A. L. Yu, A. L. Gilman, and M. F. Ozkaynak, Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma, New England Journal of Medicine, vol.363, issue.14, pp.1324-1334, 2010.
DOI : 10.1056/NEJMoa0911123

L. Svennerholm, Composition of Gangliosides from Human Brain, Nature, vol.191, issue.4507, pp.524-525, 1956.
DOI : 10.1038/177524b0

R. K. Yu, Y. Tsai, T. Ariga, and M. Yanagisawa, Structures, Biosynthesis, and Functions of Gangliosides-an Overview, Journal of Oleo Science, vol.60, issue.10, pp.537-544, 2011.
DOI : 10.5650/jos.60.537

R. K. Yu, M. Ynagisawa, and T. Ariga, Glycosphingolipid Structures, Comprehensive Glycoscience, pp.73-122, 2007.
DOI : 10.1016/B978-044451967-2/00003-9

D. A. Cheresh, R. A. Reisfeld, and A. P. Varki, O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant, Science, vol.225, issue.4664, pp.844-846, 1984.
DOI : 10.1126/science.6206564

R. Chammas, J. L. Sonnenburg, and N. E. Watson, De-Nacetyl-gangliosides in humans: unusual subcellular distribution of a novel tumor antigen, Cancer Research, vol.59, issue.6, pp.1337-1346, 1999.

B. L. Slomiany, K. Kojima, Z. Banas?gruszka, V. L. Murty, N. I. Galicki et al., Characterization of the Sulfated Monosialosyltriglycosylceramide from Bovine Gastric Muscosa, European Journal of Biochemistry, vol.584, issue.3, pp.647-650, 1981.
DOI : 10.1016/0014-5793(76)80486-3

S. Ando, R. K. Yu, J. N. Scarsdale, S. Kusunoki, and J. H. Prestegard, High resolution proton NMR studies of gangliosides. Structure of two types of G D3 lactones and their reactivity with monoclonal antibody R24, The Journal of Biological Chemistry, vol.264, issue.6, pp.3478-3483, 1989.

H. Iber, C. Zacharias, and K. Sandhoff, are formed in rat liver Golgi by the same set of glycosyltransferases that catalyse the biosynthesis of asialo-, a- and b-series gangliosides, Glycobiology, vol.2, issue.2, pp.137-142, 1992.
DOI : 10.1093/glycob/2.2.137

P. M. Crespo, R. Iglesias-bartolomé, and J. L. Daniotti, Ganglioside GD3 Traffics from the trans-Golgi Network to Plasma Membrane by a Rab11-independent and Brefeldin A-insensitive Exocytic Pathway, Journal of Biological Chemistry, vol.279, issue.46, pp.47610-47618, 2004.
DOI : 10.1074/jbc.M407181200

S. Sonnino, L. Mauri, V. Chigorno, and A. Prinetti, Gangliosides as components of lipid membrane domains, Glycobiology, vol.17, issue.1, pp.1-13, 2007.
DOI : 10.1093/glycob/cwl052

S. Hakomori, The glycosynapse, Proceedings of the National Academy of Sciences, vol.99, issue.1, pp.225-232, 2002.
DOI : 10.1073/pnas.012540899

S. Birklé, G. Zeng, L. Gao, R. K. Yu, and J. Aubry, Role of tumorassociated gangliosides in cancer progression Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are oncodevelopmental antigens, Biochimie Nature, vol.85, issue.314 6006, pp.3-4, 1985.

G. A. Lammie, N. V. Cheung, W. Gerald, M. Rosenblum, and C. Cordon-cardo, Ganglioside GD2 expression in the human nervous system and in neuroblastomas?an immunohistochemical study, International Journal of Oncology, vol.3, issue.5, pp.909-915, 1993.

C. Martinez, T. J. Hofmann, R. Marino, M. Dominici, and E. M. Horwitz, Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs, Blood, vol.109, issue.10, pp.4245-4248, 2007.
DOI : 10.1182/blood-2006-08-039347

Z. Wu, E. Schwartz, R. Seeger, and S. Ladisch, Expression of GD2 ganglioside by untreated primary human neuroblastomas, Cancer Research, vol.46, issue.1, pp.440-443, 1986.

T. Watanabe, C. S. Pukel, and H. Takeyama, Human melanoma antigen AH is an autoantigenic ganglioside related to GD2, Journal of Experimental Medicine, vol.156, issue.6, pp.1884-1889, 1982.
DOI : 10.1084/jem.156.6.1884

D. A. Cheresh, J. Rosenberg, K. Mujoo, L. Hirschowitz, and R. A. Reisfeld, Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis, Cancer Research, vol.46, issue.10, pp.5112-5118, 1986.

