K. Akopiants, R. Zhou, S. Mohapatra, K. Valerie, S. P. Lees-miller et al., Requirement for XLF/Cernunnos in alignment-based gap filling by DNA polymerases ?? and ?? for nonhomologous end joining in human whole-cell extracts, Nucleic Acids Research, vol.37, issue.12, pp.4055-4062, 2009.
DOI : 10.1093/nar/gkp283

S. N. Andres, M. Modesti, C. J. Tsai, G. Chu, and M. S. Junop, Crystal Structure of Human XLF: A Twist in Nonhomologous DNA End-Joining, Molecular Cell, vol.28, issue.6, pp.1093-1101, 2007.
DOI : 10.1016/j.molcel.2007.10.024

M. Audebert, B. Salles, M. Weinfeld, and P. Calsou, Involvement of Polynucleotide Kinase in a Poly(ADP-ribose) Polymerase-1-dependent DNA Double-strand Breaks Rejoining Pathway, Journal of Molecular Biology, vol.356, issue.2, pp.257-265, 2006.
DOI : 10.1016/j.jmb.2005.11.028

Q. Cheng, N. Barboule, P. Frit, D. Gomez, O. Bombarde et al., Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks, Nucleic Acids Research, vol.39, issue.22, pp.9605-9619, 2011.
DOI : 10.1093/nar/gkr656

K. K. Chiruvella, Z. Liang, W. , and T. E. , Repair of Double-Strand Breaks by End Joining, Cold Spring Harbor Perspectives in Biology, vol.5, issue.5, 2013.
DOI : 10.1101/cshperspect.a012757

A. Craxton, J. Somers, D. Munnur, R. Jukes-jones, K. Cain et al., XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair, Cell Death and Differentiation, vol.27, issue.6, pp.890-897, 2015.
DOI : 10.1371/journal.pone.0007016

J. De-villartay, Congenital defects in V(D)J recombination, British Medical Bulletin, vol.114, issue.1, pp.157-167, 2015.
DOI : 10.1093/bmb/ldv020

L. Deriano, R. , and D. B. , Modernizing the Nonhomologous End-Joining Repertoire: Alternative and Classical NHEJ Share the Stage, Annual Review of Genetics, vol.47, issue.1, pp.433-455, 2013.
DOI : 10.1146/annurev-genet-110711-155540

URL : https://hal.archives-ouvertes.fr/pasteur-01471700

D. D. Dudley, J. Chaudhuri, C. H. Bassing, A. , and F. W. , Mechanism and Control of V(D)J Recombination versus Class Switch Recombination: Similarities and Differences, Adv. Immunol, vol.86, pp.43-112, 2005.
DOI : 10.1016/S0065-2776(04)86002-4

F. J. Fattah, J. Kweon, Y. Wang, E. H. Lee, Y. Kan et al., A role for XLF in DNA repair and recombination in human somatic cells, DNA Repair, vol.15, pp.39-53, 2014.
DOI : 10.1016/j.dnarep.2013.12.006

P. Frit, N. Barboule, Y. Yuan, D. Gomez, and P. Calsou, Alternative end-joining pathway(s): Bricolage at DNA breaks, DNA Repair, vol.17, pp.81-97, 2014.
DOI : 10.1016/j.dnarep.2014.02.007

URL : http://doi.org/10.1016/j.dnarep.2014.02.007

G. J. Grundy, S. L. Rulten, Z. Zeng, R. Arribas-bosacoma, N. Iles et al., APLF promotes the assembly and activity of non-homologous end joining protein complexes, The EMBO Journal, vol.14, issue.1, pp.112-125, 2013.
DOI : 10.1093/nar/gks622

G. J. Grundy, S. L. Rulten, R. Arribas-bosacoma, K. Davidson, Z. Kozik et al., The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins, Nature Communications, vol.41, p.11242, 2016.
DOI : 10.1038/ncomms11242

J. Gu, H. Lu, A. G. Tsai, K. Schwarz, and M. R. Lieber, Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence, Nucleic Acids Research, vol.35, issue.17, pp.5755-5762, 2007.
DOI : 10.1093/nar/gkm579

L. A. Hanakahi, 2-Step purification of the Ku DNA repair protein expressed in Escherichia coli, Protein Expression and Purification, vol.52, issue.1, pp.139-145, 2007.
DOI : 10.1016/j.pep.2006.10.002

