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Introduction

A neuroimaging technique like functional Magnetic Resonance Imaging (fMRI) generates hundreds of
gigabytes of data, yet only a tiny fraction of that informationrially conveyed to the community. In a
typical paper, the entire results report consists of 1) a list of signt local maxima, i.e., locations in the
brain dened in a standard atlas space inferred to be distinct from noise, and 2) a graphical
representation of the activations as an imagere.

This practice is unsatisfactory for three reasons. First, because it represents a massive loss o
information from the raw and even the derived data used to draw the conclusion of the study. For
example, a meta-analysis (in settings other than neuroimaging) combines estimates of effects of interest
and their uncertainty across studies. In brain imaging, the locations of local maxima have no measures of
uncertainty reported. While neuroimaging meta-analysis methods for coordinate dafa®ekie
are a poor approximation to the meta-analysis that would be obtained if the image data were available
Even though there are emerging infrastructures to support sharing of neuroimaging data
(e.g., NeuroVault RRID:SCR_003806 (refs 5,6)), these are still rarely utilised due to a number of ethical,
psychological and technical barriers

Second, despite the availability of guidefff@sambiguous or incomplete methodological rePorting
in papers is still commonplatehindering the robustness and reproducibility of scientiesults**2

Finally, key methodological details of the study are described in free-form text in a paper and not
available in machine-readable form, making these metadata essentially unsearchable. Database
have been built to provide metadata associated with published papers, either manually curated
(e.g., BrainMap**j or automatically-populated using text-mining algorithms (e.g., Neuro$yHih
but, ideally, these metadata should be made available by the authors themselves at the time of the
publication, together with the data. Additionally, searchable metadata, could help identify potential
confounding factors that are currently being overlooked (e.g., how different smoothing kernels impact the
meta-analysis, or the imence of different processing strategies on the outcome of the analysis).

In order to make neuroimaging results available in a machine-readable form a number of key technical
issues have to be addressed. First, the scope of the metadata to be shared mumdelte space
of possible metadata to report is extremely large encompassing experimental design, acquisition, pre-
processing, statistical analysis, etc. The optimal set of metadata is highly dependant on the application of
interest and possible applications of shared data are broad. For example, in a meta-analysis, the contras
standard error map is required, while a comparison across neuroimaging processing pipelines would
require a complete description of the analysis pipeline including softwarepacameterization.

Another technical issue is the need to de a common representation across neuroimaging software
packages. While the three main neuroimaging software packages, SPM (RRID:SCR’8§7037)
FSL (RRID:SCR_0028335° and AFNI (RRID:SCR_00592%¥2 all implement similar analyses,
they often use different terms to refer to the same concept. For exampke pB&lmeter estimate maps
(e.g., pel.nii.gz) are the equivalent of 3Phéta maps (e.g., beta_0001.nii). They can also use the same
term when referring to different concepts. For example, SPM and FSL both use a global scaling of the data
to get‘percent BOLD signal charigbut due to differences in how the brain mask and mean signal are
computed, the data are scaled quite differéfind are not comparable. In order to fully describe an
analysis, the sharing of software-spediatch scripts (e.g., SPM matlabbattds, FSL fsfles, or history
stored in AFNI brick headers) would be a simple solution to provide all the parameters from an analysis,
but the ability to compare and query across software would still be lacking. Pipeline systems lik&NiPype
LONI Pipeliné® and CBRAIN® do explicitly model analysis steps, but a large volume of research is still
conducted directly with tools not embedded in pipelines. Ideally, one should be able to identify all studies
corresponding to a set of criteria of interest regardless of the software used. This will only be possible
if information about results across software can be represented using common data elements and structures

A machine-readable representation of neuroimaging data and results, using a common descriptive
standard across neuroimaging software packages, would address these issues of comparability an
transparency.

A previous effort in this direction was the XML-based Clinical and Experimental Data Exchange
(XCEDE) schenfd, developed in the context of the Biomedical Informatics Research Network
(BIRN)?®2° XCEDE modelled information about both the experimental design and results (peaks and
clusters) in neuroimaging studies. This XML schema wasetkto be independent from any particular
neuroimaging analysis software and was made openly avllaEDE has been used by multiple sites
across the United States and the United Kingdom in the context of the fBIRN project and is still in use by
the Human Imaging Databa®** An implementation was provided for SBR#f3as well as a set of
tools* However, the XCEDE model was not implemented by other imaging software, supported limited
provenance information, and did not offer the ability to jointly share image data summarising the
experiment.

