A. Tefferi, J. Thiele, and J. W. Vardiman, The 2008 World Health Organization classification system for myeloproliferative neoplasms, Cancer, vol.22, issue.17, pp.3842-3847, 2009.
DOI : 10.1002/cncr.24440

J. Groffen, J. R. Stephenson, N. Heisterkamp, A. De-klein, C. R. Bartram et al., Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22, Cell, vol.36, issue.1, pp.93-99, 1984.
DOI : 10.1016/0092-8674(84)90077-1

C. James, V. Ugo, and J. Couédic, A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, Nature, vol.100, issue.7037, pp.1144-1148, 2005.
DOI : 10.1182/blood-2002-09-2839

R. Kralovics, F. Passamonti, and A. S. Buser, in Myeloproliferative Disorders, New England Journal of Medicine, vol.352, issue.17, pp.1779-1790, 2005.
DOI : 10.1056/NEJMoa051113

Y. Pikman, B. H. Lee, and T. Mercher, MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia, PLoS Medicine, vol.102, issue.7, 2006.
DOI : 10.1371/journal.pmed.0030270.st001

L. M. Scott, W. Tong, and R. L. Levine, Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis, New England Journal of Medicine, vol.356, issue.5, pp.459-468, 2007.
DOI : 10.1056/NEJMoa065202

S. Schnittger, U. Bacher, and C. Haferlach, Characterization of 35 new cases with four different MPLW515 mutations and essential thrombocytosis or primary myelofibrosis, Haematologica, vol.94, issue.1, pp.141-144, 2009.
DOI : 10.3324/haematol.13224

T. Klampfl, H. Gisslinger, and A. S. Harutyunyan, Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms, New England Journal of Medicine, vol.369, issue.25, pp.2379-2390, 2013.
DOI : 10.1056/NEJMoa1311347

E. Lippert, M. Boissinot, and R. Kralovics, The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera, Blood, vol.108, issue.6, pp.1865-1867, 2006.
DOI : 10.1182/blood-2006-01-013540

C. Cleyrat, J. Jelinek, and F. Girodon, JAK2 mutation and disease phenotype: a double L611V/V617F in cis mutation of JAK2 is associated with isolated erythrocytosis and increased activation of AKT and ERK1/2 rather than STAT5, Leukemia, vol.24, issue.5, pp.1069-1073, 2010.
DOI : 10.3324/haematol.13081

A. Mantovani, Molecular Pathways Linking Inflammation and Cancer, Current Molecular Medicine, vol.10, issue.4, pp.369-373, 2010.
DOI : 10.2174/156652410791316968

R. Fernández-sánchez, S. Berzal, and M. Sánchez-niño, AG490 Promotes HIF-1α Accumulation by Inhibiting Its Hydroxylation, Current Medicinal Chemistry, vol.19, issue.23, pp.4014-4023, 2012.
DOI : 10.2174/092986712802002554

R. Kralovics, S. Teo, and S. Li, Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders, Blood, vol.108, issue.4, pp.1377-1380, 2006.
DOI : 10.1182/blood-2005-11-009605

F. X. Schaub, R. Looser, and S. Li, Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms, Blood, vol.115, issue.10, pp.2003-2007, 2010.
DOI : 10.1182/blood-2009-09-245381

M. Vilaine, D. Olcaydu, and A. Harutyunyan, Homologous recombination of wild-type JAK2, a novel early step in the development of myeloproliferative neoplasm, Blood, vol.118, issue.24, pp.6468-6470, 2011.
DOI : 10.1182/blood-2011-08-372813

J. R. Lambert, T. Everington, D. C. Linch, and R. E. Gale, In essential thrombocythemia, multiple JAK2-V617F clones are present in most mutant-positive patients: a new disease paradigm, Blood, vol.114, issue.14, pp.3018-3023, 2009.
DOI : 10.1182/blood-2009-03-209916

P. Lundberg, A. Karow, and R. Nienhold, Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms, Blood, vol.123, issue.14, pp.2220-2228, 2014.
DOI : 10.1182/blood-2013-11-537167

H. C. Hasselbalch, Perspectives on the impact of JAK-inhibitor therapy upon inflammation-mediated comorbidities in myelofibrosis and related neoplasms, Expert Review of Hematology, vol.7, issue.2, pp.203-216, 2014.
DOI : 10.1586/17474086.2013.876356

N. Pemmaraju, H. Kantarjian, and T. Kadia, A Phase I/II Study of the Janus Kinase (JAK)1 and 2 Inhibitor Ruxolitinib in Patients With Relapsed or Refractory Acute Myeloid Leukemia, Clinical Lymphoma Myeloma and Leukemia, vol.15, issue.3, pp.171-176, 2015.
DOI : 10.1016/j.clml.2014.08.003

