E. Arsava, G. Gurer, Y. Gursoy-ozdemir, H. Karatas, and T. Dalkara, A new model of transient focal cerebral ischemia for inducing selective neuronal necrosis, Brain Research Bulletin, vol.78, issue.4-5, pp.226-257, 2009.
DOI : 10.1016/j.brainresbull.2008.11.005

L. Battistini, L. Piccio, B. Rossi, S. Bach, S. Galgani et al., CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1, Blood, vol.101, issue.>12, pp.4775-82, 2003.
DOI : 10.1182/blood-2002-10-3309

R. Berti, A. Williams, J. Moffett, S. Hale, L. Velarde et al., Quantitative Real-Time RT???PCR Analysis of Inflammatory Gene Expression Associated With Ischemia???Reperfusion Brain Injury, Journal of Cerebral Blood Flow & Metabolism, vol.152, pp.1068-79, 2002.
DOI : 10.1097/00004647-200209000-00004

N. Beziere, V. Schacky, C. Kosanke, Y. Kimm, M. Nunes et al., Optoacoustic Imaging and Staging of Inflammation in a Murine Model of Arthritis, Arthritis & Rheumatology, vol.30, issue.Suppl 7, pp.2071-2079, 2014.
DOI : 10.1002/art.38642

J. Easton, J. Saver, G. Albers, M. Alberts, S. Chaturvedi et al., Definition and Evaluation of Transient Ischemic Attack: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease: The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists., Stroke, vol.40, issue.6, pp.2276-93, 2009.
DOI : 10.1161/STROKEAHA.108.192218

S. Ejaz, J. Emmrich, S. Sawiak, D. Williamson, and J. Baron, Cortical Selective Neuronal Loss, Impaired Behavior, and Normal Magnetic Resonance Imaging in a New Rat Model of True Transient Ischemic Attacks, Stroke, vol.46, issue.4, pp.1084-92, 2015.
DOI : 10.1161/STROKEAHA.114.007581

S. Ejaz, J. Emmrich, S. Sitnikov, Y. Hong, S. Sawiak et al., Normobaric hyperoxia markedly reduces brain damage and sensorimotor deficits following brief focal ischaemia, Brain, vol.139, issue.3, pp.751-64, 2016.
DOI : 10.1093/brain/awv391

URL : http://doi.org/10.1093/brain/awv391

T. Farr, C. Lai, D. Grü-nstein, G. Orts-gil, C. Wang et al., Imaging Early Endothelial Inflammation Following Stroke by Core Shell Silica Superparamagnetic Glyconanoparticles That Target Selectin, Nano Letters, vol.14, issue.4, pp.2130-2134, 2014.
DOI : 10.1021/nl500388h

URL : http://eprints.nottingham.ac.uk/32797/1/20140214%20nanolett_stroke_reply_TF%20copy.pdf

C. Fieschi, N. Battistini, F. Volante, E. Zanette, G. Weber et al., Animal Model of TIA: An Experimental Study With Intracarotid ADP Infusion in Rabbits, Stroke, vol.6, issue.6, pp.617-638, 1975.
DOI : 10.1161/01.STR.6.6.617

M. Gauberti, A. Montagne, O. Marcos-contreras, L. Béhot, A. Maubert et al., Ultra-Sensitive Molecular MRI of Vascular Cell Adhesion Molecule-1 Reveals a Dynamic Inflammatory Penumbra After Strokes, Stroke, vol.44, issue.7, pp.1988-96, 2013.
DOI : 10.1161/STROKEAHA.111.000544

M. Gauberti, A. Montagne, A. Quenault, and D. Vivien, Molecular magnetic resonance imaging of brain-immune interactions, Front Cell Neurosci, vol.8, p.389, 2014.

