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ABSTRACT

The gastrointesting(Gl) tract can play a direct role in glucose homeostasis by
modulating the digestioand absorptionf carbohydrates analy producing the
incretinhormonesin recentyears, numerous studies have focused on intestinal
adaptation following bariatric surgerigshanges ithenumber of incretin

(GLP-1, GIP) producing celleave been reportedvhich couldresult inthe

modified hormonal responseenafter surgeryAdditionally, the rate of
absorption and the intestinal regions exposed to sugars may affect the time
course of appearance of glucose in the bldbds revievgivesnew insighsinto
thedirectrole of theGl tractin the metabolic outcomes of bariatric surgiery

the context ofjlucose homeostasis

KEYWORDS
Intestine,RouxenY gastric bypass, Vertical sleeve gastrectomy,

Nutrientflow,Enteroendocrine cells,Glucose transport
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Introduction

Bariatric surgeries were originally developed to treat patientsseitbre
obesitythey werenitially recommendedor patients with morbid obesity ¢oly
mass index (BMI) > 40 kg/m2) or severe obesity (BMI 3809 kg/m2) when
they exhibited at least one comorbidityat hadhe potentiabf being improved
by the intervetion[1,2]. Today,the two most commonly performed bariatric
surgeriesvorldwideare the RowenY gastric bypass (RYGBsigure 1A) and
the vertical sleeve gastrectomy (V3&gurelB)[3].Bariatricsurgeriehave
consistently resulted isignificantimprovementen obesityassociated
metabolic diseasesichastype2diabetes This resulted in new
recommendations propositigat surgery should be considered for moderately
obesediabeticpatients(BMI 30.084.9 kg/m2)f hyperglycemia is inagquately
controlled despite dpnal treatment with medicatiph,5]. Thesenew
recommendatiashavealready been adopted by several medical societies all
around the world and should further increase the number of operated patients in
the near future.Understanding thaesegeries is thus of major clinical and

societal importance.

The fact that th&ltractis the direct target of bariatric procedupegentially
makes it a key playealthough so far underestimatedihe metabolic changes
observed after surgerindeed, thesl tractcan play a direct role in glucose
homeostasis by modulatimgstric emptyinghedigestion of carbohydrates and
absorption of glucose during meascalsoby secreting a set of hormones
includingncretinsthategulate the release wfsulin[6].

In this review, we will outline th&l-dependenmechanisms responsible for the
alteration ofgut hormonesecretion after surgery. Then, we will discuss how
intestinalglucose transpofthepassage of glucose from the intestinal lumen to
the blood compartment through intestinal epithelial cedisglintestinal glucose
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metabolismare modified after RYGB and VS@nd describe how these changes

can affect glucose homeostasis.

Altered gut hormone secretion

After bariatric surgeries,hanges in the fasting and postprandial secretion of
gut-derived hormonearesignificant and variednd depend on the type Gf
reconstruction7,8]. These changesesuggestedo bekey players in the
increasd postprandiakecretion of insulin and improved insulin sensitivhgat

Is reported after bariatric surgery

Glucagonlike peptide 1 (GLP)

GLP-1 is an incretin hormone produckyenterendarinecells scattered
throughout the intestinal epitheliufhhe density othese GLPL secreting cells
increases across a proximal to distal gradi@hf-1 increases insulirelease
and decreases glucagon production, delays gastric emptying and intestinal transit
and reduces meal s[2¢. Although fasting concentrations of G{IPdo not
change markedly after bariatric surgery, postprandial leveB_Bf1 havebean
shown to increase following most, if not,ddhariatric procedurg¢$0 4.3].
However, studies designed to evaluate the influence of Ghét seon glucose
regulation and weight loss, have producededmesults.Mice with genéc loss
of-function of the GLPL receptor respond normally to V3G}] and RYGB

[15] in ternms of both weight loss and improvements in glucose regulation.
Conversely, specifideletionof the GLR1 receptor in beta cells was shown to
prevent the improvement of glucose tolerance in Mp@rated mic§l6].
Together these studies indicate that GlL&one cannot account for the overall
metabolic effect of these two surgeries but rawtribute tahe altered
postprandial glycemic response after VSG in mice. In humans;1GLP
antagonists (exendi®39) failed to impair the otherwise improved glucose
tolerance after VSEL7] and had only modest effects on glycemic response after
RYGB [18,19]