A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, Cancer-related inflammation, Nature, vol.342, issue.7203, pp.436-444, 2008.
DOI : 10.1038/nature07205

S. Yaqub and E. M. , Inflammation Versus Adaptive Immunity in Cancer Pathogenesis, Critical Reviews??? in Oncogenesis, vol.15, issue.1-2, pp.43-63, 2009.
DOI : 10.1615/CritRevOncog.v15.i1-2.20

S. M. Crusz and F. R. Balkwill, Inflammation and cancer: advances and new agents, Nature Reviews Clinical Oncology, vol.11, issue.10, 2015.
DOI : 10.1038/nature07205

P. H. Hackett and R. C. Roach, High-Altitude Illness, New England Journal of Medicine, vol.345, issue.2, pp.107-114, 2001.
DOI : 10.1056/NEJM200107123450206

G. Hartmann, M. Tschöp, and R. Fischer, HIGH ALTITUDE INCREASES CIRCULATING INTERLEUKIN-6, INTERLEUKIN-1 RECEPTOR ANTAGONIST AND C-REACTIVE PROTEIN, Cytokine, vol.12, issue.3, pp.246-252, 2000.
DOI : 10.1006/cyto.1999.0533

X. Niu, G. Y. Miasnikova, and A. I. Sergueeva, Altered cytokine profiles in patients with Chuvash polycythemia, American Journal of Hematology, vol.163, issue.2, pp.74-78, 2009.
DOI : 10.1002/ajh.21327

J. Biddlestone, D. Bandarra, and S. Rocha, The role of hypoxia in inflammatory disease (Review), International Journal of Molecular Medicine, vol.35, issue.4, pp.859-869, 2015.
DOI : 10.3892/ijmm.2015.2079

J. Ryu, C. Chae, and J. Kwak, Hypoxia-inducible factor-2í µí»¼ is an essential catabolic regulator of inflammatory rheumatoid arthritis, PLoS Biology, vol.12, issue.6, pp.1-16, 2014.

T. Cramer, Y. Yamanishi, and B. E. Clausen, HIF-1?? Is Essential for Myeloid Cell-Mediated Inflammation, Cell, vol.112, issue.5, pp.645-657, 2003.
DOI : 10.1016/S0092-8674(03)00154-5

F. Delhommeau, S. Dupont, and C. Tonetti, Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis, Blood, vol.109, issue.1, pp.71-77, 2007.
DOI : 10.1182/blood-2006-03-007146

E. Cesarman, Y. Chang, P. S. Moore, J. W. Said, and D. M. Knowles, Kaposi's Sarcoma???Associated Herpesvirus-Like DNA Sequences in AIDS-Related Body-Cavity???Based Lymphomas, New England Journal of Medicine, vol.332, issue.18, pp.1186-1191, 1995.
DOI : 10.1056/NEJM199505043321802

J. Parsonnet and M. Microbes, Infection As a Cause of Human Cancers, 1999.

J. I. Cohen, Epstein???Barr Virus Infection, New England Journal of Medicine, vol.343, issue.7, pp.481-492, 2000.
DOI : 10.1056/NEJM200008173430707

M. Du and P. G. Isaccson, Gastric MALT lymphoma: from aetiology to treatment, The Lancet Oncology, vol.3, issue.2, pp.97-104, 2002.
DOI : 10.1016/S1470-2045(02)00651-4

F. Dammacco, D. Sansonno, C. Piccoli, V. Racanelli, F. P. D-'amore et al., The Lymphoid System in Hepatitis C Virus Infection: Autoimmunity, Mixed Cryoglobulinemia, and Overt B-Cell Malignancy, Seminars in Liver Disease, vol.20, issue.02, pp.143-157, 2000.
DOI : 10.1055/s-2000-9613

M. Montella, A. Crispo, and F. Frigeri, HCV and tumors correlated with immune system: a case-control study in an area of hyperendemicity, Leukemia Research, vol.25, issue.9, pp.775-781, 2001.
DOI : 10.1016/S0145-2126(01)00027-3

M. D. Falco, A. Lucariello, S. Iaquinto, V. Esposito, G. Guerra et al., Pathogenesis, Journal of Cellular Physiology, vol.40, issue.8, pp.1702-1707, 2015.
DOI : 10.1002/jcp.24933

D. E. Levy and J. E. Darnell-jr, Signalling: STATs: transcriptional control and biological impact, Nature Reviews Molecular Cell Biology, vol.93, issue.9, pp.651-662, 2002.
DOI : 10.1038/nrm909

S. Frede, U. Berchner-pfannschmidt, and J. Fandrey, Regulation of Hypoxia???Inducible Factors During Inflammation, Methods in Enzymology, vol.435, pp.403-419, 2007.
DOI : 10.1016/S0076-6879(07)35021-0

