI : 10.3109/14653249.2012.689129

C. Combredet, V. Labrousse, L. Mollet, C. Lorin, F. Delebecque et al., A Molecularly Cloned Schwarz Strain of Measles Virus Vaccine Induces Strong Immune Responses in Macaques and Transgenic Mice, Journal of Virology, vol.77, issue.21, pp.11546-54, 2003.
DOI : 10.1128/JVI.77.21.11546-11554.2003