Beyond neuroimaging, encoding of provenance, i.e., keeping track of the processes that were applied tc
the data, encompassing a description of the tools, dataand work ow parameterization, is a topic of
growing interest in science in general. A number of solutions have been proposed in order to support
better documentation of research studies. Among them, the PROV data’fis@3C speciation to
describe provenance on the web. PROV isndd in a generic fashion that is not tied to a domain in
particular (cf. (ref. 36) for examples of implementations).
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The Neurolmaging Data Model (NIDMJ*8was created to expand upon the initial development of
XCEDE, introducing a domain-speci extension of PROV using semantic web technologies and the
Resource Description Framework (RDF). The goal of NIDM is to provide a complete description of
provenance for neuroimaging studies, from raw data to tta results including all the steps in-between.

The core motivation of NIDM is to support data sharing and data reuse in neuroimaging by providing
rich machine-readable metadata. Sinceiitd developments in 2011, NIDM has been an ongoing effort
and is currently comprised of three complementary projects: NIDM-Experiment, NIDM-Véar& and
NIDM-Results. NIDM-Experiment targets the representation of raw data generated by the scanner and
information on the participants. NIDM-Workows focuses on the description of data analysis
parameterization, including detailed software-spesiariations. NIDM-Results, presented here, deals
with the representation of mass-univariate neuroimaging results using a common descriptive standard
across neuroimaging software packages.

A motivating use case for NIDM-Results was neuroimaging meta-analysis, but the format also
produces a detailed machine-readable report of many facets of an analysis. The implementation of
NIDM-Results within SPM and FSL, two of the main neuroimaging software packages, provides an
automated solution to share maps generated by neuroimaging studies along with their metadata. While
NIDM-Results focuses on mass-univariate studies and is mostly targeted at fMRI, the standard is also
suitable for anatomical MRI (with Voxel-Based Morphometry), and Positron Emission Tomography
(PET). It was developed under the auspices of the International Neuroinformatics Coordinating Facility
(INCF) Neuroimaging data sharing Task Force (NIDASH) which comprises a core group of experts
representing more than ten labs involved in various facets of neuroimaging (including statistical analysis,
informatics, software development, ontologies). It also involved close collaboration with the main
neuroimaging software developers. The format is natively implemented in SPM and a NIDM-Results
exporter is available for FSL and will be integrated in a future version of FSL. Both NeuroVault and
CBRAIN support export to NIDM-Results and NeuroVault additionally can import NIDM-Results
archives.

Results
Model
De nitions. The denitions provided below are used throughout the manuscript:

NIDM-Results graph A particular instance of a representation of data and metadata complying with
the NIDM-Results spectation.

NIDM-Results serialization A text le rendering of a NIDM-Results graph.

NIDM-Results pack A compressedle containing a NIDM-Results serialization and some or all of the
referenced image datdes.

Overview. The NIDM-Results standard is deed by a W3C-style speciation, publicly available at
http://nidm.nidash.org/specs/nidm-results.html and by an ontology (ollavailable at http://bioportal.
bioontology.org/ontologies/NIDM-RESULTS. It is comprised of a controlled vocabulary, as well as
instructions of how to use PROV to represent mass-univariate neuroimaging results. The model provides
terms to describe key elements of neuroimaging methods using a common framework across
neuroimaging software packages. For example, as illustrated in Fig. 1, error models are described in term:
of assumed variance (homoscedastic, heteroscedastic) and assumed covariance structure (independer
spatially correlated, etc.) and how these structures vary in spagee(tadependently at each voxel,
globally throughout the brain or spatially regularised).

The current version, NIDM-Results 1.3.0, des 214 terms (140 classes and 74 attributes) of which 45 terms
are re-used from external vocabularies and ontologies. All terms anedi@s specialisations of the PROV
terms. Three namespaces are rial: http://purl.org/nidash/nidm# ‘ifidm?’), http://purl.org/nidash/spm#

(‘spm!) and http://purl.org/nidash/fsl#6l?). Anything that could be represented across software or that is a
generic concept is daed in the'nidm: namespace. Software-specnamespacesspm:, ‘fsl’) are reserved

for the description of functionality unique to one software (e.g., global null inference for conjunction testing
in SPM).

Figure 2 provides an overview of NIDM-Results. In the description below, terms in single quote correspond
to elements dened by the model, identers for those terms are provided in Table 1.