L. Flamant, S. Toffoli, M. Raes, and C. Michiels, Hypoxia regulates inflammatory gene expression in endothelial cells, Experimental Cell Research, vol.315, issue.5, pp.733-747, 2008.
DOI : 10.1016/j.yexcr.2008.11.020

R. H. Wenger, D. P. Stiehl, and G. Camenisch, Integration of Oxygen Signaling at the Consensus HRE, Science Signaling, vol.2005, issue.306, 2005.
DOI : 10.1126/stke.3062005re12

D. Kamato, M. L. Burch, and T. J. Piva, Transforming growth factor-?? signalling: Role and consequences of Smad linker region phosphorylation, Cellular Signalling, vol.25, issue.10, pp.2017-2024, 2013.
DOI : 10.1016/j.cellsig.2013.06.001

C. Conte, E. Riant, and C. Toutain, FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1í µí»¼, PLoS ONE, vol.3, issue.8, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00317714

G. R. Stark and J. E. Darnell-jr, The JAK-STAT Pathway at Twenty, Immunity, vol.36, issue.4, pp.503-514, 2012.
DOI : 10.1016/j.immuni.2012.03.013

URL : http://doi.org/10.1016/j.immuni.2012.03.013

F. Marzo, A. Lavorgna, and G. Coluzzi, Erythropoietin in heart and vessels: focus on transcription and signalling pathways, Journal of Thrombosis and Thrombolysis, vol.72, issue.1, pp.183-187, 2008.
DOI : 10.1007/s11239-008-0212-3

S. A. Salzman, J. J. Mazza, and J. K. Burmester, Regulation of colony-stimulating factor-induced human myelopoiesis by transforming growth factor-?? isoforms, Cytokines, Cellular & Molecular Therapy, vol.7, issue.1, pp.31-36, 2002.
DOI : 10.1080/13684730216400

J. Zhang, X. Zhang, and F. Xie, The regulation of TGF-??/SMAD signaling by protein deubiquitination, Protein & Cell, vol.400, issue.5, pp.503-517, 2014.
DOI : 10.1007/s13238-014-0058-8

R. Vaidya, N. Gangat, and T. Jimma, Plasma cytokines in polycythemia vera: Phenotypic correlates, prognostic relevance, and comparison with myelofibrosis, American Journal of Hematology, vol.117, issue.11, pp.1003-1005, 2012.
DOI : 10.1002/ajh.23295

E. Pourcelot, C. Trocme, J. Mondet, S. Bailly, B. Toussaint et al., Cytokine profiles in polycythemia vera and essential thrombocythemia patients: Clinical implications, Experimental Hematology, vol.42, issue.5, pp.360-368, 2014.
DOI : 10.1016/j.exphem.2014.01.006

URL : https://hal.archives-ouvertes.fr/hal-00949162

S. Hermouet, I. Corre, and E. Lippert, Interleukin-8 and other agonists of Gi2 proteins: autocrine paracrine growth factors for human hematopoietic progenitors acting in synergy with colony stimulating factors, Leukemia and Lymphoma, vol.38, issue.12, pp.39-48, 2000.

S. Hermouet, A. Godard, and D. Pineau, ABNORMAL PRODUCTION OF INTERLEUKIN (IL)-11 AND IL-8 IN POLYCYTHAEMIA VERA, Cytokine, vol.20, issue.4, pp.178-183, 2002.
DOI : 10.1006/cyto.2002.1994

M. Boissinot, C. Cleyrat, M. Vilaine, Y. Jacques, I. Corre et al., Anti-inflammatory cytokines hepatocyte growth factor and interleukin-11 are over-expressed in Polycythemia vera and contribute to the growth of clonal erythroblasts independently of JAK2V617F, Oncogene, vol.82, issue.8, pp.990-1001, 2011.
DOI : 10.1007/s00005-008-0022-5

A. Tefferi, R. Vaidya, D. Caramazza, C. Finke, T. Lasho et al., Circulating Interleukin (IL)-8, IL-2R, IL-12, and IL-15 Levels Are Independently Prognostic in Primary Myelofibrosis: A Comprehensive Cytokine Profiling Study, Journal of Clinical Oncology, vol.29, issue.10, pp.1356-1363, 2011.
DOI : 10.1200/JCO.2010.32.9490

S. Lymperi, F. Ferraro, and D. T. Scadden, The HSC niche concept has turned 31, Annals of the New York Academy of Sciences, vol.113, issue.1, pp.12-18, 2010.
DOI : 10.1111/j.1749-6632.2009.05223.x

M. Boussekerdiì-es, Primary myelofibrosis and the 'bad seeds in bad soil' concept, Fibrogenesis and Tissue Repair, vol.5, 2012.