M. Giles and P. Rothwell, Risk of stroke early after transient ischaemic attack: a systematic review and meta-analysis, The Lancet Neurology, vol.6, issue.12, pp.1063-72, 2007.
DOI : 10.1016/S1474-4422(07)70274-0

M. Giles, G. Albers, P. Amarenco, E. Arsava, A. Asimos et al., Early stroke risk and ABCD2 score performance in tissue- vs time-defined TIA: A multicenter study, Neurology, vol.77, issue.13, pp.1222-1230, 2011.
DOI : 10.1212/WNL.0b013e3182309f91

C. Heyn, J. Ronald, L. Mackenzie, I. Macdonald, A. Chambers et al., In vivo magnetic resonance imaging of single cells in mouse brain with optical validation, Magnetic Resonance in Medicine, vol.53, issue.1, pp.23-32, 2006.
DOI : 10.1002/mrm.20747

A. Jefferson, R. Wijesurendra, M. Mcateer, and R. Choudhury, Development and application of endothelium-targeted microparticles for molecular magnetic resonance imaging, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.55, issue.3, pp.247-56, 2012.
DOI : 10.1002/wnan.1164

G. Jickling, X. Zhan, B. Stamova, B. Ander, Y. Tian et al., Ischemic Transient Neurological Events Identified by Immune Response to Cerebral Ischemia, Stroke, vol.43, issue.4, pp.1006-1018, 2012.
DOI : 10.1161/STROKEAHA.111.638577

A. Jin, U. Tuor, D. Rushforth, R. Filfil, J. Kaur et al., Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle, Contrast Media & Molecular Imaging, vol.48, issue.6, pp.305-316, 2009.
DOI : 10.1002/cmmi.292

Y. Lee, S. Eum, A. Nath, and M. Toborek, Estrogen-mediated protection against HIV Tat protein-induced inflammatory pathways in human vascular endothelial cells, Cardiovascular Research, vol.63, issue.1, pp.139-187, 2004.
DOI : 10.1016/j.cardiores.2004.03.006

X. Li, W. Bauer, I. Israel, M. Kreissl, J. Weirather et al., Targeting P-Selectin by Gallium-68-Labeled Fucoidan Positron Emission Tomography for Noninvasive Characterization of Vulnerable Plaques: Correlation With In Vivo 17.6T MRI, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.34, issue.8, pp.1661-1668, 2014.
DOI : 10.1161/ATVBAHA.114.303485

M. Mcateer, A. Akhtar, C. Von-zur-muhlen, and R. Choudhury, An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide, Atherosclerosis, vol.209, issue.1, pp.18-27, 2010.
DOI : 10.1016/j.atherosclerosis.2009.10.009

M. Mcateer, K. Mankia, N. Ruparelia, A. Jefferson, H. Nugent et al., A Leukocyte-Mimetic Magnetic Resonance Imaging Contrast Agent Homes Rapidly to Activated Endothelium and Tracks With Atherosclerotic Lesion Macrophage Content, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.6, pp.1427-1462, 2012.
DOI : 10.1161/ATVBAHA.111.241844

O. Mcbride, C. Berry, P. Burns, R. Chalmers, B. Doyle et al., RS study, Open Heart, vol.28, issue.1, p.190, 2015.
DOI : 10.1136/openhrt-2014-000190

A. Montagne, M. Gauberti, R. Macrez, A. Jullienne, A. Briens et al., Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders, NeuroImage, vol.63, issue.2, pp.760-70, 2012.
DOI : 10.1016/j.neuroimage.2012.07.018

A. Morancho, L. García-bonilla, V. Barceló, D. Giralt, M. Campos-martorell et al., A new method for focal transient cerebral ischaemia by distal compression of the middle cerebral artery, Neuropathology and Applied Neurobiology, vol.67, issue.6, pp.617-644, 2012.
DOI : 10.1111/j.1365-2990.2012.01252.x

C. Mulle, A. Sailer, I. Pérez-otañ-o, H. Dickinson-anson, P. Castillo et al., Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice, Nature, vol.392, pp.601-606, 1998.

V. Nadarajan, R. Perry, J. Johnson, and D. Werring, Transient ischaemic attacks: mimics and chameleons, Practical Neurology, vol.24, issue.(Pt3), pp.23-31, 2014.
DOI : 10.1136/practneurol-2013-000782

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913122

C. Orset, R. Macrez, A. Young, D. Panthou, E. Angles-cano et al., Mouse Model of In Situ Thromboembolic Stroke and Reperfusion, Stroke, vol.38, issue.10, pp.2771-2779, 2007.
DOI : 10.1161/STROKEAHA.107.487520