H. D. Mennel, K. Bosslet, H. Wiegandt, H. H. Sedlacek, B. L. Bauer et al., Expression of GD2-epitopes in human intracranial tumors and normal brain, Experimental and Toxicologic Pathology, vol.44, issue.6, pp.317-324, 1992.
DOI : 10.1016/S0940-2993(11)80218-6

J. Portoukalian, M. David, M. Richard, and P. Gain, Shedding of GD2 ganglioside in patients with retinoblastoma, International Journal of Cancer, vol.98, issue.6, pp.948-951, 1993.
DOI : 10.1002/ijc.2910530614

S. Kailayangiri, B. Altvater, and J. Meltzer, The ganglioside antigen GD2 is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting, British Journal of Cancer, vol.181, issue.6, pp.1123-1133, 2012.
DOI : 10.1158/1078-0432.CCR-08-3163

H. Shibuya, K. Hamamura, and H. Hotta, Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3, Cancer Science, vol.378, issue.Suppl 1, pp.1656-1664, 2012.
DOI : 10.1111/j.1349-7006.2012.02344.x

V. L. Battula, Y. Shi, and K. W. Evans, Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis, Journal of Clinical Investigation, vol.122, issue.6, pp.2066-2078, 2012.
DOI : 10.1172/JCI59735DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591166

T. M. Phillips, W. H. Mcbride, and F. Pajonk, The Response of CD24-/low/CD44+ Breast Cancer-Initiating Cells to Radiation, JNCI Journal of the National Cancer Institute, vol.98, issue.24, pp.1777-1785, 2006.
DOI : 10.1093/jnci/djj495

M. A. Cheever, J. P. Allison, and A. S. Ferris, The Prioritization of Cancer Antigens: A National Cancer Institute Pilot Project for the Acceleration of Translational Research, Clinical Cancer Research, vol.15, issue.17, pp.5323-5337, 2009.
DOI : 10.1158/1078-0432.CCR-09-0737

M. Saito, R. K. Yu, and N. V. Cheung, Ganglioside GD2 specificity of monoclonal antibodies to human neuroblastoma cell, Biochemical and Biophysical Research Communications, vol.127, issue.1, pp.1-7, 1985.
DOI : 10.1016/S0006-291X(85)80117-0

S. D. Gillies, K. Lo, and J. Wesolowski, High-level expression of chimeric antibodies using adapted cDNA variable region cassettes, Journal of Immunological Methods, vol.125, issue.1-2, pp.191-202, 1989.
DOI : 10.1016/0022-1759(89)90093-8

K. Mujoo, T. J. Kipps, and H. M. Yang, Functional properties and effect on growth suppression of human neuroblastoma tumors by isotype switch variants of monoclonal antiganglioside GD2 antibody 14, Cancer Research, vol.18, issue.49 11, pp.2857-2861, 1989.

K. Mujoo, D. A. Cheresh, H. M. Yang, and R. A. Reisfeld, Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth, Cancer Research, vol.47, issue.4, pp.1098-1104, 1987.

Y. Zeng, S. Fest, and R. Kunert, Anti-neuroblastoma effect of ch14.18 antibody produced in CHO cells is mediated by NK-cells in mice, Molecular Immunology, vol.42, issue.11, pp.1311-1319, 2005.
DOI : 10.1016/j.molimm.2004.12.018

L. S. Sorkin, M. Otto, W. M. Baldwin, and I. , Anti-GD2 with an FC point mutation reduces complement fixation and decreases antibody-induced allodynia, Pain, vol.149, issue.1, pp.135-142, 2010.
DOI : 10.1016/j.pain.2010.01.024

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755890

N. V. Cheung, H. Guo, J. Hu, D. V. Tassev, and I. Y. Cheung, Humanizing murine IgG3 anti-GD2 antibody m3F8 substantially improves antibody-dependent cell-mediated cytotoxicity while retaining targeting in vivo, OncoImmunology, vol.61, issue.4, pp.477-486, 2012.
DOI : 10.4049/jimmunol.0901409

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382886

S. Dhillon, Dinutuximab: First Global Approval, Drugs, vol.11, issue.17, pp.923-927, 2015.
DOI : 10.1007/s40265-015-0399-5

N. Yuki, M. Yamada, Y. Tagawa, H. Takahashi, and S. Handa, Pathogenesis of the neurotoxicity caused by anti-GD2 antibody therapy, Journal of the Neurological Sciences, vol.149, issue.2, pp.127-130, 1997.
DOI : 10.1016/S0022-510X(97)05390-2

N. Siebert, C. Eger, and D. Seidel, Pharmacokinetics and pharmacodynamics of ch14.18/CHO in relapsed/refractory highrisk neuroblastoma patients treated by long-term infusion in combination with IL-2, pp.604-616, 2016.

B. H. Kushner, K. Kramer, S. Modak, and N. V. Cheung, Monoclonal Antibody 3F8 in Patients With Neuroblastoma: A Phase I Study, Journal of Clinical Oncology, vol.29, issue.9, pp.1168-1174, 2011.
DOI : 10.1200/JCO.2010.28.3317

H. N. Lode, N. Sibert, and C. Eger, Interleukin-2 adds toxicity but not measurable activity in relapsed/refractory neuroblastoma patients treated with long term infusion of anti-GD2 antibody ch14, Pediatric Blood Cancer, vol.18, issue.62, 2015.

N. Alvarez-rueda, A. Desselle, and D. Cochonneau, A Monoclonal Antibody to O-Acetyl-GD2 Ganglioside and Not to GD2 Shows Potent Anti-Tumor Activity without Peripheral Nervous System Cross-Reactivity, PLoS ONE, vol.38, issue.9, 2011.
DOI : 10.1371/journal.pone.0025220.s006

URL : http://doi.org/10.1371/journal.pone.0025220

E. R. Sjoberg, A. E. Manzi, K. Khoo, A. Dell, and A. Varki, Structural and immunological characterization of Oacetylated GD2: evidence that GD2 is an acceptor for ganglioside O-acetyltransferase in human melanoma cells, Journal of Biological Chemistry, vol.267, issue.23, pp.16200-16211, 1992.

