E. Luporsi, Le cancer du sein métastatique Définitions actuelles, épidémiologie, présentations cliniques Available from: http://documents. irevues.inist.fr/bitstream/handle, 2007.
DOI : 10.1007/978-2-287-72615-6_3

URL : http://documents.irevues.inist.fr/bitstream/2042/15908/1/SFSPM_2007_17.pdf

E. Eisenhauer, P. Therasse, J. Bogaerts, L. Schwartz, D. Sargent et al., New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1), European Journal of Cancer, vol.45, issue.2, pp.228-275, 2009.
DOI : 10.1016/j.ejca.2008.10.026

R. Wahl, H. Jacene, Y. Kasamon, and M. Lodge, From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors, Journal of Nuclear Medicine, vol.50, issue.Suppl_1, pp.122-50, 2009.
DOI : 10.2967/jnumed.108.057307

T. Carlier and C. Bailly, State-Of-The-Art and Recent Advances in Quantification for Therapeutic Follow-Up in Oncology Using PET, Frontiers in Medicine, vol.14, issue.Suppl 1, 2015.
DOI : 10.3348/kjr.2013.14.1.1

F. Cachin, A. Kelly, and J. Maublant, Evaluation of the therapeutic response: role of isotopic imaging, Bull Cancer, vol.93, pp.1191-1200, 2006.

H. Young, R. Baum, U. Cremerius, K. Herholz, O. Hoekstra et al., Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations, European Journal of Cancer, vol.35, issue.13, pp.1773-82, 1999.
DOI : 10.1016/S0959-8049(99)00229-4

D. Groheux, M. Espié, S. Giacchetti, and E. Hindié, Performance of FDG PET/CT in the Clinical Management of Breast Cancer, Radiology, vol.266, issue.2, pp.388-405, 2013.
DOI : 10.1148/radiol.12110853

D. Groheux, J. Moretti, G. Baillet, M. Espie, S. Giacchetti et al., Effect of 18F-FDG PET/CT Imaging in Patients With Clinical Stage II and III Breast Cancer, International Journal of Radiation Oncology*Biology*Physics, vol.71, issue.3, pp.695-704, 2008.
DOI : 10.1016/j.ijrobp.2008.02.056

L. Pan, Y. Han, X. Sun, J. Liu, and H. Gang, FDG-PET and other imaging modalities for the evaluation of breast cancer recurrence and metastases: a meta-analysis, Journal of Cancer Research and Clinical Oncology, vol.6, issue.5, pp.1007-1029, 2010.
DOI : 10.1007/s00432-009-0746-6

M. Pennant, Y. Takwoingi, L. Pennant, C. Davenport, A. Fry-smith et al., A systematic review of positron emission tomography (PET) and positron emission tomography/computed tomography (PET/CT) for the diagnosis of breast cancer recurrence, Health Technology Assessment, vol.14, issue.50, 2010.
DOI : 10.3310/hta14500

R. Wahl, K. Zasadny, M. Helvie, G. Hutchins, B. Weber et al., Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation., Journal of Clinical Oncology, vol.11, issue.11, pp.2101-2112, 1993.
DOI : 10.1200/JCO.1993.11.11.2101

S. Avril, R. Muzic, . Jr, D. Plecha, B. Traughber et al., 18F-FDG PET/CT for Monitoring of Treatment Response in Breast Cancer, Journal of Nuclear Medicine, vol.57, issue.Supplement_1, pp.34-43, 2016.
DOI : 10.2967/jnumed.115.157875

D. Groheux, D. Mankoff, M. Espié, E. Hindié, and . Pet, 18F-FDG PET/CT in the early prediction of pathological response in aggressive subtypes of breast cancer: review of the literature and recommendations for use in clinical trials, European Journal of Nuclear Medicine and Molecular Imaging, vol.385, issue.5, pp.983-93, 2016.
DOI : 10.1007/s00259-015-3295-z

N. Lin, H. Guo, J. Yap, I. Mayer, C. Falkson et al., F]Fluorodeoxyglucose Positron Emission Tomography Imaging (TBCRC 003), Journal of Clinical Oncology, vol.33, issue.24, pp.2623-2654, 2015.
DOI : 10.1200/JCO.2014.60.0353

O. Couturier, G. Jerusalem, J. N-'guyen, and R. Hustinx, Sequential Positron Emission Tomography Using [18F]Fluorodeoxyglucose for Monitoring Response to Chemotherapy in Metastatic Breast Cancer, Clinical Cancer Research, vol.12, issue.21, pp.6437-6480, 2006.
DOI : 10.1158/1078-0432.CCR-06-0383

J. Specht, S. Tam, B. Kurland, J. Gralow, R. Livingston et al., Serial 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) to monitor treatment of bone-dominant metastatic breast cancer predicts time to progression (TTP), Breast Cancer Research and Treatment, vol.45, issue.Suppl1, pp.87-94, 2007.
DOI : 10.1007/s10549-006-9435-1

D. Schwarz, J. Bader, M. Jenicke, L. Hemminger, G. Jänicke et al., Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET, J Nucl Med, vol.46, pp.1144-50, 2005.