J. Lataillade, O. Pierre-louis, and H. C. Hasselbalch, Does primary myelofibrosis involve a defective stem cell niche? From concept to evidence, Blood, vol.112, issue.8, pp.3026-3035, 2008.
DOI : 10.1182/blood-2008-06-158386

I. Corre-buscail, D. Pineau, M. Boissinot, and S. Hermouet, Erythropoietin-independent erythroid colony formation by bone marrow progenitors exposed to interleukin-11 and interleukin-8, Experimental Hematology, vol.33, issue.11, pp.1299-1308, 2005.
DOI : 10.1016/j.exphem.2005.07.002

A. G. Fleischman, K. J. Aichberger, and S. B. Luty, TNF?? facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms, Blood, vol.118, issue.24, pp.6392-6398, 2011.
DOI : 10.1182/blood-2011-04-348144

P. Mossuz, F. Girodon, and M. Donnard, Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis, Haematologica, vol.89, issue.10, pp.1194-1279, 2004.

L. F. Mager, C. Riether, and C. M. Schürch, IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms, Journal of Clinical Investigation, vol.125, issue.7, pp.2579-2591, 2015.
DOI : 10.1172/JCI77347DS1

S. Y. Kristinsson, O. Landgren, J. Samuelsson, M. Björkholm, and L. R. Goldin, Autoimmunity and the risk of myeloproliferative neoplasms, Haematologica, vol.95, issue.7, pp.1216-1220, 2010.
DOI : 10.3324/haematol.2009.020412

M. C. Le-boussekerdiì-es and M. C. Martyré, Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis, Annals of Hematology, vol.78, issue.10, pp.437-444, 1999.
DOI : 10.1007/s002770050595

T. Barbui, A. Carobbio, and G. Finazzi, Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3, Haematologica, vol.96, issue.2, pp.315-318, 2011.
DOI : 10.3324/haematol.2010.031070

T. Barbui, A. Carobbio, and G. Finazzi, Elevated C-reactive protein is associated with shortened leukemia-free survival in patients with myelofibrosis, Leukemia, vol.37, issue.10, pp.2084-2086, 2013.
DOI : 10.1038/leu.2013.207

M. Risum, A. Madelung, and H. Bondo, The JAK2V617F allele burden and STAT3- and STAT5 phosphorylation in myeloproliferative neoplasms: early prefibrotic myelofibrosis compared with essential thrombocythemia, polycythemia vera and myelofibrosis, APMIS, vol.35, issue.8, pp.498-504, 2011.
DOI : 10.1111/j.1600-0463.2011.02754.x

T. Lee, H. Kantarjian, W. Ma, C. Yeh, F. Giles et al., Effects of Clinically Relevant MPL Mutations in the Transmembrane Domain Revealed at the Atomic Level through Computational Modeling, PLoS ONE, vol.137, issue.8, 2011.
DOI : 10.1371/journal.pone.0023396.t001

I. S. Hitchcock and K. Kaushansky, Thrombopoietin from beginning to end, British Journal of Haematology, vol.84, issue.2, pp.259-268, 2014.
DOI : 10.1111/bjh.12772

A. Hirao, TPO signal for stem cell genomic integrity, Blood, vol.123, issue.4, pp.459-460, 2014.
DOI : 10.1182/blood-2013-11-537084

A. Pardanani, T. Lasho, C. Finke, S. T. Oh, J. Gotlib et al., LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations, Leukemia, vol.118, issue.10, pp.1713-1718, 2010.
DOI : 10.1158/0008-5472.CAN-09-3783

A. J. Dunbar, L. P. Gondek, and C. L. O-'keefe, 250K Single Nucleotide Polymorphism Array Karyotyping Identifies Acquired Uniparental Disomy and Homozygous Mutations, Including Novel Missense Substitutions of c-Cbl, in Myeloid Malignancies, Cancer Research, vol.68, issue.24, pp.10349-10357, 2008.
DOI : 10.1158/0008-5472.CAN-08-2754

F. H. Grand, C. E. Hidalgo-curtis, and T. Ernst, Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms, Blood, vol.113, issue.24, pp.6182-6192, 2009.
DOI : 10.1182/blood-2008-12-194548

A. Bersenev, C. Wu, and J. Balcerek, Lnk constrains myeloproliferative diseases in mice, Journal of Clinical Investigation, vol.120, issue.6, pp.2058-2069, 2010.
DOI : 10.1172/JCI42032DS1

F. Delhommeau, S. Dupont, and V. D. Valle, in Myeloid Cancers, New England Journal of Medicine, vol.360, issue.22, pp.2289-2301, 2009.
DOI : 10.1056/NEJMoa0810069

N. Carbuccia, A. Murati, and V. Trouplin, Mutations of ASXL1 gene in myeloproliferative neoplasms, Leukemia, vol.23, issue.11, pp.2183-2186, 2009.
DOI : 10.1038/ng.349

E. R. Mardis, L. Ding, and D. J. Dooling, Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome, New England Journal of Medicine, vol.361, issue.11, pp.1058-1066, 2009.
DOI : 10.1056/NEJMoa0903840