A. Varki, Diversity in the sialic acids, Glycobiology, vol.2, issue.1, pp.25-40, 1992.
DOI : 10.1093/glycob/2.1.25

M. Bardor, D. H. Nguyen, S. Diaz, and A. Varki, -Glycolylneuraminic Acid into Human Cells, Journal of Biological Chemistry, vol.280, issue.6, pp.4228-4237, 2005.
DOI : 10.1074/jbc.M412040200

URL : https://hal.archives-ouvertes.fr/hal-01107955

H. C. Siebert, C. W. Der-lieth, and X. Dong, -acetylated sialic acids, Glycobiology, vol.6, issue.6, pp.561-572, 1996.
DOI : 10.1093/glycob/6.6.561-b

URL : https://hal.archives-ouvertes.fr/hal-01258434

A. Varki and S. Diaz, The release and purification of sialic acids from glycoconjugates: Methods to minimize the loss and migration of O-acetyl groups, Analytical Biochemistry, vol.137, issue.1, pp.236-247, 1984.
DOI : 10.1016/0003-2697(84)90377-4

J. P. Kamerling, R. Schauer, A. K. Shukla, S. Stoll, H. Van-halbeek et al., Migration of O-acetyl groups in N,O-acetylneuraminic acids, European Journal of Biochemistry, vol.68, issue.3, pp.601-607, 1987.
DOI : 10.1016/0003-2697(84)90377-4

J. Thurin, M. Herlyn, and O. Hindsgaul, Proton NMR and fast-atom bombardment mass spectrometry analysis of the melanoma-associated ganglioside 9-O-acetyl-G(D3), Journal of Biological Chemistry, vol.260, issue.27, pp.14556-14563, 1985.

G. K. Ostrander, M. Bozlee, and M. Fukuda, Isolation and characterization of the major glycosphingolipids from the liver of the rainbow trout (Oncorhynchus mykiss): Identification of an abundant source of 9-O-acetyl GD3, Archives of Biochemistry and Biophysics, vol.284, issue.2, pp.413-421, 1991.
DOI : 10.1016/0003-9861(91)90317-C

S. Ren, T. Ariga, and J. N. Scarsdale, Characterization of a hamster melanoma-associated ganglioside antigen as 7-O- acetylated disialoganglioside GD3, Journal of Lipid Research, vol.34, issue.9, pp.1565-1572, 1993.

A. E. Manzi, E. R. Sjoberg, S. Diaz, and A. Varki, Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells, The Journal of Biological Chemistry, vol.265, issue.22, pp.13091-13103, 1990.

S. Ruan and K. O. Lloyd, Glycosylation pathways in the biosynthesis of gangliosides in melanoma and neuroblastoma cells: relative glycosyltransferase levels determine ganglioside patterns, Cancer Research, vol.52, issue.20, pp.5725-5731, 1992.

S. Yamashiro, S. Ruan, and K. Furukawa, Genetic and enzymatic basis for the differential expression of GM2 and GD2 gangliosides in human cancer cell lines, Cancer Research, vol.53, issue.22, pp.5395-5400, 1993.

K. Furukawa, H. Soejima, N. Niikawa, H. Shiku, and K. Furukawa, Genomic Organization and Chromosomal Assignment of the Human ??1,4-N-Acetylgalactosaminyltransferase Gene: IDENTIFICATION OF MULTIPLE TRANSCRIPTION UNITS, Journal of Biological Chemistry, vol.271, issue.34, pp.20836-20844, 1996.
DOI : 10.1074/jbc.271.34.20836

A. Stoddart, Y. Zhang, and C. J. Paige, Molecular cloning of the cDNA encoding a murine sialic acid-specific 9- O-acetylesterase and RNA expression in cells of hematopoietic and non- hematopoietic origin, Nucleic Acids Research, vol.24, issue.20, pp.4003-4008, 1996.
DOI : 10.1093/nar/24.20.4003

M. J. Guimarães, J. F. Bazan, and J. Castagnola, Molecular cloning and characterization of lysosomal sialic acid Oacetylesterase, The Journal of Biological Chemistry, vol.271, issue.23, pp.13697-13705, 1996.

R. Schauer, M. Wember, and C. F. Amaral, -acetylneuraminic Acids by CMP-Sialate Synthase from Bovine Submaxillary Glands, Hoppe-Seyler??s Zeitschrift f??r physiologische Chemie, vol.353, issue.1, pp.883-886, 1972.
DOI : 10.1515/bchm2.1972.353.1.883

URL : https://hal.archives-ouvertes.fr/hal-01205945

H. H. Higa, C. Butor, S. Diaz, and A. Varki, O-Acetylation and de-O-acetylation of sialic acids. O-Acetylation of sialic acids in the rat liver Golgi apparatus involves an acetyl intermediate and essential histidine and lysine residues?a transmembrane reaction?, Journal of Biological Chemistry, vol.264, issue.32, pp.19427-19434, 1989.