The main entity is aNIDM-Results bundlea specialisation of ‘8undle as dened in PROV, i.e., an entity
gathering a set of entities, activities and agenthIBM-Results bundleontains a description of the mass
univariate results provenance and is typically made up of:

3 activities representing the main steps of statistical hypothesis téstotgl parameter estimation
‘contrast estimatidrand ‘inference

26 types of entities (of which 6 are optional) representing inputs and outputs of the activities;
3 agents representing threeuroimaging analysis softwatbe ‘persohor ‘study group populatiowho
participated in the study and the type ‘@haging instrumentused.
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Figure 1. Description of the error models with NIDM-Results Excerpt of the NIDM-Results 1.3.0
speci cation describing a nidriError Model and its attributesd). Examples of model implementations for
subject-levell{) and group-leveld) analyses for SPM, FSL and AFNI.

The statistical model is described in thesign matrixand ‘error modélentities that are both used by the
‘model parameter estimaticactivity. The'datd entity describes the scaling applied to the data before model
tting (especially relevant forrst-level fMRI experiments) and links to the participants (dpesison or a
group) and theimaging instrumeritused to acquire the data (e.g., a magnetic resonance imaging scanner or an
electroencephalography machine). A setpafameter estimate maps generated by thénodel parameter
estimationactivity along with the analysisiask map a‘residual mean squares mapd a‘grand mean mdp
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Figure 2. NIDM-Results objects.Color-coding indicates the type as ded in PROV (blue: Entity,
red: Activity, green: Agent).

that can be used to check the performance of the data scaling. Optioredigela per voxel magan also be
generated to record local variations in noise smoothness.

The ‘contrast estimatidractivity uses a subset of thEarameter estimate mapthe ‘residual mean squares
map and the analysidmask mapand combine them according to‘eontrast weight matrixo generate a
‘statistic map For T-tests, acontrast mapalong with its‘contraststandard error mdpare also generated
while for F-tests acontrast explained mean square im@p., the numerator of an F-statistic) is provided.
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PROV type

Term

Quali ed name

Entity

NIDM-Results bundle

nidm:NIDM_0000027

Bundle

prov:Bundle

Design Matrix

nidm:NIDM_0000019

Error Model

nidm:NIDM_0000023

Data

nidm:NIDM_0000169

Parameter Estimate Map(s)

nidm:NIDM_0000061

Mask Map

nidm:NIDM_0000054

Residual Mean Squares Map

nidm:NIDM_0000066

Resels Per Voxel Map

nidm:NIDM_0000144

Grand Mean Map

nidm:NIDM_0000033

contrast weight matrix

0bo:STATO_0000323

Statistic Map

nidm:NIDM_0000076

Contrast Map

nidm:NIDM_0000002

Contrast Standard Error Map

nidm:NIDM_0000013

Contrast Explained Mean Square Map

nidm:NIDM_0000163

Excursion Set Map

nidm:NIDM_0000025

Height Threshold

nidm:NIDM_0000034

Extent Threshold

nidm:NIDM_0000026

Peak Denition Criteria

nidm:NIDM_0000063

Cluster Denition Criteria

nidm:NIDM_0000007

Display Mask Map

nidm:NIDM_0000020

Search Space Mask Map

nidm:NIDM_0000068

Supra-Threshold Cluster(s)

nidm:NIDM_0000070

Peak(s)

nidm:NIDM_0000062

Activity

Model Parameter Estimation

nidm:NIDM_0000056

Contrast Estimation

nidm:NIDM_0000001

Inference

nidm:NIDM_0000049

Conjunction Inference

nidm:NIDM_0000011

NIDM-Results Export

nidm:NIDM_0000166

Agent

Neuroimaging Analysis Software

nidm:NIDM_0000164

Person

prov:Person

study group population

0bo:STATO_0000193

Imaging Instrument

nif:birnlex_2094

NIDM-Results Exporter

nidm:NIDM_0000165

nidmfsl

nidm:NIDM_0000167

spm_results_nidm

nidm:NIDM_0000168

Table 1. PROV type, label and identier of the NIDM-Results terms mentioned in single quotes in
this manuscript.

Finally, the‘inferencé activity uses astatistic mapand generates alexcursion set mapmiven a‘height
threshold and an‘extent threshold The‘peak denition criterid and ‘cluster denition criterid entities, used
by ‘inferencé& provide the connectivity criterion and minimal distance between peaks (e.g., default is set to
8 mm for SPM and 0 mm for FSL). Thieferencéactivity can be replaced by@njunction inferencewhich
uses more than one statistic map. An optioftiséplay mask mdpentity can be used to represent contrast
masking, i.e., to restrict the display without affecting the correction for multiple comparisonf€hence
activity also generates theearch space mask mdpat represents the search region in which the inference
was performed (i.e., the intersection of all input mask maps, except for the display mask map). A set of
‘supra-threshold clustérss derived from theexcursion set mamnd a set ofpeaksis derived from each
cluster. Those are the clusters and peaks that are typically reported in the results of a neuroimaging study.