U. Tateishi, C. Gamez, S. Dawood, H. Yeung, M. Cristofanilli et al., Bone Metastases in Patients with Metastatic Breast Cancer: Morphologic and Metabolic Monitoring of Response to Systemic Therapy with Integrated PET/CT, Radiology, vol.247, issue.1, pp.189-96, 2008.
DOI : 10.1148/radiol.2471070567

H. Necib, C. Garcia, A. Wagner, B. Vanderlinden, P. Emonts et al., Detection and Characterization of Tumor Changes in 18F-FDG PET Patient Monitoring Using Parametric Imaging, Journal of Nuclear Medicine, vol.52, issue.3, pp.354-61, 2011.
DOI : 10.2967/jnumed.110.080150

H. Necib, Characterization of the Tumor Changes During the Course of Therapy Using PET, 2009.

H. Necib, M. Dusart, P. Tylski, B. Vanderlinden, and I. Buvat, Detection and characterization of the tumor change between two FDG PET scans using parametric imaging, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, p.49121, 2008.
DOI : 10.1109/ISBI.2008.4540922

J. Mertens, D. Bruyne, S. Van-damme, N. Smeets, P. Ceelen et al., Standardized added metabolic activity (SAM) IN 18F-FDG PET assessment of treatment response in colorectal liver metastases, European Journal of Nuclear Medicine and Molecular Imaging, vol.38, issue.Suppl 1, pp.1214-1236, 2013.
DOI : 10.1007/s00259-013-2421-z

A. Schaefer, S. Kremp, D. Hellwig, C. Rübe, C. Kirsch et al., A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data, European Journal of Nuclear Medicine and Molecular Imaging, vol.31, issue.11, pp.1989-99, 2008.
DOI : 10.1007/s00259-008-0875-1

S. Vauclin, K. Doyeux, S. Hapdey, A. Edet-sanson, P. Vera et al., Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models, Phys Med Biol, vol.545422, pp.6901-6917, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00467195

F. Frouin, J. Bazin, D. Paola, M. Jolivet, O. et al., Famis: A software package for functional feature extraction from biomedical multidimensional images, Computerized Medical Imaging and Graphics, vol.16, issue.2, pp.81-91, 1992.
DOI : 10.1016/0895-6111(92)90121-O

C. Rousseau, A. Devillers, C. Sagan, L. Ferrer, B. Bridji et al., F]Fluorodeoxyglucose Positron Emission Tomography, Journal of Clinical Oncology, vol.24, issue.34, pp.5366-72, 2006.
DOI : 10.1200/JCO.2006.05.7406

Y. Wang, C. Zhang, J. Liu, and G. Huang, Is 18F-FDG PET accurate to predict neoadjuvant therapy response in breast cancer? A meta-analysis, Breast Cancer Research and Treatment, vol.19, issue.6, pp.357-69, 2012.
DOI : 10.1007/s10549-011-1780-z

J. Schwarz-dose, M. Untch, R. Tiling, S. Sassen, S. Mahner et al., F]Fluorodeoxyglucose, Journal of Clinical Oncology, vol.27, issue.4, pp.535-576, 2009.
DOI : 10.1200/JCO.2008.17.2650

M. Schelling, N. Avril, J. Nährig, W. Kuhn, W. Römer et al., F]Fluorodeoxyglucose for Monitoring Primary Chemotherapy in Breast Cancer, Journal of Clinical Oncology, vol.18, issue.8, pp.1689-95, 2000.
DOI : 10.1200/JCO.2000.18.8.1689

G. Mcdermott, A. Welch, R. Staff, F. Gilbert, L. Schweiger et al., Monitoring primary breast cancer throughout chemotherapy using FDG-PET, Breast Cancer Research and Treatment, vol.77, issue.suppl 5, pp.75-84, 2007.
DOI : 10.1007/s10549-006-9316-7

J. Duch, D. Fuster, M. Muñoz, P. Fernández, P. Paredes et al., CT with [18F] fluorodeoxyglucose in the assessment of metabolic response to neoadjuvant chemotherapy in locally advanced breast cancer, Q J Nucl Med Mol Imaging, vol.56, issue.3, pp.291-299, 2012.

A. Berriolo-riedinger, C. Touzery, J. Riedinger, M. Toubeau, B. Coudert et al., [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy, European Journal of Nuclear Medicine and Molecular Imaging, vol.29, issue.12, pp.1915-1939, 2007.
DOI : 10.1007/s00259-007-0459-5

URL : https://hal.archives-ouvertes.fr/hal-00821304

V. Huyge, C. Garcia, J. Alexiou, L. Ameye, B. Vanderlinden et al., Heterogeneity of Metabolic Response to Systemic Therapy in Metastatic Breast Cancer Patients, Clinical Oncology, vol.22, issue.10, pp.818-845, 2010.
DOI : 10.1016/j.clon.2010.05.021

A. Quon and S. Gambhir, FDG-PET and Beyond: Molecular Breast Cancer Imaging, Journal of Clinical Oncology, vol.23, issue.8, pp.1664-73, 2005.
DOI : 10.1200/JCO.2005.11.024

R. Boellaard, N. Krak, O. Hoekstra, and A. Lammertsma, Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study, J Nucl Med, vol.45, pp.1519-1546, 2004.

M. Vanderhoek, S. Perlman, and R. Jeraj, Impact of the Definition of Peak Standardized Uptake Value on Quantification of Treatment Response, Journal of Nuclear Medicine, vol.53, issue.1, 2012.
DOI : 10.2967/jnumed.111.093443

M. Hatt, D. Groheux, A. Martineau, M. Espié, E. Hindié et al., Comparison between 18F-FDG PET image-derived indices for early
DOI : 10.2967/jnumed.112.108837

URL : https://hal.archives-ouvertes.fr/hal-00748923