K. Ogura, K. Nara, Y. Watanabe, K. Kohno, T. Tai et al., Cloning and Expression of cDNA forO-Acetylation of GD3 Ganglioside, Biochemical and Biophysical Research Communications, vol.225, issue.3, pp.932-938, 1996.
DOI : 10.1006/bbrc.1996.1274

A. Kanamori, J. Nakayama, and M. N. Fukuda, Expression cloning and characterization of a cDNA encoding a novel membrane protein required for the formation of O-acetylated ganglioside: A putative acetyl-CoA transporter, Proceedings of the National Academy of Sciences, vol.94, issue.7, pp.2897-2902, 1997.
DOI : 10.1073/pnas.94.7.2897

W. Shi, R. Chammas, and A. Varki, Induction of sialic acid 9-O-acetylation by diverse gene products: Implications for the expression cloning of sialic acid O-acetyltransferases, Glycobiology, vol.8, issue.2, pp.199-205, 1998.
DOI : 10.1093/glycob/8.2.199

H. Satake, H. Y. Chen, and A. Varki, Genes Modulated by Expression of GD3 Synthase in Chinese Hamster Ovary Cells. EVIDENCE THAT THE Tis21 GENE IS INVOLVED IN THE INDUCTION OF GD3 9-O-ACETYLATION, Journal of Biological Chemistry, vol.278, issue.10, pp.7942-7948, 2003.
DOI : 10.1074/jbc.M210565200

K. Furukawa, W. Aixinjueluo, and T. Kasama, Disruption of GM2/GD2 synthase gene resulted in overt expression of 9-O-acetyl GD3 irrespective of Tis21, Journal of Neurochemistry, vol.65, issue.3, pp.1057-1066, 2008.
DOI : 10.1111/j.1471-4159.1988.tb02484.x

V. Vandamme-feldhaus and R. Schauer, Characterization of the Enzymatic 7- O-Acetylation of Sialic Acids and Evidence for Enzymatic O-Acetyl Migration from C-7 to C-9 in Bovine Submandibular Gland, Journal of Biochemistry, vol.124, issue.1, pp.111-121, 1998.
DOI : 10.1093/oxfordjournals.jbchem.a022069

S. Arming, D. Wipfler, and J. Mayr, The human Cas1 protein: A sialic acid-specific O-acetyltransferase?, Glycobiology, vol.21, issue.5, pp.553-564, 2011.
DOI : 10.1093/glycob/cwq153

A. T. Baumann, M. J. Bakkers, and F. F. Buettner, 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate, Nature Communications, vol.179, p.7673, 2015.
DOI : 10.1038/ncomms8673

J. N. Ye and N. V. Cheung, A novel O-acetylated ganglioside detected by anti-GD2 monoclonal antibodies, International Journal of Cancer, vol.50, issue.2, pp.197-201, 1992.
DOI : 10.1002/ijc.2910500207

E. R. Sjoberg and A. Varki, Kinetic and spatial interrelationships between ganglioside glycosyltransferases and Oacetyltransferase(s ) in human melanoma cells, Journal of Biological Chemistry, vol.268, issue.14, pp.10185-10196, 1993.

C. Butor, S. Diaz, and A. Varki, High level O-acetylation of sialic acids on N-linked oligosaccharides of rat liver membranes: differential subcellular distribution of 7-and 9-O-acetyl groups and of enzymes involved in their regulation, Journal of Biological Chemistry, vol.268, issue.14, pp.10197-10206, 1993.

H. Araujo, M. Menezes, and R. Mendez-otero, Blockage of 9- O-acetyl gangliosides induces microtubule depolymerization in growth cones and neurites, European Journal of Cell Biology, vol.72, issue.3, pp.202-213, 1997.

A. Varki, F. Hooshmand, S. Diaz, N. M. Varki, and S. M. Hedrick, Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9-O-acetylesterase, Cell, vol.65, issue.1, pp.65-74, 1991.
DOI : 10.1016/0092-8674(91)90408-Q

B. Kniep, J. Peter-katalini´ckatalini´c, W. Flegel, H. Northoff, and E. P. Rieber, CDw 60 antibodies bind to acetylated forms of ganglioside GD3, Biochemical and Biophysical Research Communications, vol.187, issue.3, pp.1343-1349, 1992.
DOI : 10.1016/0006-291X(92)90450-Y

D. A. Fox, X. He, and A. Abe, THE T LYMPHOCYTE STRUCTURE CD60 CONTAINS A SIALYLATED CARBOHYDRATE EPITOPE THAT IS EXPRESSED ON BOTH GANGLIOSIDES AND GLYCOPROTEINS, Immunological Investigations, vol.174, issue.2, pp.67-85, 2001.
DOI : 10.1083/jcb.109.2.927

M. Vater, B. Kniep, H. Groß, C. Claus, W. Dippold et al., The 9-O-acetylated disialosyl carbohydrate sequence of CDw60 is a marker on activated human B lymphocytes, Immunology Letters, vol.59, issue.3, pp.151-157, 1997.
DOI : 10.1016/S0165-2478(97)00116-8

J. B. Higgs, W. Zeldes, and K. Kozarsky, A novel pathway of human T lymphocyte activation: identification by a monoclonal antibody generated against a rheumatoid synovial T cell line, Journal of Immunology, vol.140, issue.11, pp.3758-3765, 1988.

