J. C. Boothroyd and J. Dubremetz, Kiss and spit: the dual roles of Toxoplasma rhoptries, Nature Reviews Microbiology, vol.44, issue.1, pp.79-88, 2008.
DOI : 10.1038/nrmicro1800

URL : https://hal.archives-ouvertes.fr/hal-00203079

V. B. Carruthers and F. M. Tomley, Microneme Proteins in Apicomplexans, Subcell. Biochem, vol.47, pp.33-45, 2008.
DOI : 10.1007/978-0-387-78267-6_2

A. Bougdour, I. Tardieux, and M. A. Hakimi, exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression, Cellular Microbiology, vol.513, issue.3, pp.334-343, 2014.
DOI : 10.1111/cmi.12255

URL : https://hal.archives-ouvertes.fr/inserm-01068993

S. Tomavo, C. Slomianny, M. Meissner, and V. B. Carruthers, Protein Trafficking through the Endosomal System Prepares Intracellular Parasites for a Home Invasion, Scientific RepoRts | 6:38842 | DOI: 10.1038, p.1003629, 2013.
DOI : 10.1371/journal.ppat.1003629.g004

S. Tomavo, Evolutionarily repurposing of endosomal systems for apical organelle biogenesis in Toxoplasma gondii. Intern, J. Parasitol, vol.44, pp.133-138, 2014.

E. Jimenez-ruiz, J. Morlon-guyot, W. Daher, and M. Meissner, Vacuolar protein sorting mechanisms in apicomplexan parasites, Molecular and Biochemical Parasitology, vol.209, issue.1-2, p.7, 2016.
DOI : 10.1016/j.molbiopara.2016.01.007

URL : http://doi.org/10.1016/j.molbiopara.2016.01.007

L. O. Sangaré, Unconventional endosome-like compartment and retromer complex in Toxoplasma gondii govern parasite integrity and host infection, Nature Communications, vol.1, pp.10-1038, 2016.
DOI : 10.1093/nar/gkv1145

O. L. Mcgovern and V. B. Carruthers, Toxoplasma Retromer Is Here to Stay, Trends in Parasitology, vol.32, issue.10, p.7, 2016.
DOI : 10.1016/j.pt.2016.05.007

J. P. Luzio, Y. Hackmann, N. M. Dieckmann, and G. M. Griffiths, The Biogenesis of Lysosomes and Lysosome-Related Organelles, Cold Spring Harbor Perspectives in Biology, vol.6, issue.9, p.16840, 2014.
DOI : 10.1101/cshperspect.a016840

P. Sloves, Toxoplasma Sortilin-like Receptor Regulates Protein Transport and Is Essential for Apical Secretory Organelle Biogenesis and Host Infection, Cell Host & Microbe, vol.11, issue.5, pp.515-527, 2012.
DOI : 10.1016/j.chom.2012.03.006

URL : https://hal.archives-ouvertes.fr/hal-00701381

M. S. Breinich, A Dynamin Is Required for the Biogenesis of Secretory Organelles in Toxoplasma gondii, Current Biology, vol.19, issue.4, pp.277-286, 2009.
DOI : 10.1016/j.cub.2009.01.039

URL : https://hal.archives-ouvertes.fr/hal-00373663

M. S. Pieperhoff, M. Schmitt, D. J. Ferguson, and M. Meissner, The Role of Clathrin in Post-Golgi Trafficking in Toxoplasma gondii, PLoS ONE, vol.34, issue.10, pp.1-16, 2013.
DOI : 10.1371/journal.pone.0077620.s005

J. Morlon-guyot, S. Pastore, L. Berry, M. Lebrun, and W. Daher, Vps11, a subunit of HOPS and CORVET tethering complexes, is essential for the biogenesis of secretory organelles, Cellular Microbiology, vol.151, issue.Part 4, pp.1157-1178, 2015.
DOI : 10.1111/cmi.12426