A ‘neuroimaging analysis softwargent represents the software package used to compute the analysis. This
agent is associated with all activities within the bundle.

Provenance of th&NIDM-Results bundlés also recorded: the bundle was generated tIRM-Results
Export' activity which was performed by ‘&lIDM-Results Exportesoftware agent corresponding to the
software used to create the NIDM-Results document (e.g's P$thon scripts, namedidmfsl or SPMs
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Figure 3. NIDM-Results export in SPM12 (a) and FSL v5.0 (b).

exporter namedspm_results_nidin The bundle is associated with a version number corresponding to the
version of NIDM-Results model in use.

Each activity, entity and agent has a number of praedd attributes. For instance, the list of attributes of an
‘error modeélentity is provided in Fig. 1.

Updates. Each release of NIDM-Results is associated with a version number. Comments on the current
version as well as suggestions of extension can be provided on the GitHub nidm repository: https://
github.com/incf-nidash/nidm. Each extension or proposition of update will be reviewed and discussed
with the members of the INCF NIDASH task force.

Implementation

SPM12 natively supports export of its results into a NIDM-Results pack, either by the use of a contextual
menu in the results table or non-interactively via the batch interface as illustrated in Fig. 3. Export of
FEAT results from FSL into a NIDM-results pack can be performed using the Python module nidmfsl
(https://pypi.python.org/pypi/nidmfsl), as also illustrated in Fig. 3. nidmfsl was integrated in NeuroVault
and as a plugit? of the CBRAIN web platform for high-performance computing (RRID:SCR_00%513)

As aresult, any FSL FEAT analysis uploaded to NeuroVault or performed in CBRAIN can be exported as
a NIDM-Results pack. NeuroVault also accepts NIDM-Results packs as a mean to upload new data to a
collection. The nidmresults Python library (https://pypi.python.org/pypi/nidmresults) and the prove-
nance MATLAB toolbox (http://www.artefact.tk/software/matlab/provenance/) provide higher-level
functions to interact with NIDM-Results packs.

Publically available NIDM-results packs

A set of 244 NIDM-Results packs has been made publically available on NeuroVault at http://neurovault.
org/collections/1435/. Those packs describe the results of fMRI analyses performed at the subject (232
packs) and group (12 packs) levels on six datasets downloaded from OpenfMRI (RRID:SCR*%5031)
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Figure 4. Image-based and coordinate-based meta-analyses using NIDM-Redti#tsh NIDM-Results pack
is queried to retrieve the data and metadata of interest for each type of meta-analysis. These data are then
combined in a meta-analysis.

prefix prov: <http://www.w3.org/ns/prov#>

prefix nidm: <http://purl.org/nidash/nidm#>

prefix contrast_estimation: <http://purl.org/nidash/nidm#NIDM_0000001>
prefix contrast_map: <http://purl.org/nidash/nidm#NIDM_0000002>
prefix stderr_map: <http://purl.org/nidash/nidm#NIDM_0000013>

prefix contrast_name: <http://purl.org/nidash/nidm#NIDM_0000085>
prefix statistic_map: <http://purl.org/nidash/nidm#NIDM_0000076>

prefix mask_map: <http://purl.org/nidash/nidm#NIDM_0000054>

SELECT ?contrastName ?con_file ?std_file ?mask_file ?software
WHERE {
?con_id a contrast_map: ;
contrast_name: ?contrastName ;
prov:atLocation ?con_file ;
prov:wasGeneratedBy ?con_est .
?std_id a stderr_map: ;
prov:atLocation ?std_file ;
prov:wasGeneratedBy ?con_est .
?mask_id a mask_map: ;
prov:atLocation ?mask_file .
?soft_id a ?software .
?con_est a contrast_estimation: ;
prov:wasAssociatedWith ?soft_id ;
prov:used ?mask_id .
FILTER(?software NOT IN (prov:SoftwareAgent, prov:Agent))

Figure 5. SPARQL query to retrieve data and metadata needed for image-based meta-analysis (syntax was
highlighted using CodeMirror'3).

([Data Citation 1] version 1.1.0, [Data Citation 2] version 1.1.1, [Data Citation 3] unrevisioned,
[Data Citation 4] unrevisioned, [Data Citation 5] unrevisioned, [Data Citation 6] unrevisioned).