K. Mukherjee, A. K. Chava, and C. , -acetylation of GD3 prevents its apoptotic effect and promotes survival of lymphoblasts in childhood acute lymphoblastic leukaemia, Journal of Cellular Biochemistry, vol.397, issue.3, pp.724-734, 2008.
DOI : 10.1002/jcb.21867

URL : https://hal.archives-ouvertes.fr/hal-00159366

F. Malisan, L. Franchi, and B. Tomassini, Acetylation Suppresses the Proapoptotic Activity of GD3 Ganglioside, The Journal of Experimental Medicine, vol.9, issue.12, pp.1535-1541, 2002.
DOI : 10.1038/35083062

S. Birklé, S. Ren, A. Slominski, G. Zeng, L. Gao et al., Down-Regulation of the Expression of O-Acetyl-GD3 by the O-Acetylesterase cDNA in Hamster Melanoma Cells, Journal of Neurochemistry, vol.1, issue.3, pp.954-961, 1999.
DOI : 10.1046/j.1471-4159.1999.0720954.x

S. M. Birks, J. O. Danquah, L. King, R. Vlasak, D. C. Gorecki et al., Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma, Neuro-Oncology, vol.13, issue.9, pp.950-960, 2011.
DOI : 10.1093/neuonc/nor108

B. Kniep, E. Kniep, and N. Ozkucur, 9-O-acetyl GD3 protects tumor cells from apoptosis, International Journal of Cancer, vol.34, issue.1, pp.67-73, 2006.
DOI : 10.1002/ijc.21788

R. Parameswaran, M. Lim, and A. Arutyunyan, -acetylneuraminic acid as a novel target for therapy in human pre-B acute lymphoblastic leukemia, The Journal of Experimental Medicine, vol.244, issue.4, pp.805-819, 2013.
DOI : 10.1093/glycob/cwm018

URL : https://hal.archives-ouvertes.fr/hal-00459840

D. Cochonneau, M. Terme, and A. Michaud, Cell cycle arrest and apoptosis induced by O-acetyl-GD2-specific monoclonal antibody 8B6 inhibits tumor growth in vitro and in vivo, Cancer Letters, vol.333, issue.2, pp.194-204, 2013.
DOI : 10.1016/j.canlet.2013.01.032

W. Aixinjueluo, K. Furukawa, and Q. Zhang, Mechanisms for the Apoptosis of Small Cell Lung Cancer Cells Induced by Anti-GD2 Monoclonal Antibodies, Journal of Biological Chemistry, vol.280, issue.33, pp.29828-29836, 2005.
DOI : 10.1074/jbc.M414041200

A. Kowalczyk, M. Gil, I. Horwacik, Z. Odrowaz, D. Kozbor et al., The GD2-specific 14G2a monoclonal antibody induces apoptosis and enhances cytotoxicity of chemotherapeutic drugs in IMR-32 human neuroblastoma cells, Cancer Letters, vol.281, issue.2, pp.171-182, 2009.
DOI : 10.1016/j.canlet.2009.02.040

C. Tsao, F. Sabbatino, and N. V. Cheung, Antiproliferative and pro-apoptotic activity of GD2 gangliosidespecific monoclonal antibody 3F8 in human melanoma cells, OncoImmunology, vol.4, issue.8, 2015.

S. Yoshida, H. Kawaguchi, S. Sato, R. Ueda, and K. Furukawa, An Anti-GD2 Monoclonal Antibody Enhances Apoptotic Effects of Anti-cancer Drugs against Small Cell Lung Cancer Cells via JNK (c-Jun Terminal Kinase) Activation, Japanese Journal of Cancer Research, vol.6, issue.7, pp.816-824, 2002.
DOI : 10.1111/j.1349-7006.2002.tb01324.x

S. Yoshida, S. Fukumoto, H. Kawaguchi, S. Sato, R. Ueda et al., Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis, Cancer Research Journal of Immunology Research, vol.61, pp.4244-4252, 2001.

C. M. Lynch, B. W. Hart, and I. S. Grewal, Practical considerations for nonclinical safety evaluation of therapeutic monoclonal antibodies, mAbs, vol.2, issue.1, pp.2-11, 2009.
DOI : 10.1007/978-1-59259-739-0

J. Fleurence, D. Cochonneau, and S. Fougeray, Targeting and killing glioblastoma with monoclonal antibody to <i>O</i>-acetyl GD2 ganglioside, Oncotarget, 2016.
DOI : 10.18632/oncotarget.9226

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5173050

S. K. Singh, I. D. Clarke, and M. Terasaki, Identification of a cancer stem cell in human brain tumors, Cancer Research, vol.63, issue.18, pp.5821-5828, 2003.