E. Pedrono, A. Durukan, D. Strbian, I. Marinkovic, S. Shekhar et al., An Optimized Mouse Model for Transient Ischemic Attack, Journal of Neuropathology & Experimental Neurology, vol.69, issue.2, pp.188-95, 2010.
DOI : 10.1097/NEN.0b013e3181cd331c

A. Pradhan, M. Smith, J. Zyuzin, and A. Charles, ??-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice, British Journal of Pharmacology, vol.135, issue.10 Suppl. 7, pp.2375-84, 2014.
DOI : 10.1111/bph.12591

D. Roose, F. Leroux, D. Vocht, N. Guglielmetti, C. Pintelon et al., uptake by stem cells: down to the nanometer scale, Contrast Media & Molecular Imaging, vol.6, issue.6, pp.400-408, 2014.
DOI : 10.1002/cmmi.1594

P. Rothwell, A. Coull, L. Silver, J. Fairhead, M. Giles et al., Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study), The Lancet, vol.366, issue.9499, pp.1773-83, 2005.
DOI : 10.1016/S0140-6736(05)67702-1

P. Rothwell, M. Giles, A. Chandratheva, L. Marquardt, O. Geraghty et al., Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS study): a prospective population-based sequential comparison, The Lancet, vol.370, issue.9596, pp.1432-1474, 200720.
DOI : 10.1016/S0140-6736(07)61448-2

A. Saleh, M. Schroeter, C. Jonkmanns, H. Hartung, U. Mö-dder et al., In vivo MRI of brain inflammation in human ischaemic stroke, Brain, vol.127, issue.7, pp.1670-1677, 2004.
DOI : 10.1093/brain/awh191

E. Shapiro, K. Sharer, S. Skrtic, and A. Koretsky, In vivo detection of single cells by MRI, Magnetic Resonance in Medicine, vol.32, issue.2, pp.242-251, 2006.
DOI : 10.1002/mrm.20718

L. Sivakumar, R. Camicioli, and K. Butcher, Factors Associated with Cognitive Decline in Transient Ischemic Attack Patients, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, vol.141, issue.204, pp.303-316, 2014.
DOI : 10.1159/000065682

K. Strong, C. Mathers, and R. Bonita, Preventing stroke: saving lives around the world, The Lancet Neurology, vol.6, issue.2, pp.182-189, 2007.
DOI : 10.1016/S1474-4422(07)70031-5

E. Touzé, O. Varenne, G. Chatellier, S. Peyrard, P. Rothwell et al., Risk of Myocardial Infarction and Vascular Death After Transient Ischemic Attack and Ischemic Stroke: A Systematic Review and Meta-Analysis, Stroke, vol.36, issue.12, pp.2748-55, 2005.
DOI : 10.1161/01.STR.0000190118.02275.33

E. Troncoso, D. Muller, S. Czellar, Z. Kiss, and J. , Epicranial sensory evoked potential recordings for repeated assessment of cortical functions in mice, Journal of Neuroscience Methods, vol.97, issue.1, pp.51-59, 2000.
DOI : 10.1016/S0165-0270(00)00164-3

X. Wang and G. Feuerstein, Induced Expression of Adhesion Molecules Following Focal Brain Ischemia, Journal of Neurotrauma, vol.12, issue.5, pp.825-857, 1995.
DOI : 10.1089/neu.1995.12.825

O. Will, S. Purkayastha, C. Chan, T. Athanasiou, A. Darzi et al., Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis, The Lancet Oncology, vol.7, issue.1, pp.52-60, 2006.
DOI : 10.1016/S1470-2045(05)70537-4

Y. Yang, Y. Yang, N. Yanasak, A. Schumacher, and T. Hu, Temporal and noninvasive monitoring of inflammatory-cell infiltration to myocardial infarction sites using micrometer-sized iron oxide particles, Magnetic Resonance in Medicine, vol.248, pp.33-40, 2010.
DOI : 10.1002/mrm.22175

Q. Ye, Y. Wu, L. Foley, T. Hitchens, D. Eytan et al., Longitudinal Tracking of Recipient Macrophages in a Rat Chronic Cardiac Allograft Rejection Model With Noninvasive Magnetic Resonance Imaging Using Micrometer-Sized Paramagnetic Iron Oxide Particles, Circulation, vol.118, issue.2, pp.149-56, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.746354