84 Glucosedependent insulotropic polypeptide (GIP)
85 GIPisanother incretin hormosecretedyenteroendocriecells locatednostly
86 in the duodenum and proximal jejunum and released in response to nutrients
87 (notablylipids) [9].GIP promotes the conversion of glucose to fatty acids and
88 their storage in adipogessuef20]. While somestudiesreport similar
89 enhancements GiP secretiorfollowing RYGB andVSG surgery21], others
90 have documated GIP levels to be unchandgé@,22]Jor reduced
91 [23,24following RYGB surgeryAlthough not yet formally demonstrated, it is
92 possible that since GIP is produced by celldhefgroximal intestine,
93 differencesin the length of the intestinal lintbypassedby the surgery could
94 differentially affect mealinduced GIP secretion in patiendoreoverthe
95 presence or the absence of t@pdiabetes in patientsefore bariatric
96 surgerynightaffectthe alteration of GIP secretiaftersurgery25,26]. A recent
97 study investigated the combined and separate effects of endogenously secreted
98 GLP-1 and GIP on glucose tolerance after RY[@B]. GLP-1 increased insulin
99 and attenuated glucagon secretion in the postprandial state, whereas
100 amplification of the GIP signaggravategostprandial hyperglucagonemia and
101 did not contribute to the improved glucose tolerg@cgTherole of GIPin
102 theimprovedylucose tolerancmllowing RYGBIs still an open questi@mdalso
103 remairsto be addressad detailin the context oVSG.
104  Ghrelin
105  Ghrelinis an orexigenic hormongroduced mainly in the stomach and
106 duodenunthaexertsglucoregulatory function@8].Resection of the fundic
107 region in VSG leads to a decrease in ghrekpressing cells antbncomitant
108 ghrelin-circulating levels in ratf29,30]and humag11,31,32] Body weight
109 and glucose toleraneeeasurementafter VSG however showed similar results
110 in ghrelindeficient and in wiletype mice[33]. Moreover,viile postprandial
111 ghrelin levels are reduced after VRG,31,32] they have been reported to
112 either decrea$@4], increasd32,35or remainurthange|[11,36ffter RYGB
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compared to obese patieftsstoperativemodifications ghrelin levelsafter
surgeryarethereforeynlikely to determie metabolic improvement.
Otherdigestivehormones

Hormones, such akolecystokinifl0],PYY[37]andothers[7], havealsobeen
found to be modulated after some bariatric procedamesave thus been
proposedasnportantactorscontributing to the posturgerymetabolic
improvemenHormonal changes acertainlyinvolvedin the positive outcomes
of surgery, XW DOO VLPSOLVWLF YLHZV DLPLQJ WR LGH
hormone responsible for the beneficial effect of bariatric surgareeprobably
shortsightednd futile sinceGl surgeriekead to a profound alteration of the
HQWLUH JXWTV K RlbRiRgaDnealAfter\s 8dge, \atd¢w
homeostatic statis institutecandthushormone levels should be considered in
relation to each other rather than compared to theiopegative valued-or
instance, physiologically, glucagon secretion decreases after a meahdsut
been shown that postprandial glucagon release is incréakmving RYGB

and VSG compared to paperative statef1,38] Interestinglypne study
reported that GIP, GL-B, and GLP2 differently affect glucagon responses to
orally ingested glucose in patients with diab¢888.Indeed, n nonoperated
diabetic patientsniravenous infusion of GIP increattiee glucagon response
and thus counteraatithe reduction of glucagon secretion associated with
intravenous infusion of GLR. Snce postprandial levels of GEPand GIP are
modified after bariatric surgery, the hormonal interactiort®uld explain how
postprandiaglucagon levels are increaséthderstanding how all these
hormonal signals act together to mediate the effects of surgery is an important
butambitiousresearch goaparticularlyconsidering that we are far from
understanding howheyare integrated together, even in physiological

conditions.
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The origin of these modified hormonal secretions is still delddistrically,
altered nutrient flow, either dpregutexclusionor by acceleratéundgut
delivery of nutrientsvaonsideredesponsible for thanprovedhormonal
responsandthe success aferivative procedures likeYGB[40].The modified
postprandial hormonal response obseraker VSG, gurely gastric surgem
whichthe food path is not modifieipwever has somehatweakened these
assumptionsMore recent studies have nevertheless revealed that gastric

emptying rates wernadeedvery rapid after VSG41 #3].