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201812

T. Ernst, A. J. Chase, and J. Score, Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders, Nature Genetics, vol.8, issue.8, pp.722-726, 2010.
DOI : 10.1016/j.molcel.2008.10.016

M. E. Figueroa, O. Abdel-wahab, and C. Lu, Leukemic IDH1 and IDH2 Mutations Result in??a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation, Cancer Cell, vol.18, issue.6, pp.553-567, 2010.
DOI : 10.1016/j.ccr.2010.11.015

URL : http://doi.org/10.1016/j.ccr.2010.11.015

M. Tahiliani, K. P. Koh, and Y. Shen, Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1, Science, vol.324, issue.5929, pp.930-935, 2009.
DOI : 10.1126/science.1170116

S. Ito, A. C. Dalessio, O. V. Taranova, K. Hong, L. C. Sowers et al., Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification, Nature, vol.22, issue.7310, pp.1129-1133, 2010.
DOI : 10.1038/nature09303

A. D. Viny and R. L. Levine, Genetics of Myeloproliferative Neoplasms, The Cancer Journal, vol.20, issue.1, pp.61-65, 2014.
DOI : 10.1097/PPO.0000000000000013

G. W. Reuther, Recurring mutations in myeloproliferative neoplasms alter epigenetic regulation of gene expression, American Journal of Cancer Research, vol.1, issue.6, pp.752-762, 2011.

M. Kleppe, M. Kwak, and P. Koppikar, JAK-STAT Pathway Activation in Malignant and Nonmalignant Cells Contributes to MPN Pathogenesis and Therapeutic Response, Cancer Discovery, vol.5, issue.3, pp.316-331, 2015.
DOI : 10.1158/2159-8290.CD-14-0736

G. Hoermann, S. Cerny-reiterer, and H. Herrmann, Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms, The FASEB Journal, vol.26, issue.2, pp.894-906, 2012.
DOI : 10.1096/fj.11-193078

C. Duo, F. Gong, and X. He, Soluble Calreticulin Induces Tumor Necrosis Factor-?? (TNF-??) and Interleukin (IL)-6 Production by Macrophages through Mitogen-Activated Protein Kinase (MAPK) and NF??B Signaling Pathways, International Journal of Molecular Sciences, vol.15, issue.2, pp.2916-2928, 2014.
DOI : 10.3390/ijms15022916

URL : http://doi.org/10.3390/ijms15022916

A. Tefferi, T. L. Lasho, and O. Wahab, IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis, Leukemia, vol.114, issue.7, pp.1302-1309, 2010.
DOI : 10.1182/blood-2008-12-194548

A. M. Vannucchi, T. L. Lasho, P. Guglielmelli, and P. , Mutations and prognosis in primary myelofibrosis, Leukemia, vol.27, issue.9, pp.1861-1869, 2013.
DOI : 10.1200/JCO.2010.32.9490

D. Inoue, J. Kitaura, and H. Matsui, SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS, Leukemia, 2014.
DOI : 10.1038/leu.2014.301

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501574

D. Olcaydu, A. Harutyunyan, and R. Jäger, A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms, Nature Genetics, vol.57, issue.4, pp.450-454, 2009.
DOI : 10.1093/bioinformatics/bth457

A. V. Jones, A. Chase, and R. T. Silver, JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms, Nature Genetics, vol.447, issue.4, pp.446-449, 2009.
DOI : 10.1182/blood-2005-09-3917

O. Kilpivaara, S. Mukherjee, and A. M. Schram, A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms, Nature Genetics, vol.447, issue.4, pp.455-459, 2009.
DOI : 10.1038/ng1847

R. Jäger, A. S. Harutyunyan, and E. Rumi, locus contributes to familial clustering of myeloproliferative neoplasms, American Journal of Hematology, vol.112, issue.12, pp.1107-1110, 2014.
DOI : 10.1002/ajh.23842

W. Tapper, A. V. Jones, and R. Kralovics, Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms, Nature Communications, vol.26, p.6691, 2015.
DOI : 10.1038/ncomms7691

URL : http://doi.org/10.1038/ncomms7691

S. Nahajevszky, H. Andrikovics, and A. Batai, The prognostic impact of germline 46/1 haplotype of Janus kinase 2 in cytogenetically normal acute myeloid leukemia, Haematologica, vol.96, issue.11, pp.1613-1618, 2011.
DOI : 10.3324/haematol.2011.043885

S. Hermouet and M. Vilaine, The JAK2 46/1 haplotype: a marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasm, and impaired defense against infection?, Haematologica, vol.96, issue.11, pp.1575-1579, 2011.
DOI : 10.3324/haematol.2011.055392