Examples of usage

Meta-analysis From 21 pain studies (10 analysed in SPM and 11 in FSL) represented in NIDM-
Results we performed group coordinate-based and image-based meta-analyses contrasting the effect c
pain. The data and Python script used to perform these meta-analyses are available on NeuroVault
(http://neurovault.org/collections/1425/) and GitHilrespectively.

Figure 4 provides a schematic overview of the different steps involved to compute the meta-analyses. A set of
NIDM-Results packs is queried in order to retrieve the information of interest that is then combined to
perform the meta-analysis. Because the studies included in this meta-analysis are from a curated collection of
pain studies from one laboratory, no manudiering was needed for study or participant selection, and
contrast selection was performed based on the contrast name.

The image-based meta-analysis was performed by combining the contrast estimate maps, along with their
standard error, in a third-level mixed-effects general linear model (GLM). Each NIDM-Results pack was

SCIENTIFIDATA 3:160102| DOI:10.1038sdata2016102



www.nature.com/sdata/

-14 6 26 46 66

Figure 6. One-sample meta-analysis of 21 studies investigating the effect of paireas of signicant
activation with an FWE-corrected cluster-wise threstidd0.05 (cluster-forming thresholéo 0.001
uncorrected) for the image-bases) &nd the coordinate-base))(meta-analyses.

a FSL group analysis

Group-level analysis was performed with FSL (version 5.0.x). A linear regression was computed at each voxel, using weighted least squares
(assuming unequal variances) with a local variance estimate.

Cluster-wise inference was performed with correction for multiple comparisons using a threshold P <= 0.050 (FWER adjusted) with a cluster defining
threshold Z-statistic >= 2.300. The search volume was 1522 cm”"3 (190327 voxels).

b  SPM group analysis

Group-level analysis was performed with SPM (version 12.6685). A linear regression was computed at each voxel, using ordinary least squares
(assuming equal variances) with a local variance estimate.

Voxel-wise inference was performed with correction for multiple comparisons using a threshold P <= 0.050 (FWER adjusted). The search volume was
949 cm”3 (118626 voxels).

¢ FSL single-subject analysis

Subject-level analysis was performed with FSL (version 5.0.x). A linear regression was computed at each voxel, using generalized least squares
(assuming equal variances) with a local variance estimate and a spatially regularized Toeplitz covariance structure. Drift was fit with a gaussian
running line drift model (60.0s FWHM).

Voxel-wise inference was performed using a threshold P <= 0.001 (Uncorrected). The search volume was 1539 cm"3 (57029 voxels).

d SPM single-subject analysis

Subject-level analysis was performed with SPM (version 12.6685). A linear regression was computed at each voxel, using generalized least squares
(assuming equal variances) with a local variance estimate and a global Toeplitz covariance structure. Drift was fit with a discrete cosine transform
basis drift model (128.0s cut-off).

Voxel-wise inference was performed using a threshold P <= 0.001 (Uncorrected). The search volume was 1791 cm”"3 (223883 voxels).

Figure 7. Examples of reports generated from NIDM-Results packs for group (a,b) and single-subject
(c,d) analyses performed in FSL (a,c) and SPM (b,d).

queried to retrieve the image data needed for the meta-analysis (i.e., the contrast image and contrast standarc
error image) along with the analysis mask. The query used to extract these data is displayed in Fig. 5. The name
of the corresponding contrast was associated to each map to allow for the selection of the appropriate contrast.
The neuroimaging software package used for the analysis was also extracted in order to identify which study
estimates would need re-scaling. Second, the contrast and standard error estimates were selected according |
the contrast name, re-scaled if needed and combined in a mixed-effects GLM. Areas c&sigagtivation

(Po 0.05 FWE cluster-wise with a cluster-forming threshold?of 0.001 uncorrected) found by the pain
meta-analysis are displayed in Fig. 6. Results are also available on NeuroVault at http://neurovault.org/
collections/1432/.

The coordinate-based meta-analysis was performed using a Multilevel Kernel Density Analysis {IMKDA)
Each NIDM-Results pack was queried to retrieve the coordinates of the local maxima, the reference space in
use and the number of subjects for each contrast. Areas of cagmiactivation Po 0.05 FWE cluster-wise
with a cluster-forming threshold dPo 0.001 uncorrected) found by the pain meta-analysis are displayed
in Fig. 6.

In line with previous results from the literatdrethe detections for the coordinate-based and image-based
meta-analysis appear consistent with a lower sensibility of the coordinate-based meta-analysis.
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Reporting of neuroimaging results  Supplementary File 1 provides a mapping between the guidelines
provided in ref. 8 to report neuroimaging results and tké&ls available in a NIDM-Results serialisation.
NIDM-Results cover all elements from tHgtatistical modellirigchecklist that could be automatically
retrieved within the neuroimaging software package.