B. Hirt, Selective extraction of polyoma DNA from infected mouse cell cultures, Journal of Molecular Biology, vol.26, issue.2, pp.365-369, 1967.
DOI : 10.1016/0022-2836(67)90307-5

M. R. Lieber, The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway, Annual Review of Biochemistry, vol.79, issue.1, pp.181-211, 2010.
DOI : 10.1146/annurev.biochem.052308.093131

P. Liu, W. Gan, C. Guo, A. Xie, D. Gao et al., Akt-Mediated Phosphorylation of XLF Impairs Non-Homologous End-Joining DNA Repair, Molecular Cell, vol.57, issue.4, pp.648-661, 2015.
DOI : 10.1016/j.molcel.2015.01.005

W. Y. Mansour, T. Rhein, and J. Dahm-daphi, The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies, Nucleic Acids Research, vol.38, issue.18, pp.6065-6077, 2010.
DOI : 10.1093/nar/gkq387

S. Må-rtensson, J. Nygren, N. Osheroff, and O. Hammarsten, Activation of the DNA-Dependent Protein Kinase by Drug-Induced and Radiation-Induced DNA Strand Breaks, Radiation Research, vol.160, issue.3, pp.291-301, 2003.
DOI : 10.1667/0033-7587(2003)160[0291:AOTDPK]2.0.CO;2

K. Meek, S. P. Lees-miller, and M. Modesti, N-terminal constraint activates the catalytic subunit of the DNA-dependent protein kinase in the absence of DNA or Ku, Nucleic Acids Research, vol.40, issue.7, pp.2964-2973, 2012.
DOI : 10.1093/nar/gkr1211

M. Modesti, J. E. Hesse, and M. Gellert, DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity, EMBO J, vol.18, 1999.

J. A. Neal, Y. Xu, M. Abe, E. Hendrickson, and K. Meek, Restoration of ATM Expression in DNA-PKcs???Deficient Cells Inhibits Signal End Joining, The Journal of Immunology, vol.196, issue.7, pp.3032-3042, 2016.
DOI : 10.4049/jimmunol.1501654

A. Nussenzweig and M. C. Nussenzweig, A Backup DNA Repair Pathway Moves to the Forefront, Cell, vol.131, issue.2, pp.223-225, 2007.
DOI : 10.1016/j.cell.2007.10.005

T. Ochi, A. N. Blackford, J. Coates, S. Jhujh, S. Mehmood et al., PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair, Science, vol.347, issue.6218, pp.185-188, 2015.
DOI : 10.1126/science.1261971

S. Oh, Y. Wang, J. Zimbric, and E. A. Hendrickson, Human LIGIV is synthetically lethal with the loss of Rad54B-dependent recombination and is required for certain chromosome fusion events induced by telomere dysfunction, Nucleic Acids Research, vol.41, issue.3, pp.1734-1749, 2013.
DOI : 10.1093/nar/gks1326

S. Oh, A. Harvey, J. Zimbric, Y. Wang, T. Nguyen et al., DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells, DNA Repair, vol.21, pp.97-110, 2014.
DOI : 10.1016/j.dnarep.2014.04.015

M. Ono, P. W. Tucker, C. , and J. D. , Production and characterization of recombinant human Ku antigen, Nucleic Acids Research, vol.22, issue.19, pp.3918-3924, 1994.
DOI : 10.1093/nar/22.19.3918

D. A. Ramsden and K. Asagoshi, DNA polymerases in nonhomologous end joining: Are there any benefits to standing out from the crowd?, Environmental and Molecular Mutagenesis, vol.283, issue.9, pp.741-751, 2012.
DOI : 10.1002/em.21725

E. Riballo, L. Woodbine, T. Stiff, S. A. Walker, A. A. Goodarzi et al., XLF-Cernunnos promotes DNA ligase IV-XRCC4 re-adenylation following ligation, Nucleic Acids Research, vol.37, issue.2, pp.482-492, 2009.
DOI : 10.1093/nar/gkn957

URL : http://doi.org/10.1093/nar/gkn957

S. A. Roberts, N. Strande, M. D. Burkhalter, C. Strom, J. M. Havener et al., Ku is a 5???-dRP/AP lyase that excises nucleotide damage near broken ends, Nature, vol.26, issue.7292, pp.1214-1217, 2010.
DOI : 10.1038/nature08926