H. J. Balderhaar and C. Ungermann, CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion, Journal of Cell Science, vol.126, issue.6, pp.1307-1316, 2013.
DOI : 10.1242/jcs.107805

J. Rink, E. Ghigo, Y. Kalaidzidis, and M. Zerial, Rab Conversion as a Mechanism of Progression from Early to Late Endosomes, Cell, vol.122, issue.5, pp.735-749, 2005.
DOI : 10.1016/j.cell.2005.06.043

H. Stenmark, Rab GTPases as coordinators of vesicle traffic, Nature Reviews Molecular Cell Biology, vol.178, issue.8, pp.513-525, 2009.
DOI : 10.1038/nrm2728

H. J. Balderhaar, The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes, Proc. Natl. Acad. Sci. USA, pp.3823-3828, 2013.
DOI : 10.1073/pnas.1221785110

A. Delprato, E. Merithew, and D. G. Lambright, Structure, Exchange Determinants, and Family-Wide Rab Specificity of the Tandem Helical Bundle and Vps9 Domains of Rabex-5, Cell, vol.118, issue.5, pp.607-617, 2004.
DOI : 10.1016/j.cell.2004.08.009

J. Y. Pan, J. C. Sanford, and M. Wessling-resnick, Effect of Guanine Nucleotide Binding on the Intrinsic Tryptophan Fluorescence Properties of Rab5, Journal of Biological Chemistry, vol.270, issue.41, pp.24204-24208, 1995.
DOI : 10.1074/jbc.270.41.24204

I. Simon, M. Zerial, and R. S. Goody, Kinetics of Interaction of Rab5 and Rab7 with Nucleotides and Magnesium Ions, Journal of Biological Chemistry, vol.271, issue.34, pp.20470-20478, 1996.
DOI : 10.1074/jbc.271.34.20470

A. Delprato and D. G. Lambright, Structural basis for Rab GTPase activation by VPS9 domain exchange factors, Nature Structural & Molecular Biology, vol.50, issue.5, pp.406-412, 2007.
DOI : 10.1107/S0108767390010224

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254184

D. S. Carney, B. Davies, and B. Horazdovsky, Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons, Trends in Cell Biology, vol.16, issue.1, pp.27-35, 2006.
DOI : 10.1016/j.tcb.2005.11.001

H. Hama, G. G. Tall, and B. Horazdovsky, Vps9p Is a Guanine Nucleotide Exchange Factor Involved in Vesicle-mediated Vacuolar Protein Transport, Journal of Biological Chemistry, vol.274, issue.21, pp.15284-15291, 1999.
DOI : 10.1074/jbc.274.21.15284

D. Crisanti, M. Spaccapelo, R. Soldati, D. Bistoni, F. Crisanti et al., Two conserved amino acid motifs mediate protein targeting to the micronemes of the apicomplexan parasite Toxoplasma gondii, Mol. Cell. Biol, vol.20, pp.7332-7341, 2000.

X. Que, The Cathepsin B of Toxoplasma gondii, Toxopain-1, Is Critical for Parasite Invasion and Rhoptry Protein Processing, Journal of Biological Chemistry, vol.277, issue.28, pp.25791-25797, 2002.
DOI : 10.1074/jbc.M202659200

J. M. Harper, A Cleavable Propeptide Influences Toxoplasma Infection by Facilitating the Trafficking and Secretion of the TgMIC2-M2AP Invasion Complex, Molecular Biology of the Cell, vol.17, issue.10, pp.4551-4563, 2006.
DOI : 10.1091/mbc.E06-01-0064

S. D. Brydges, J. M. Harper, F. Parussini, I. Coppens, and V. B. Carruthers, A transient forward-targeting element for microneme-regulated secretion in Toxoplasma gondii, Biology of the Cell, vol.84, issue.4, pp.253-264, 2008.
DOI : 10.1042/BC20070076

V. Lagal, Toxoplasma gondii protease TgSUB1 is required for cell surface processing of micronemal adhesive complexes and efficient adhesion of tachyzoites, Cellular Microbiology, vol.3, issue.12, pp.1792-1808, 2010.
DOI : 10.1111/j.1462-5822.2010.01509.x