M. Braig, N. Pällmann, and M. Preukschas, A ???telomere-associated secretory phenotype??? cooperates with BCR-ABL to drive malignant proliferation of leukemic cells, Leukemia, vol.51, issue.10, pp.2028-2039, 2014.
DOI : 10.1038/leu.2014.95

R. Sood, A. Talwar-trikha, S. R. Chakrabarti, and G. Nucifora, MDS1/EVI1 enhances TGF-??1 signaling and strengthens its growth-inhibitory effect, but the leukemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth-inhibition in response to TGF-??1, Leukemia, vol.13, issue.3, pp.348-357, 1999.
DOI : 10.1038/sj.leu.2401360

K. Yasui, C. Konishi, and Y. Gen, , a target gene for amplification at 3q26, antagonizes transforming growth factor-??-mediated growth inhibition in hepatocellular carcinoma, Cancer Science, vol.74, issue.7, pp.929-937, 2015.
DOI : 10.1111/cas.12694

R. Saxena, Th1/Th2 cytokines and their genotypes as predictors of hepatitis B virus related hepatocellular carcinoma, World Journal of Hepatology, vol.7, issue.11, pp.1572-1580, 2015.
DOI : 10.4254/wjh.v7.i11.1572

C. Ding, X. Ji, X. Chen, Y. Xu, and L. Zhong, gene promoter polymorphisms contribute to periodontitis susceptibility: evidence from 46 studies, Journal of Clinical Periodontology, vol.42, issue.Suppl 1, pp.748-759, 2014.
DOI : 10.1111/jcpe.12279

L. Alvarez-rodriguez, M. Lopez-hoyos, and E. Carrasco-marín, Cytokine Gene Considerations in Giant Cell Arteritis: IL10 Promoter Polymorphisms and a Review of the Literature, Clinical Reviews in Allergy & Immunology, vol.6, issue.12 suppl, pp.56-64, 2012.
DOI : 10.1007/s12016-013-8405-8

N. Wang, R. Zhou, and C. Wang, ???251 T/A polymorphism of the interleukin-8 gene and cancer risk: a HuGE review and meta-analysis based on 42 case???control studies, Molecular Biology Reports, vol.36, issue.6, pp.2831-2841, 2012.
DOI : 10.1007/s11033-011-1042-5

A. Suárez, P. Lpez, and C. Gutiérrez, IL-10 and TNFí µí»¼ genotypes in SLE, Journal of Biomedicine and Biotechnology, vol.2010, 2010.

L. Gao, X. Pan, and J. Jia, IL-8 ???251A/T polymorphism is associated with decreased cancer risk among population-based studies: Evidence from a meta-analysis, European Journal of Cancer, vol.46, issue.8, pp.1333-1343, 2010.
DOI : 10.1016/j.ejca.2010.03.011

C. M. Eklund, Chapter 5 Proinflammatory cytokines in CRP baseline regulation, Advances in Clinical Chemistry, vol.48, pp.111-136, 2009.
DOI : 10.1016/S0065-2423(09)48005-3

G. H. Tesch, MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy, AJP: Renal Physiology, vol.294, issue.4, pp.697-701, 2008.
DOI : 10.1152/ajprenal.00016.2008

J. C. Aguillón, A. Cruzat, O. Aravena, L. Salazar, C. Llanos et al., Could single-nucleotide polymorphisms (SNPs) affecting the tumour necrosis factor promoter be considered as part of rheumatoid arthritis evolution?, Immunobiology, vol.211, issue.1-2, pp.75-84, 2006.
DOI : 10.1016/j.imbio.2005.09.005

F. Stüber, S. Klaschik, L. E. Lehmann, J. Schewe, S. Weber et al., Cytokine Promoter Polymorphisms in Severe Sepsis, Clinical Infectious Diseases, vol.41, issue.Supplement 7, pp.416-420, 2005.
DOI : 10.1086/431991

J. C. Aguillón, G. , A. Cruzat, C. , J. Cuenca et al., Tumor necrosis factor alpha genetic polymorphism as a risk factor in disease, Revista Medica de Chile, vol.130, issue.9, pp.1043-1050, 2002.

L. Giannitrapani, M. Soresi, D. Balasus, A. Licata, and G. Montalto, Genetic association of interleukin-6 polymorphism (-174 G/C) with chronic liver diseases and hepatocellular carcinoma, World Journal of Gastroenterology, vol.19, issue.16, pp.2449-2455, 2013.
DOI : 10.3748/wjg.v19.i16.2449

N. S. Grotenboer, M. E. Ketelaar, G. H. Koppelman, and M. C. Nawijn, Decoding asthma: Translating genetic variation in IL33 and IL1RL1 into disease pathophysiology, Journal of Allergy and Clinical Immunology, vol.131, issue.3, pp.856-865, 2013.
DOI : 10.1016/j.jaci.2012.11.028