Accelerated nutrient flow and increasedntestinal surface

exposure
Gl remodelingeads to a drastic acceleration fifod arrival in the intestingoy
pyloric exclusionafterRYGB [12,44fandalsoby an increase in gastric

emptying rateafterVSG42,43] Increasing evidence shows that the modified
dynamics of the nutrient flow is likely taontributeéo both the modified

glycemic respons® a meabhndhe concomitantlteredguthormone secretion

in patients.

The total intestinal surface thatabnostimmediately exposed to a liquid meal

is drastically different between operated and contdividuals andaffecsthe
entry of glucose into the blopt]. A study, using radiolabeled tracer, found

that only fve minutes after a nutrient gavage, the stomachs of RYGB and VSG
rats were completely emptied, whereas only 6.1% of the nutrient mixture had
emptied from sham animgll]. The accelerated gastric emptying and food
delivery D the intestine increasénetotalintestinal surface exposed to the
luminal content. This could have a direct effect on the rate of glesdsgnto

the blood during a sugaich meal.Indeed, his hypothesis was illustrated by a
recent studyising multiple intestinal clamp sit@sminipigs with RYGB

[45].The studydemonstrated a direct relatgimp betweerthe exposed intestinal

area andhetransfer of glucos#® the blood. More interestingliheinsulin
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response and secretion of GIlLignificantly increased only when the total
intestinal surface was accessible by the liquid nt&atn if one cannot

discriminate whether the stimulation of the distal intestine by the meal or the
increase in blood glucoger seis responsible for the hormonal resportbese
experimend suggesthatthehormonal response to a meal after RYGB ishig
dependent on the altered nutrient flow cause&breconstruction.

Two humanstudies confirmedherole of altered nutrient flow in the hormonal
response observed after surg@&®y44] In the first, RYGB patients received

either a glucose drink or the same solution infused into the proximal Roux limb
at 4 kcal/mina rate equivalent to physiologic gastric emptj4dj. Blood

glucose, insulin, glucagon, GIP and GLRvere then measured during the
testTheglycemic response was delayed in RYGB patients receiving the solution
at 4 kcal/min compared whenthe same solutiowasreceived orally.
MoreovertheinfusedSDWLHQWYV Y KRaneR<MID tdihds¢S R Q V H
observed in notperatedsubjectgeceiving the oral drinkhussupporting the
effectof rapid nutrient exposuren the exaggerated incretin responses. The
second study evaluatésl motility with a scintigraphic techniquandgut

hormone secretiom RYGB patient§12]. The aithors found a statistidgl
significantassociation between gastric pouch emptying and hormone responses
during a multiple meal test. In contrast, no relation was found between gut
hormone release and gastric pouch emptying when they used a solid
radiolabeled marker, furthstrengtheninghe ole ofrapidnutrient flow in

hormone secretiorsincdransit of solids is mucklowerthan liquids.

Interestingly, a study in rats showed that intestinal infusion of a glucose solution
at an identical rateedto a greater GLA secretion in VSG rats reiee to sham
operated controlgl1]. This suggests the existence of deliveryependent
mechanisms that alter tiggt hormonal response, at least in VSG rats.

In summary, the altered glycemic and hormonal responsédoié meal in

RYGB and VSG patients is likely to be mediated by the accelerated nutrient
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flow after both surgeries, which increaslee surface of contact between the
meal and the intestine. However, it is worth noting #matxed meal teshay

differ in many way with the daily diefpatternof patient§46] and that

thehormonal responseobserved experimentaligay not occur during small

solid mea$[47,48]

The altered nutrient flow and subsequent modified nutritional stimulation of the
intestine after surgery coutthuséhantestinal adaptation that in tumight

affect hormonal secretion atige glycemic response to a meal.

Intestinal adaptation and enteroendocine cellnumber

Due to the difficulty of directly studying th@lI tract of bariatric patients, most

of the studies aiming to describe intestinal adaptatties RYGB or VSG
procedurehave been conducted in experimental modeth asodents. In

2009, Stearns et al. were the first to report changes in intestinal structure and
function in a rat model of RYGRI9]. They showed an increased villus size and
crypt depth in the Roux limb drcommon limb of perated rats. This
hyperplasia has been confirmed and further characterized by savesabjuent
studieg50 H5].