T. Tanei, K. Morimoto, and K. Shimazu, Association of Breast Cancer Stem Cells Identified by Aldehyde Dehydrogenase 1 Expression with Resistance to Sequential Paclitaxel and Epirubicin-Based Chemotherapy for Breast Cancers, Clinical Cancer Research, vol.15, issue.12, pp.4234-4241, 2009.
DOI : 10.1158/1078-0432.CCR-08-1479

R. Esparza, T. D. Azad, A. H. Feroze, S. S. Mitra, and S. H. Cheshier, Glioblastoma stem cells and stem cell-targeting immunotherapies, Journal of Neuro-Oncology, vol.28, issue.3, pp.449-457, 2015.
DOI : 10.1007/s11060-015-1729-x

H. Ozawa, M. Kotani, I. Kawashima, and T. Tai, Generation of one set of monoclonal antibodies specific for b-pathway ganglio-series gangliosides, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1123, issue.2, pp.184-190, 1992.
DOI : 10.1016/0005-2760(92)90110-H

M. Kotani, H. Ozawa, I. Kawashima, S. Ando, and T. Tai, Generation of one set of monoclonal antibodies specific for a-pathway ganglio-series gangliosides, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1117, issue.1, pp.97-103, 1992.
DOI : 10.1016/0304-4165(92)90168-T

K. J. Lee, S. Mao, and C. Sun, ???Carbohydrate Antigen, Journal of the American Chemical Society, vol.124, issue.42, pp.12439-12446, 2002.
DOI : 10.1021/ja020737j

G. Rojas, A. Pupo, S. Gómez, U. Krengel, and E. Moreno, -Glycolyl GM3: From Functional Mapping to Novel Anti-ganglioside Specificities, ACS Chemical Biology, vol.8, issue.2, pp.376-386, 2013.
DOI : 10.1021/cb3003754

URL : https://hal.archives-ouvertes.fr/hal-00109440

E. Cerato, S. Birkle, J. Portoukalian, A. Mezazigh, J. Chatal et al., ) and Their O-Acetylated Derivatives, Hybridoma, vol.16, issue.4, pp.307-316, 1997.
DOI : 10.1089/hyb.1997.16.307

N. Yuki, T. Miyatake, Y. Ichihashi, S. Sato, and T. Katagiri, IgM anti-(GalNAc í µí»½1-4 Gal[3-2í µí»¼ NeuAc]í µí»½1-) antibody-mediated cytotoxicity in a patient with amyotrophic lateral sclerosis-like disorder, Muscle and Nerve, vol.15, issue.12, pp.1371-1373, 1992.

M. Z. Ladjemi, Anti-idiotypic antibodies as cancer vaccines: achievements and future improvements, Frontiers in Oncology, vol.2, p.158, 2012.
DOI : 10.3389/fonc.2012.00158

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490135

A. Perez, E. S. Mier, N. S. Vispo, A. M. Vazquez, and R. P. Rodríguez, A monoclonal antibody against NeuGc-containing gangliosides contains a regulatory idiotope involved in the interaction with B and T cells, Molecular Immunology, vol.39, issue.1-2, pp.103-112, 2002.
DOI : 10.1016/S0161-5890(02)00041-X

S. Alfonso, A. Valdés-zayas, and E. R. Santiesteban, A Randomized, Multicenter, Placebo-Controlled Clinical Trial of Racotumomab-Alum Vaccine as Switch Maintenance Therapy in Advanced Non-Small Cell Lung Cancer Patients, Clinical Cancer Research, vol.20, issue.14, pp.3660-3671, 2014.
DOI : 10.1158/1078-0432.CCR-13-1674

W. Cacciavillano, C. Sampor, and C. Venier, A phase I study of the anti-idiotype vaccine racotumomab in neuroblastoma and other pediatric refractory malignancies Pediatric Blood and Cancer Complement-mediated mechanisms in anti-GD2 monoclonal antibody therapy of murine metastatic cancer, Cancer Research, vol.62, issue.65 22, pp.2120-2124, 2005.

N. V. Cheung, R. Sowers, A. J. Vickers, I. Y. Cheung, B. H. Kushner et al., Polymorphism Is Correlated With Clinical Outcome After Immunotherapy of Neuroblastoma With Anti-GD2 Antibody and Granulocyte Macrophage Colony-Stimulating Factor, Journal of Clinical Oncology, vol.24, issue.18, pp.2885-2890, 2006.
DOI : 10.1200/JCO.2005.04.6011

N. Tarek, J. L. Luduec, and M. M. Gallagher, Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment, Journal of Clinical Investigation, vol.122, issue.9, pp.3260-3270, 2012.
DOI : 10.1172/JCI62749DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428088

M. Terme, M. Dorvillius, and D. Cochonneau, Chimeric Antibody c.8B6 to O-Acetyl-GD2 Mediates the Same Efficient Anti-Neuroblastoma Effects as Therapeutic ch14.18 Antibody to GD2 without Antibody Induced Allodynia, PLoS ONE, vol.333, issue.2, 2014.
DOI : 10.1371/journal.pone.0087210.s001

N. V. Cheung, H. Lazarus, and F. D. Miraldi, Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma., Journal of Clinical Oncology, vol.5, issue.9, pp.1430-1440, 1987.
DOI : 10.1200/JCO.1987.5.9.1430

K. J. Curran, H. J. Pegram, and R. J. Brentjens, Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions, The Journal of Gene Medicine, vol.365, issue.6, pp.405-415, 2012.
DOI : 10.1002/jgm.2604

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697438

M. H. Kershaw, J. A. Westwood, and P. K. Darcy, Gene-engineered T cells for cancer therapy, Nature Reviews Cancer, vol.120, issue.8, pp.525-541, 2013.
DOI : 10.1038/nrc3565