Examples of reports generated from a NIDM-Results export of group and single-subject analyses performed
in SPM and FSL are provided in Fig. 7. The data and Python script used to generate those report are available
on NeuroVault (http:/neurovault.org/collections/1435/) and GitPfutespectively.

Discussion

Data sharing in the neuroimaging community is still restrained by a number of psychological and ethical
factors that are beyond the scope of the current paper (see (refs 7,43) for a review). Those will have to be
addressed in order for data sharing to become common practice in the neuroimaging community. In an
effort to address the technological barriers that make data sharing challenging, here we have proposed &
solution to share neuroimaging results of mass univariate analyses.

As a rst step to provide machine-readable metadata, we restricted our scope to information that was
automatically extractable and attributes that were crucial for meta-analysis (e.g., number of subjects).
This limited the amount of information that could be represented. For instance, the description of the
paradigm was limited to the design matrix and a list of regressor names. Ideally, to be able to
automatically query for studies of interest, one would need a more thorough description of the paradigm
and of the cognitive constructs involved. While vocabularies are becoming available (e.g., Cognitive
Atlas***5and CogP®®*§, description of fMRI paradigms is still a topic of active research. Some level of
manual interaction to select contrasts of interest is therefore needed to compute a meta-analysis based or
NIDM-Results packs. Nevertheless, NIDM-Results allows for the automation of part of the meta-analysis
as described in our results. In the future, as a consensus develops on the description of paradigms,
NIDM-Results could easily be extended to include this information. Similarly, NIDM-Results could be
extended to match emerging best practices (such as ref. 10).

NIDM-Results currently focuses on the representation of parametric mass-univariate analyses. Thanks
to the intrinsic extensibility of RDF models, variants could be proposed to broaden its scope. For
example, an extension for non-parametric statistics is under disc{fsdass-univariate results, as the
most well established approach for fMRI analysis, was an obvious choice to start a cross-software
modelling effort. But neuroimaging cannot be limited to mass-univariate analyses and future work will
focus on providing extensions for other types of analyses (e.g., analysis of resting state fMRI).

We based our modelling effort on PROV, a speation endorsed by the W3C, to model provenance
on the web. Other efforts have been proposed to model provenance including families of ontologies like
the OBO foundr{® or DOLCE®. We chose PROV as it is lightweight, focused only on provenance, and is
easily extensible to provide domain-spedinowledge.

Another recent effort to provide structured organisation of neuroimaging data is the Brain Imaging
Data Structure (BIDSJ. While NIDM-Results and BIDS both concern the organisation and description
of neuroimaging data, they operate at very distinct domains of the analysis path. BIDS provides a
mechanism for organising only the original raw data, and it does not cover any derived data nor the
de nition of particular statistical models or the outputs of those models. NIDM-Results, in contrast,
works at the other end of the analysis pipeline nileg a framework to describe the statistical model, the
statisticafcontraststhat interrogate the model, and the resulting statistical maps and inferences obtained
from each contrast. Whereas BIDS was designed so that an end-user could manually créegeatick
directories of a BIDS-compliant data structure, NIDM-Results is intended to be automatically generated
from analysis software and was therefore created using more expressive semantic web technologies
Of the larger NIDM project, it is the NIDM-Experiment portion that will have the greatest overlap with
BIDS. By making the experimental metadata available as linked data, NIDM-Experiment will enable
guerying across the full neuroimaging data lifecycle, interrogating data possibly hosted on distributed
resources.

NIDM-Results is based on RDF and semantic web technologies. While a number of ontologies have
been developed in relation with neuroimaging (e.g., Cognitive“At@sgPd® OntoNeurolog?), the
use of controlled vocabularies and of linked data is not yet common practice in our community. As more
and more data become available online and as standardisation effort like the RIl develops, we believe that
these technologies will become more widespread. RDF was chosen as a basis for NIDM for the
expressivity of its graph-based structures, the possibility to form intricate queries across’§aasest
as for the extensibility of the created data models and the possibility to interconnect across knowledge
domains (cf. ref. 53 for a review).

One limitation of NIDM-Results is that only limited provenance is represented. For instance,
computational environment, which has been shown to be source of undesired variability in neuroimaging
result$®, is not part of our model. NIDM-Results is part of a broader effort (NIDM) that aims at
representing different levels of provenance in neuroimaging experiments. While those efforts are still
under development, our goal is to keep a link between those components to eventually provide a
complete representation of neuroimaging provenance.