An importantconsequence of Roux limb overgrowth after RYISEN increase
in thetotal number ofenteroendocrine csll including GLP1-, GIP-,CCK- and
PYY-producing cellsvithin theintestinalmucos#?2,54,56,57] This adaptation
wasreportedn bothhuman and rodefRYGB subjectandcould contribute to
the modified hormongbrofileafter surgeryWhethertheincreasecumberof
enteroendocrine cetlsie toRoux limb overgrowth is associated wih
additionaincreasean their densityis still a matter of debaf&4,57,58]
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To date no study hadirectly investigated intestinal adaptation after VSG in
humars. However, two recent repsmising rat models of VS@escribedan
absence diypertrophy of the jejunum mucosa aftieis surgery54,59]

The distribution oenteroendocrine callproducing GLPL was alsoexamineth
these studiebut contradictory results were obtainéde first study repoed
that GLR1 cell numbers were not modified at 3 month péSG [59].1n
contrasta second stlyreporedan increase in the number and densftLP-1
cellsl4 days after surg€y4].It remairsto be determinedhetherthis
discrepancyesultsfrom the different time poisstaken foanalysis or
differences irother variable such as posbperative diet or surgical
techngues.Anincreasean thedensityof GLP-1 cellsvould,howeverbea
reasonablexplanationfor the higheateliveryindependenGLP-1 secretion
observed aftevSGin rats[21,37]

Whether modified numbers of enteroendocrines@tually affect tke release of
guthormone after surgery remaito be determineddn increase in hormone
productiorby or anexacerbatedutrientsensitivityof the enteroendocrine cells
after the surgergould also bénvolved Assayingthe sensitivityof
enteroendocrine celts nutrients before and after surgerl be a challenging
task in the future but development of entdsdrom human biopsies couldoffer

a unigue opportunity to evaluat¢id,61]

Intestinal adaptation and glucosetransport

The idea that bariatric surgeries could lead to alteraifomtestinal glucose
transporthas been thsubjectof several studie$o be absorbelly the intestine,
polysaccharides must be hydrolyzed into theinosaccharide component
(glucose, galactose and fructose)daccharidase§lucose and galactose are
transported across the apical membrane into the enterocyte by the

sodium/glucoseotransporter 1 (SGLT[H2], whereas fructose is taken up by

1C
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the fructose transporter 5 (GLUT63]. Monosaccharideare partly

metabolized in thenterocytedut most of thenexit thecellsvia glucose
transporter 2 (GLUT2) in the basolateral membrane, a process that dilemars
to the bloodbefore reaching the liver for further metabolism and regulation of
glucose productide4]. During sugairich meals oin thecase of insulin
resistancemonosaccharide absorption might be exacerbated after translocation
of GLUT2 to the apical membraf@5].Thus the appearance of glucose in the
bloodfollows a time course that &ffectedbytheintestiml surfaceexposedo
nutrients but alsoby the number of functional enterocytes and the expression of
their glucose transporters.

Molecular analyseBave producetieterogeneous resulisgardingthe
expression pattern of intestinal sugar transporters after RMGB
rat449,51,53,54SA.T1, GLUT2 and GLUT5 mRNA or protein levels were
reported to be increagdéd ], decreasef9,51,53br not modified54][53] in the
alimentary Roux limb of RYGB animalsompared to the jejunum of sham
animalsThe heterogeneity of 8se molecular analyses could be due to
experimentadifferencessuch as differepiostoperativéime points variable
surgcal proceduresr pre- and postoperativediets.Additionally,thepresence of
different steps in the adaptive prodéds,or alterations irexpression levels
following diurnal rhythmg49] alsolikely influence the result®ne study
reportedno difference folSGLT1, GLUT2or GLUT5 mRNA levels between

the Roux limb, théiliopancreatic limbor the common limbf a RYGB minipig
model[45]. In humangncreasednRNA expression of SGLTand GLUT2has
been reportedhore than a year after surgi§]. Thus specieselated

differences might also exist.

