Automatic multiple sclerosis lesion segmentation with P-LOCUS

Senan Doyle 1 Florence Forbes 2 Michel Dojat 3
2 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : P-LOCUS provides automatic quantitative neuroimaging bio-marker extraction tools to aid diagnosis, prognosis and follow-up in multiple sclerosis studies. The software performs accurate and precise seg-mentation of multiple sclerosis lesions in a multi-stage process. In the first step, a weighted Gaussian tissue model is used to perform a robust segmentation. The algorithm avails of complementary information from multiple MR sequences, and includes additional estimated weight variables to account for the relative importance of each voxel. These estimated weights are used to define candidate lesion voxels that are not well described by a normal tissue model. In the second step, the candidate le-sion regions are used to populate the weighted Gaussian model and guide convergence to an optimal solution. The segmentation is unsupervised, removing the need for a training dataset, and providing independence from specific scanner type and MRI scanner protocol.
Type de document :
Chapitre d'ouvrage
Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure — MICCAI-MSSEG, pp.17-21, 2016
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-01417434
Contributeur : Nathalie Duchange <>
Soumis le : jeudi 15 décembre 2016 - 16:06:03
Dernière modification le : mercredi 11 avril 2018 - 01:58:53
Document(s) archivé(s) le : jeudi 16 mars 2017 - 18:21:46

Fichier

Doyle et al, MSSEG Challenge P...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inserm-01417434, version 1

Collections

Citation

Senan Doyle, Florence Forbes, Michel Dojat. Automatic multiple sclerosis lesion segmentation with P-LOCUS. Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure — MICCAI-MSSEG, pp.17-21, 2016. 〈inserm-01417434〉

Partager

Métriques

Consultations de la notice

467

Téléchargements de fichiers

107