As for the denition of any new model, gaining acceptance within the neuroimaging community will
be crucial for NIDM-Results. To insure a level of consensus, including the point-of-view of different
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actors in the eld, NIDM-Results was built as part of a collaborative effort. More feedback from the
community is welcome and can be submitted as issues in our GitHub repository or by email at
nidm-users@googlegroups.com. We also made a strong commitment to make implementations available.
Taking advantage of the fact that most functional MRI studies are performed using a limited number
of software packages 15% for SPM or FSE90% for SPM, FSL or AFNI according to ref. 55),

we developed implementations for SPM and FSL, and are currently working with AFNI developers to
further extend the coverage of NIDM-Results export.

While we have focused our implementation efforts on the generation of NIDM-Results packs,
the development of applications processing NIDM-Results is also crucial, to serve as incentives
for neuroimaging users. As an example, we liaised with NeuroVault to propose a one-click upload of
NIDM-Results. Here, users can behefrom all NeuroVault features including state-of-the-art
visualisations but also sharing, either privately or publicly depending on the stage of the project. This
process can ease communication between researchers working on different platforms or used to a
different set of neuroimaging tools. In the future, we plan to offer a one-click upload of NIDM-Results
packs from the neuroimaging software packages (SPM, FSL, AFNI) into NeuroVault. A wider ecosystem
is also under development (including a standalone viewer).

Future work will focus on developing extensions for NIDM-Results to cover a larger spectrum of
neuroimaging studies (e.g., non-parametric analyses) as well as to stay up-to-date with emerging
best practices. We will also sustain our effort on the development of tools that can read and write
NIDM-Results. Finally we will focus on the spextion of the other NIDM components to enable
modelling of a complete fMRI experiment from raw data to statistical results.

We believe NIDM-Results is an essential tool for the future of transparent, reproducible science using
neuroimaging. If all research publications were accompanied by such a machine-readable description of
the experiment, debates on the exact methodology used would be compressed or eliminated, and any
replication efforts greatly facilitated.

Methods

Process

Since August 2013 the model was developed through weekly teleconferences and eight focused workshor
during which the team of experts iteratively ded the terminology, seeking to ensure that the output of
AFNI, FSL and SPM could be represented in this framework. Furthermore, a separate meeting was
organised with each of the development teams of SPM, FSL and AFNI to discuss the model and its
implementation. Minutes of the meetings and online discussions are publicly available in our shared
Google drive® and on GitHub under the incf-nidash organizatfdn

Scope of the model

NIDM-Results focuses on mass-univariate models based on a General Linear Model (at the subject or
group level). To facilitate adoption, we restricted the scope of NIDM-Results to metadata that could be
automatically extracted with limited user input, motivated by the speuietadata that is crucial for the
application of meta-analysis. This had important practical consequences. Given that pre-processing and
statistical analysis are sometimes done using separate pipelines, we focused on the statistical analysis onl
The concepts to be represented in NIDM-Results were selected based on (1) meta-analysis best practice
(2) published guidelines to report fMRI studieand (3), in an effort to ensure continuity with current
practice, we also considered the elements displayed as part of results reporting in different neuroimaging
software (e.g., peaks, clusters). When an item, essential for image-based meta-analysis, was not produce
as part of the standard analysis (e.qg., the contrast standard error map in SPM) we included it in the model
and depend on the exporters to generate it from existing data.

Term re-use and de nitions

For each piece of information, we checked if an appropriate term was available in publicly available
ontologies: in particular STATO for statistics term, PROV for provenance, NeuroLex for neuroscience
terms, RRID for tools and also, to a lesser extent, Dublin Core, the NEPON&J#ntology and the
Cryptographic Hash Functions vocabulary. Namespaces of the re-used ontologies are provided in Table 2.
More details on the re-used vocabularies are provided below.

PROV. The W3C speciation PROV® de nes three types of objects: Antivity represents a process
that was performed on some data (e.g., a voxel-wise inference) and occurred xeepariod of time;

an Agentrepresents someone (human, organization, machjrthat takes responsibility for an activity
(e.g., the SPM software) andially, anEntity represents any sort of data, parameters etc. that can be
input or output of an activity (e.g., a NIfTlI image). PROV alsords a set of relations between those
objects (e.g., a voxel-wise infereAcévity useda NIfTI imageEntity; a voxel-wise inferendectivity was
associated withthe SPMAgentand another NIfTI imageEntity was generated lile segmentation
Activity). NIDM-Results terms were deed as specialisations of PROV terms.