It is worth highlighting thaheactivity of SGLT1doesnot alwayscorrelate with
its MRNA expressiofd9,54] Thegrowth of theintestinal mucosdollowing
RYGB,and therefore thmcreased numbers of enterocytesild affect the total

absorptive capacitgf the intestine, beyond the expression of sugar transporters.
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In fact, it is hard talemonstratéhe relationshifpetween transporter expression
and the glycemic response to an oral glucose toleranae t@gb. Accordingly,
differences in the glycemic response of rats between 14 and 4pakyRYGB
have not been observddspitsignificantvariation in the expression of their
intestinal sugar transporters [30jirect assessmenof intestinal glucose
transport capacitipefore and after surgeryatteereforestill needed tevaluate
theexistingfunctional changes.

Ex vivq glucose transportan be measurég radioactive methods witkolated
intestinal segments from rdtsathave undergonkariatric surgeryEntry of
glucose iro the enterocyterom themucosalor serosakide)s referred to
agntestinal glucose uptakmutis oftenmisnamedas intestinal glucose transport
whichis actuallythepassage of glucose from the intestinal lumen to the blood
compartment tlough enteroytes Of note,in a recent studgp alteration in
glucose transporh the Roux limb of RYGB ratsompared to the jejunum of
sham ratwasobservedwhereaglucose uptake wasmarkedly increased
RYGB ratsegardless of the entry siimucosal or serosalde [54].After

RYGB, osme studies report a reductimnintestinal glucose
uptakg45,49whereas others repard change§s4,67]It hasalsobeenreported
that RYGB may abolish the diurnal rhytramsociate GLT1-mediated glucose
uptake with a 63% reduction specifically prior tbe onset of feeding/9].
Finally,a study in humanseportedhat RYGB was followed byraincreasen
SGLT-1 expression anshowed gositive association between SGILT
expressiorand glucose absorptigf6].0Once again, the methodsedto
evaluataheglucoseuptake, the intestinal segmerdnd theexact timepointsat
which measummentswere made after surgery differed widely among stydies
probably contributing tthe heterogeneityf the results

To the best of our knowledgenly onegroup ha evaluatedylucose transport
and uptakafter VSG[54]. In this study, ucosetransportfrom the luminal to

the serosatide was markedly decreased in the jejunum of VSGaatspared

12
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341

to shamoperated rat Expression othesugar transporters SGLT1, GLUT2 or
GLUTS did not reflecthe modification in intestinal transport capacity. The
mechanisnof this regulation is stilinknown but VSG could improve glucose
tolerance by delaying the entry of alimentary glucdses would ben

agreement with the delayed glycemic response observed after an oral load of
glucose in rat§s4]or in VSGsubjectsomparedtdRY GBsubjectfs8].

It is difficult to transposeheseex vivofindingsuponwhatactuallyhappens

during a glucose gavage or a meal, since the dynamic aspect of nutrient flow is
lost. In additionwhilst intestinal glucose transport may be reflected by the early
slope of an oal tolerance tesglucose clearance after the peak is the reflection
of glucose disposal by periphembans suclasliver, musclesandadipose

tissuebut also,as described below, the intestiteelf.

Intestinal adaptation and glucosalisposal

It has been showrecentlythat hyperplasia in the Roux limb after RYGB is
associated with a reprogrammg of glucose metabolism towarthcreased
intestinal glucoseptake anadonsumptiorby intestinal cell3,54] The

remodeled intstine could thus increase whbtaly glucose disposal and
contribute to the glucose lowering effectdafrivativebariatricprocedures

The reprogrammingf glucose metabolism is characterized by increased mRNA
and protein levels afnzymes involved in glycolysand by the appearance of

the glucose transporter GI'1 at the basolateral membrasfeenterocytes
[53,59,54] The GLUTL1 transporter is widely expressed during development but
its expressions decreaseth adultsand becores very low in mature jejunum

[69]. The overexpression of intestinal GLUT1eafRYGB might be a
consequencef the increased energy demand to support the intestinal
hyperplasighat occursery early after surgery. Accordinglhere is no
reprogramming of glucose metabolismd no overexpression of GLUT1 in the

jejunum of VSGoperated ratthatdoesnot display anyhyperplasigp4,59]

13



342 In vivo, using positron emission tomograpbgmputed tomography (PETT)

343 scanning anéhtravenousadministration of ’F]-FDG, it has been demonstrated
344 that RYGB surgery increasetestinal glucose disposal in rg&s3]. Similarly,

345 another studyeportedncreasd metabolic activity in the Roux limb of

346 humarsfollowing bariatric surgerysingthe same techque$54].