K. Miranda, Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole, Molecular Microbiology, vol.104, issue.Part 5, pp.1358-1375, 2010.
DOI : 10.1111/j.1365-2958.2010.07165.x

F. Parussini, I. Coppens, P. P. Shah, S. L. Diamond, and V. B. Carruthers, Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii, Molecular Microbiology, vol.269, issue.Pt C, pp.1340-1357, 2010.
DOI : 10.1111/j.1365-2958.2010.07181.x

K. Kremer, An Overexpression Screen of Toxoplasma gondii Rab-GTPases Reveals Distinct Transport Routes to the Micronemes, PLoS Pathogens, vol.14, issue.3, p.1003213, 2013.
DOI : 10.1371/journal.ppat.1003213.s016

A. L. Paulsel, A. J. Merz, and D. P. Nickerson, Vps9 Family Protein Muk1 Is the Second Rab5 Guanosine Nucleotide Exchange Factor in Budding Yeast, Journal of Biological Chemistry, vol.288, issue.25, pp.18162-18171, 2013.
DOI : 10.1074/jbc.M113.457069

B. D. Bean, Rab5-family guanine nucleotide exchange factors bind retromer and promote its recruitment to endosomes, Molecular Biology of the Cell, vol.26, issue.6, pp.1119-1128, 2015.
DOI : 10.1091/mbc.E14-08-1281

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357511

M. Huynh and V. B. Carruthers, Tagging of Endogenous Genes in a Toxoplasma gondii Strain Lacking Ku80, Eukaryotic Cell, vol.8, issue.4, pp.530-539, 2009.
DOI : 10.1128/EC.00358-08

M. Meissner, D. Schlüter, and D. Soldati, Role of Toxoplasma gondii Myosin A in Powering Parasite Gliding and Host Cell Invasion, Science, vol.298, issue.5594, pp.837-840, 2002.
DOI : 10.1126/science.1074553

L. Sheiner, A Systematic Screen to Discover and Analyze Apicoplast Proteins Identifies a Conserved and Essential Protein Import Factor, PLoS Pathogens, vol.169, issue.12, p.1002392, 2011.
DOI : 10.1371/journal.ppat.1002392.s011

L. K. Oesterlin, R. S. Goody, and A. Itzen, Posttranslational modifications of Rab proteins cause effective displacement of GDP dissociation inhibitor, Proc. Natl. Acad. Sci. USA, pp.5621-5626, 2012.
DOI : 10.1073/pnas.1121161109

P. J. Sloves, Controls Innate and Adaptive Immunity and Mediates Long-Term Protection, Journal of Infectious Diseases, vol.212, issue.9, pp.1449-1458, 2015.
DOI : 10.1093/infdis/jiv250

X. Que, J. C. Engel, D. Ferguson, A. Wunderlich, S. Tomavo et al., Cathepsin Cs Are Key for the Intracellular Survival of the Protozoan Parasite, Toxoplasma gondii, Journal of Biological Chemistry, vol.282, issue.7, pp.4994-5003, 2007.
DOI : 10.1074/jbc.M606764200

URL : https://hal.archives-ouvertes.fr/hal-00161831

T. Mouveaux, Nuclear Glycolytic Enzyme Enolase of Toxoplasma gondii Functions as a Transcriptional Regulator, PLoS ONE, vol.73, issue.8, p.105820, 2014.
DOI : 10.1371/journal.pone.0105820.s009

A. Olguin-lamas, A Novel Toxoplasma gondii Nuclear Factor TgNF3 Is a Dynamic Chromatin-Associated Component, Modulator of Nucleolar Architecture and Parasite Virulence, PLoS Pathogens, vol.70, issue.3, p.1001328, 2011.
DOI : 10.1371/journal.ppat.1001328.s010

URL : https://hal.archives-ouvertes.fr/hal-00582928