STATQ GLM analyses of fMRI data rely on well-known statistical constructs (e.g., one-Jatapte
two-sampleT-test, F-tests, ANOVA, inference, ordinary least squares estimation, etc.). The general-
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Vocabulary/Ontology URI Pre x
PROV htp:/lwww.w3.org/ns/provi# prov
STATO htip://purl.obolibrary.org/obo/ obo
NeuroLex htp://uri.neuinfo.org/nif/nifstd/ nix

RRID http://scicrunch.org/resolver/ rrid

Dublin Core types

htt://purl.org/dc/dcmitype/

dctype

Dublin Core elements

hit//purl.org/dc/elements/1.1/

dc

Dublin Core terms

h://purl.org/dc/terms/

dct

Cryptographic Hash Functions

Iptt/id.loc.gov/vocabulary/preservation/cryptographicHashFunctions#

cryptj

NEPOMUK le ontology

htp://www.semanticdesktop.org/ontologies/2007/03/22/nfo#

nfo

NIDM htt p://purl.org/nidash/nidm# nidm
FSL htp://purl.org/nidash/fsl# fsl
SPM htp://purl.org/nidash/spm# spm

Table 2. Pre xes of the vocabularies used in NIDM-Results.

purpose STATistics Ontology (STAT®Js built on the top of the OBO foundry and aims to provide a

set of terms describing statistics. We re-used statistics terms available in STATO (e.qg., obo:'t-statistic") anc
when we could not nd an appropriate statistical term, we engaged with STATO developers through
GitHub issues to propose new terms (ergsidual mean squarediscussed in issue 35 (ref. 59)).

NeuroLex and RRID Much work has been done in the neuroimaging community to provide
controlled vocabularies and ontologies mieg neuroimaging concepts. NeuroP®&! provides a
common platform that gathers terms from different sources (including previous vocabularies developed
by NIF, BIRN..). Interestingly, Neurolex was part of the recent Resource Idstidbn Initiative
(RIN®%®3that publicized the use of those idemtis (e.g..RRID:SCR_00703%or SPM*) in research
papers. Rll is currently focused on the idenétion of biological resources and has been quickly adopted,
with more than 100 journals participating to date. We re-used the available RRIDs describing
neuroimaging software packages.

Dublin core, NEPOMUK le ontology and the Cryptographic Hash Functions vocabulary Many
vocabularies and ontologies have terms available to deste#hé&Ve chose to rely on the widely adopted
DUBLIN core terminolog$’. Additionally, we used thé leNamé term from the NEPOMUK le
ontology’® and the SHA-256 term from the Cryptographic Hash Functions vocalSilary

New terms. When no term was found to describe a given neuroimaging concept of interest, we created
a new term and carefully crafted a déion or engaged with the relevant ontology maintainers (e.g., we
contributed 41 terms to STATO) to propose a new rdgon. All new terms and denitions were
thoroughly discussed between our panel of experts in the NIDM working group, which is part of the
INCF Neuroimaging Task Force (NIDASH).

Examples of usage

Meta-analysis Data collection was subject to the Oxford University ethics review boards, who
approved the experiments. Only statistical summaries with no identifying data are shared along this
manuscript.

Results from 21 pain studies previously analysed with FSL were made available to us. The second-leve
analyses were recomputed with SPM for 10 of those studies in order to obtain a dataset of NIDM-Results
packs coming from mixed software packages. We computed a one-sample meta-analysis contrasting the
effect of‘pain’ and compared the results of coordinate-based and image-based meta-analyses.

The MKDA toolboX®, was used to perform the coordinate-based meta-analysis. The nidmresults
Python toolbox (https://pypi.python.org/pypi/nidmresults) was used to generate théecsquired as
input for the analyses.

FSLs FLAME 1 (ref. 69) was used to compute the image-based meta-analysis with the gold standard
approach (3rd level mixed-effects general linear model). FLAME 1 implements a random-effects meta-
analysis with iterative estimation of between-study variation via maximum likefifiébdParametric
inferences are conducted by reference to a Stigdedistribution with nominal degrees of freedom (i.e.,
number of studies minus humber of regression parameters) to account for uncertainty in the estimation
of the between-study variance parameter. Difference in data scaling between software packages wer
compensated by rescaling the FSL maps to a target intensity of 100 (instead of 10 000 by default).

Reporting of neuroimaging results From four studies exported with NIDM-Results we wrote a
script? to extract the information of interest to describe group and subject-level statistics using the
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RDFIib library?to query the documents. The paragraph that was generated could, for instance, be used
as part of the method section in a research paper.
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