L. Akhabir and A. Sandford, Genetics of Interleukin 1 Receptor-Like 1 in Immune and Inflammatory Diseases, Current Genomics, vol.11, issue.8, pp.591-606, 2010.
DOI : 10.2174/138920210793360907

S. Takiuchi, T. Mannami, and T. Miyata, Identification of 21 single nucleotide polymorphisms in human hepatocyte growth factor gene and association with blood pressure and carotid atherosclerosis in the Japanese population, Atherosclerosis, vol.173, issue.2, pp.301-307, 2004.
DOI : 10.1016/j.atherosclerosis.2003.12.020

A. Koutras, V. Kotoula, and G. Fountzilas, Prognostic and predictive role of vascular??endothelial growth factor polymorphisms in breast cancer, Pharmacogenomics, vol.16, issue.1, pp.79-94, 2015.
DOI : 10.2217/pgs.14.148

P. D. Ziakas, P. Karsaliakos, M. L. Prodromou, and E. Mylonakis, Interleukin-6 polymorphisms and hematologic malignancy: a re-appraisal of evidence from genetic association studies, Biomarkers, vol.11, issue.7, pp.625-631, 2013.
DOI : 10.1080/02664763.2012.722611

N. Joshi, S. Kannan, N. Kotian, S. Bhat, M. Kale et al., Interleukin 6 ???174G>C polymorphism and cancer risk: Meta-analysis reveals a site dependent differential influence in Ancestral North Indians, Human Immunology, vol.75, issue.8, pp.901-908, 2014.
DOI : 10.1016/j.humimm.2014.06.018

M. Boissinot, M. Vilaine, and S. Hermouet, The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?, Cancers, vol.6, issue.3, pp.1631-1669, 2014.
DOI : 10.3390/cancers6031631

URL : https://hal.archives-ouvertes.fr/inserm-01401601

H. C. Hasselbalch, Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?, Leukemia Research, vol.37, issue.2, pp.214-220, 2013.
DOI : 10.1016/j.leukres.2012.10.020

H. Frederiksen, D. K. Farkas, C. F. Christiansen, H. C. Hasselbalch, and H. T. Sørensen, Chronic myeloproliferative neoplasms and subsequent cancer risk: a Danish population-based cohort study, Blood, vol.118, issue.25, pp.6515-6520, 2011.
DOI : 10.1182/blood-2011-04-348755

K. Schonberg, J. Rudolph, and M. Vonnahme, JAK Inhibition Impairs NK Cell Function in Myeloproliferative Neoplasms, Cancer Research, vol.75, issue.11, pp.2187-2199, 2015.
DOI : 10.1158/0008-5472.CAN-14-3198

A. Tedeschi, C. Baratè, E. Minola, and E. Morra, Cryoglobulinemia, Blood Reviews, vol.21, issue.4, pp.183-200, 2007.
DOI : 10.1016/j.blre.2006.12.002

S. Hermouet, I. Corre, and M. Gassin, Hepatitis C Virus, Human Herpesvirus 8, and the Development of Plasma-Cell Leukemia, New England Journal of Medicine, vol.348, issue.2, pp.178-179, 2003.
DOI : 10.1056/NEJM200301093480219

E. Bigot-corbel, M. Gassin, I. Corre, D. L. Carrer, O. Delaroche et al., Hepatitis C virus (HCV) infection, monoclonal immunoglobulin specific for HCV core protein, and plasma-cell malignancy, Blood, vol.112, issue.10, pp.4357-4358, 2008.
DOI : 10.1182/blood-2008-07-167569

D. Feron, C. Charlier, and V. Gourain, Chronic viral infection, virus-specific monoclonal immunoglobulin, and development of plasma cell malignancy, Blood, vol.118, issue.21, pp.1240-1241, 2011.

D. Feron, C. Charlier, and V. Gourain, Multiplexed infectious protein microarray immunoassay suitable for the study of the specificity of monoclonal immunoglobulins, Analytical Biochemistry, vol.433, issue.2, pp.202-209, 2013.
DOI : 10.1016/j.ab.2012.10.012

URL : https://hal.archives-ouvertes.fr/inserm-01401584

S. Panfilio, P. D. Urso, and G. Annechini, Regression of a case of Multiple Myeloma with antiviral treatment in a patient with chronic HCV infection, Leukemia Research Reports, vol.2, issue.1, pp.39-40, 2013.
DOI : 10.1016/j.lrr.2013.01.002

J. Grisouard, T. Shimizu, and A. Duek, Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2-V617F mouse model of MPN, Blood, vol.125, issue.13, pp.2131-2140, 2015.
DOI : 10.1182/blood-2014-08-594572

B. J. Jenkins, A. W. Roberts, M. Najdovska, D. Grail, and M. Ernst, The threshold of gp130-dependent STAT3 signaling is critical for normal regulation of hematopoiesis, Blood, vol.105, issue.9, pp.3512-3520, 2005.
DOI : 10.1182/blood-2004-09-3751