S. L. Maude, N. Frey, and P. A. Shaw, Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia, New England Journal of Medicine, vol.371, issue.16, pp.1507-1517, 2014.
DOI : 10.1056/NEJMoa1407222

S. A. Grupp, M. Kalos, and D. Barrett, Chimeric Antigen Receptor???Modified T Cells for Acute Lymphoid Leukemia, New England Journal of Medicine, vol.368, issue.16, pp.1509-1518, 2013.
DOI : 10.1056/NEJMoa1215134

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058440

M. L. Davila, I. Riviere, and X. Wang, Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia, Science Translational Medicine, vol.6, issue.224, 2014.
DOI : 10.1126/scitranslmed.3008226

J. N. Kochenderfer, M. E. Dudley, and S. H. Kassim, Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor, Journal of Clinical Oncology, vol.33, issue.6, pp.540-549, 2015.
DOI : 10.1200/JCO.2014.56.2025

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322257

G. Dotti, S. Gottschalk, B. Savoldo, and M. K. Brenner, Design and development of therapies using chimeric antigen receptor-expressing T cells, Immunological Reviews, vol.31, issue.1, pp.107-126, 2014.
DOI : 10.1111/imr.12131

G. Dotti, B. Savoldo, and M. Brenner, Fifteen Years of Gene Therapy Based on Chimeric Antigen Receptors: ???Are We Nearly There Yet????, Human Gene Therapy, vol.20, issue.11, pp.1229-1239, 2009.
DOI : 10.1089/hum.2009.142

B. Savoldo and G. Dotti, Chimeric antigen receptors (CARs) from bench-to-bedside, Immunology Letters, vol.155, issue.1-2, pp.40-42, 2013.
DOI : 10.1016/j.imlet.2013.09.014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926092

R. J. Brentjens, J. Latouche, and E. Santos, Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15, Nature Medicine, vol.9, issue.3, pp.279-286, 2003.
DOI : 10.1038/nm827

R. J. Brentjens, E. Santos, and Y. Nikhamin, Genetically Targeted T Cells Eradicate Systemic Acute Lymphoblastic Leukemia Xenografts, Clinical Cancer Research, vol.13, issue.18, pp.5426-5435, 2007.
DOI : 10.1158/1078-0432.CCR-07-0674

B. Savoldo, C. A. Ramos, and E. Liu, CD28 costimulation improves expansion and persistence of chimeric antigen receptor???modified T cells in lymphoma patients, Journal of Clinical Investigation, vol.121, issue.5, pp.1822-1826, 2011.
DOI : 10.1172/JCI46110DS1

C. Rossig, J. G. Nuchtern, and M. K. Brenner, Selection of human antitumor single-chain Fv antibodies from the B-cell repertoire of patients immunized against autologous neuroblastoma, Medical and Pediatric Oncology, vol.261, issue.6, pp.692-695, 2000.
DOI : 10.1002/1096-911X(20001201)35:6<692::AID-MPO45>3.0.CO;2-7

C. Rossig, C. M. Bollard, J. G. Nuchtern, D. A. Merchant, and M. K. Brenner, Targeting of GD2-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes, International Journal of Cancer, vol.96, issue.2, pp.228-236, 2001.
DOI : 10.1002/ijc.1457

M. A. Pule, B. Savoldo, and G. D. Myers, Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma, Nature Medicine, vol.92, issue.11, pp.1264-1270, 2008.
DOI : 10.1038/nm.1882

C. U. Louis, B. Savoldo, and G. Dotti, Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma, Blood, vol.118, issue.23, pp.6050-6056, 2011.
DOI : 10.1182/blood-2011-05-354449

M. A. Puì-e, K. C. Straathof, G. Dotti, H. E. Heslop, C. M. Rooney et al., A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells, Molecular Therapy, vol.12, issue.5, pp.933-941, 2005.

A. H. Long, W. M. Haso, and J. F. Shern, 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors, Nature Medicine, vol.21, issue.6, pp.581-590, 2015.
DOI : 10.1182/blood-2012-08-449215

J. L. Davis, M. R. Theoret, Z. Zheng, C. H. Lamers, S. A. Rosenberg et al., Development of Human Anti-Murine T-Cell Receptor Antibodies in Both Responding and Nonresponding Patients Enrolled in TCR Gene Therapy Trials, Clinical Cancer Research, vol.16, issue.23, pp.5852-5861, 2010.
DOI : 10.1158/1078-0432.CCR-10-1280

M. C. Jensen, L. Popplewell, and L. J. Cooper, Antitransgene Rejection Responses Contribute to Attenuated Persistence of Adoptively Transferred CD20/CD19-Specific Chimeric Antigen Receptor Redirected T Cells in Humans, Biology of Blood and Marrow Transplantation, vol.16, issue.9, pp.1245-1256, 2010.
DOI : 10.1016/j.bbmt.2010.03.014

C. H. Lamers, R. Willemsen, and P. Van-elzakker, Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells, Blood, vol.117, issue.1, pp.72-82, 2011.
DOI : 10.1182/blood-2010-07-294520

M. Hudecek, M. Lupo-stanghellini, and P. L. Kosasih, Receptor Affinity and Extracellular Domain Modifications Affect Tumor Recognition by ROR1-Specific Chimeric Antigen Receptor T Cells, Clinical Cancer Research, vol.19, issue.12, pp.3153-3164, 2013.
DOI : 10.1158/1078-0432.CCR-13-0330