347 Corsideringthe contribution of increasedtestinalglucose disposdb the

348 glucose lowering effect of RYGB surgegystudy on rats using PECT

349 scanning reported a 90% high&-FDG uptake by the intestine of RYGB

350 treated rats and a 30% reduction'ftF[-FDG signal in the blogdompared to

351  sham animal®3]. This suggestthatintestiral glucose utilizations keyto the

352 improvanent ofwholebody glucose disposal in rats. To date, intestinal blood
353 glucose disposal has not beprantifiedin human patientut a recent study

354 measuredsl retention and presumably metabolism of ingested glucose in obese
355 subjects before and after RYGB)]. Using a mixed meal ctaining labeled

356 [*®?H2]-glucosetheauthorsdemonstratethatGl clearance of ingested glucose
357 isincreased after RYGB surgery. However, the differeffected by the

358 bariatric procedurgvas low(from 10% + 8% before to 15% + 9% after surgery)
359 showing that intestinal glucose diversion during mesat®t likely to largely

360 contribute to the postprandial improvement in glycemic control.

361 Studies directly measuring the intestinal clearance of intravenously

362 administrated glucose are needed to evalwhttherthe reprogramming of

363 glucose metabolism and subsequent increase in intestinal glucose disposal
364 makesa real contribution to the glusesowering eflect of RYGB surgery in

365 humans.

366
367 Concluding Remarks and Future Perspectives

368 Glucose excursion after a meal depeowntestinal transporf glucose to the
369 blood, secretion of gut hormones and glucose handling by peripheral.organs

370 Theremodelel tractafterbariatric surgery plays a major role in altering all

14



371 these processeSomplemenig theassociatedccelerated nutrient flow and

372 increased intestinal surface exposure, the two tyaes ofbariatric surgeries

373 RYGB and VSG, differently alter gut morphology, gut hormone secretions, and
374 intestinal glucose transport and metaboligiay Figure) and these factormay

375 all contribute to glucose homeostadibe biggest challenge now is to evaluate
376 the relative contribtion of all these mechanisn@utstanding questions boX

377 and to find a way to recapitulate the important ones inquogical or less

378 invasive treatments.

379

380 FIGURES AND KEY FIGURE

381 Fiqure 1: Two common types of bariatric surgeries

382 (A) TheRouxenY gastricbypass RYGB) consistf creating a small

383 gastricpouch below the esophagus-f2%nL in humans) that is connected

384 directly to the middle portion of the jejunum, bypassing the rest of the stomach,
385 the pylorus and the upper portion of the small intestineddnum and proximal

386 jejunum), which is anastomosed distally. The operation creates three

387 anatomically distinct gut segments: an alimentary limb (or Roux limb), which

388 receives only undigested fodekd arrows)a biliopancreatic limb, which drains

389 gastric gcretions, bile and pancreatic enzyr(tdse arrows)and a common

390 limb that connects the two aforementioned limbs together. This operation is very
391 efficient, with an important and sustained weight loss accompanied by a

392 reduction in obesitassociated conmmbidities such as hypertension,

393 hyperlipidemia and type 2 diabetes in most pati€B{sThe vertical sleeve

394 gastrectomy (VSG) involves a longitudinal resection of the stomach starting

395 from the antrum and ending at the fundus close to the cardia; thennegnai

396 Vvolume of the gastric compartment is about 150 mL in humans. This

397 intervention has been proven to be an effective procedure at middle term with an

398 important weight loss accompanied by a reduction in obasspciated
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comorbidities such as hypertensidwyperlipidemia and type 2 diabetesnany

patients.

Figure 2, Key Figure: Differential intestinal adaptations after RYGB versus

VSG and their putative contributionsto the resulting altered hormone
secretion andimproved glucose tolerance

Both hariatric surgeries reduce the transit time of the meal and increase the
exposureof the intestinal mucosa that acts to modify secretioartigroencrine
cellsand also glucose enthy.response to RYGB, the Roux limb becomes
hyperplasicwith thenumber of incretirsecretingcells increamg. Additionally,
ashift in glucose metabolism increadbeintestinalglucoseconsumption.In
response to VSG, despite no intestinal hyperplasia, the number e1 GLP
positive cellamayincreasalue toincreasd cell density. Moreoveistudiesn
rats suggest thglucose transport from the lumen to the blood decsease
delaying alimentary glucose absorptidio. date, no study has directly

investigated intestinal adaptation after VSG in humans.
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