B. J. Jenkins, A. W. Roberts, and C. J. , Pathologic consequences of STAT3 hyperactivation by IL-6 and IL-11 during hematopoiesis and lymphopoiesis, Blood, vol.109, issue.6, pp.2380-2388, 2007.
DOI : 10.1182/blood-2006-08-040352

P. Coppo, I. Dusanter-fourt, W. Vainchenker, and A. G. Turhan, BCR-ABL induces opposite phenotypes in murine ES cells according to STAT3 activation levels, Cellular Signalling, vol.21, issue.1, pp.52-60, 2009.
DOI : 10.1016/j.cellsig.2008.09.006

O. Fuchs, Transcription Factor NF-??B Inhibitors as Single Therapeutic Agents or in Combination with Classical Chemotherapeutic Agents for the Treatment of Hematologic Malignancies, Current Molecular Pharmacology, vol.3, issue.3, pp.98-122, 2010.
DOI : 10.2174/1874467211003030098

Z. Lu, Y. Jin, C. Chen, J. Li, Q. Cao et al., Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-í µí¼…B signaling and depleting Bcr-Abl Strategic targeting of the PI3K-NFí µí¼…B axis in cisplatin-resistant NSCLC, Molecular Cancer Cancer Biology and Therapy, vol.9, issue.15 10, pp.1367-1377, 2010.

E. Monti and M. B. Gariboldi, HIF-1 as a Target for Cancer Chemotherapy, Chemosensitization and Chemoprevention, Current Molecular Pharmacology, vol.4, issue.1, pp.62-77, 2011.
DOI : 10.2174/1874467211104010062

Y. Xia, H. Choi, and K. Lee, Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors, European Journal of Medicinal Chemistry, vol.49, pp.24-40, 2012.
DOI : 10.1016/j.ejmech.2012.01.033

G. N. Masoud, J. Wang, J. Chen, D. Miller, and W. Li, Design, synthesis and biological evaluation of novel HIF1í µí»¼ Inhibitors, Anticancer Research, vol.35, issue.7, pp.3849-3859, 2015.

G. Barosi, E. Gattoni, and P. Guglielmelli, Phase I/II study of single-agent bortezomib for the treatment of patients with myelofibrosis. Clinical and biological effects of proteasome inhibition, American Journal of Hematology, vol.21, issue.8, pp.616-619, 2010.
DOI : 10.1002/ajh.21754

M. J. Aman, G. Bug, W. E. Aulitzky, C. Huber, and C. Peschel, Inhibition of interleukin-11 by interferon-í µí»¼ in human bone marrow stromal cells, Experimental Hematology, vol.24, issue.8, pp.863-867, 1996.

S. Radaeva, B. Jaruga, and F. Hong, Interferon-?? activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes, Gastroenterology, vol.122, issue.4, pp.1020-1034, 2002.
DOI : 10.1053/gast.2002.32388

G. A. Kennedy, A. Varelias, and S. Vuckovic, Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial, The Lancet Oncology, vol.15, issue.13, pp.1451-1459, 2014.
DOI : 10.1016/S1470-2045(14)71017-4

X. Qi, X. Guo, G. Han, H. Li, and J. Chen, MET inhibitors for treatment of advanced hepatocellular carcinoma: A review, World Journal of Gastroenterology, vol.21, issue.18, pp.5445-5453, 2015.
DOI : 10.3748/wjg.v21.i18.5445

D. L. Scott, F. Ibrahim, and F. , Tumour necrosis factor inhibitors versus combination intensive therapy with conventional disease modifying anti-rheumatic drugs in established rheumatoid arthritis: TACIT non-inferiority randomised controlled trial, BMJ, vol.350, issue.mar13 19, 2015.
DOI : 10.1136/bmj.h1046

G. Bianchi and N. C. Munshi, Pathogenesis beyond the cancer clone(s) in multiple myeloma, Blood, vol.125, issue.20, pp.3049-3058, 2015.
DOI : 10.1182/blood-2014-11-568881

V. E. Manzo and A. S. Bhatt, The human microbiome in hematopoiesis and hematologic disorders, Blood, vol.126, issue.3, pp.311-318, 2015.
DOI : 10.1182/blood-2015-04-574392

G. J. Xu, T. Kula, and Q. Xu, Viral immunology Comprehensive serological profiling of human populations using a synthetic human virome, Science, vol.348, issue.6239, 2015.

B. L. Esplin, T. Shimazu, and R. S. Welner, Chronic Exposure to a TLR Ligand Injures Hematopoietic Stem Cells, The Journal of Immunology, vol.186, issue.9, pp.5367-5375, 2011.
DOI : 10.4049/jimmunol.1003438

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086167