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804130

A. Kuünkele, A. J. Johnson, and L. S. Rolczynski, Functional Tuning of CARs Reveals Signaling Threshold above Which CD8+ CTL Antitumor Potency Is Attenuated due to Cell Fas-FasL-Dependent AICD, Cancer Immunology Research, vol.3, issue.4, pp.368-379, 2015.
DOI : 10.1158/2326-6066.CIR-14-0200

S. Thomas, K. Straathof, N. Himoudi, J. Anderson, M. Pule-]-b et al., An optimized GD2-targeting retroviral cassette for more potent and safer cellular therapy of neuroblastoma and other cancers In vitro and in vivo comparison of lymphocytes transduced with a human CD16 or with a chimeric antigen receptor reveals potential off-target interactions due to the IgG2 CH2-CH3 CAR-spacer, PLoS ONE Journal of Immunology Research, vol.11, issue.2015, 2015.

A. Hombach, A. A. Hombach, and H. Abken, Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ???spacer??? domain in the extracellular moiety of chimeric antigen receptors avoids ???off-target??? activation and unintended initiation of an innate immune response, Gene Therapy, vol.147, issue.10, pp.1206-1213, 2010.
DOI : 10.1038/sj.gt.3301051

Z. Eshhar, T. Waks, G. Gross, and D. G. Schindler, Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors., Proceedings of the National Academy of Sciences, vol.90, issue.2, pp.720-724, 1993.
DOI : 10.1073/pnas.90.2.720

J. S. Bridgeman, R. E. Hawkins, S. Bagley, M. Blaylock, M. Holland et al., The Optimal Antigen Response of Chimeric Antigen Receptors Harboring the CD3?? Transmembrane Domain Is Dependent upon Incorporation of the Receptor into the Endogenous TCR/CD3 Complex, The Journal of Immunology, vol.184, issue.12, pp.6938-6949, 2010.
DOI : 10.4049/jimmunol.0901766

M. C. Milone, J. D. Fish, and C. Carpenito, Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy In Vivo, Molecular Therapy, vol.17, issue.8, pp.1453-1464, 2009.
DOI : 10.1038/mt.2009.83

C. Carpenito, M. C. Milone, and R. Hassan, Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains, Proceedings of the National Academy of Sciences, vol.106, issue.9, pp.3360-3365, 2009.
DOI : 10.1073/pnas.0813101106

S. Tammana, X. Huang, and M. Wong, 4-1BB and CD28 Signaling Plays a Synergistic Role in Redirecting Umbilical Cord Blood T Cells Against B-Cell Malignancies, Human Gene Therapy, vol.21, issue.1, pp.75-86, 2010.
DOI : 10.1089/hum.2009.122

S. Guedan, X. Chen, and A. Madar, ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells, Blood, vol.124, issue.7, pp.1070-1080, 2014.
DOI : 10.1182/blood-2013-10-535245

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133482

C. R. Cruz, K. P. Micklethwaite, and B. Savoldo, Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study, Blood, vol.122, issue.17, pp.2965-2973, 2013.
DOI : 10.1182/blood-2013-06-506741

L. Gattinoni, S. E. Finkelstein, and C. A. Klebanoff, T cells, The Journal of Experimental Medicine, vol.163, issue.7, pp.907-912, 2005.
DOI : 10.4049/jimmunol.173.12.7209

C. A. Klebanoff, L. Gattinoni, and N. P. Restifo, Sorting Through Subsets, Journal of Immunotherapy, vol.35, issue.9, pp.651-660, 2012.
DOI : 10.1097/CJI.0b013e31827806e6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501135

C. A. Klebanoff, L. Gattinoni, and P. Torabi-parizi, Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells, Proceedings of the National Academy of Sciences, vol.102, issue.27, pp.9571-9576, 2005.
DOI : 10.1073/pnas.0503726102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1172264

L. S. Metelitsa, Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans, Clinical Immunology, vol.140, issue.2, pp.119-129, 2011.
DOI : 10.1016/j.clim.2010.10.005

A. Heczey, D. Liu, and A. Courtney, NKT cells as a novel platform for cancer immunotherapy with chimeric antigen receptors, Proceedings of the American Society of Gell and Cell Therapy Annual Meeting, 2013.

D. Liu, L. Song, and J. Wei, IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity, Journal of Clinical Investigation, vol.122, issue.6, pp.2221-2233, 2012.
DOI : 10.1172/JCI59535DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366399

L. S. Metelitsa, H. Wu, and H. Wang, Natural Killer T Cells Infiltrate Neuroblastomas Expressing the Chemokine CCL2, The Journal of Experimental Medicine, vol.17, issue.9, pp.1213-1221, 2004.
DOI : 10.1038/sj.onc.1202746

L. Song, S. Asgharzadeh, and J. Salo, V??24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages, Journal of Clinical Investigation, vol.119, issue.6, pp.1524-1536, 2009.
DOI : 10.1172/JCI37869DS1

A. Heczey, D. Liu, and G. Tian, Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy Submit your manuscripts at https://www, Bloodhindawi.com Stem Cells International, vol.124, issue.18, pp.2824-2833, 2014.