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859099

S. Roy, A. J. De-melo, Y. Xu, S. K. Tadi, A. Né-grel et al., XRCC4/XLF Interaction Is Variably Required for DNA Repair and Is Not Required for Ligase IV Stimulation, Molecular and Cellular Biology, vol.35, issue.17, pp.3017-3028, 2015.
DOI : 10.1128/MCB.01503-14

URL : https://hal.archives-ouvertes.fr/hal-01456279

P. Sheffield, S. Garrard, and Z. Derewenda, Overcoming Expression and Purification Problems of RhoGDI Using a Family of ???Parallel??? Expression Vectors, Protein Expression and Purification, vol.15, issue.1, pp.34-39, 1999.
DOI : 10.1006/prep.1998.1003

P. Shirodkar, A. L. Fenton, L. Meng, and C. A. Koch, Identification and Functional Characterization of a Ku-binding Motif in Aprataxin Polynucleotide Kinase/Phosphatase-like Factor (APLF), Journal of Biological Chemistry, vol.288, issue.27, pp.19604-19613, 2013.
DOI : 10.1074/jbc.M112.440388

C. J. Tsai, S. A. Kim, C. , and G. , Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends, Proc. Natl. Acad. Sci. USA, pp.7851-7856, 2007.
DOI : 10.1073/pnas.0702620104

N. S. Verkaik, R. E. Esveldt-van-lange, D. Van-heemst, H. T. Br?-uggenwirth, J. H. Hoeijmakers et al., Different types of V(D)J recombination and end-joining defects in DNA double-strand break repair mutant mammalian cells, European Journal of Immunology, vol.32, issue.3, pp.701-709, 2002.
DOI : 10.1002/1521-4141(200203)32:3<701::AID-IMMU701>3.0.CO;2-T

J. A. Vizcaíno, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al., 2016 update of the PRIDE database and its related tools, Nucleic Acids Res, issue.D1, pp.44-447, 2016.

J. R. Walker, R. A. Corpina, and J. Goldberg, Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair, Nature, vol.412, issue.6847, pp.607-614, 2001.
DOI : 10.1038/35088000

J. Wang, M. Satoh, C. H. Chou, and W. H. Reeves, Similar DNA binding properties of free p70 (Ku) subunit and p70/p80 heterodimer, FEBS Letters, vol.91, issue.2, pp.219-224, 1994.
DOI : 10.1016/0014-5793(94)00863-9

J. Wang, X. Dong, K. Myung, E. A. Hendrickson, and W. H. Reeves, Identification of Two Domains of the p70 Ku Protein Mediating Dimerization with p80 and DNA Binding, Journal of Biological Chemistry, vol.273, issue.2, pp.842-848, 1998.
DOI : 10.1074/jbc.273.2.842

J. Wang, X. Dong, and W. H. Reeves, A Model for Ku Heterodimer Assembly and Interaction with DNA: IMPLICATIONS FOR THE FUNCTION OF Ku ANTIGEN, Journal of Biological Chemistry, vol.273, issue.47, pp.31068-31074, 1998.
DOI : 10.1074/jbc.273.47.31068

H. Wang, B. Rosidi, R. Perrault, M. Wang, L. Zhang et al., DNA Ligase III as a Candidate Component of Backup Pathways of Nonhomologous End Joining, Cancer Research, vol.65, issue.10, pp.4020-4030, 2005.
DOI : 10.1158/0008-5472.CAN-04-3055

C. A. Waters, N. T. Strande, D. W. Wyatt, J. M. Pryor, and D. A. Ramsden, Nonhomologous end joining: A good solution for bad ends, DNA Repair, vol.17, pp.39-51, 2014.
DOI : 10.1016/j.dnarep.2014.02.008

L. Woodbine, A. R. Gennery, and P. A. Jeggo, The clinical impact of deficiency in DNA non-homologous end-joining, DNA Repair, vol.16, pp.84-96, 2014.
DOI : 10.1016/j.dnarep.2014.02.011

P. Wu, P. Frit, S. Meesala, S. Dauvillier, M. Modesti et al., Structural and Functional Interaction between the Human DNA Repair Proteins DNA Ligase IV and XRCC4, Molecular and Cellular Biology, vol.29, issue.11, pp.3163-3172, 2009.
DOI : 10.1128/MCB.01895-08

M. Xing, M. Yang, W. Huo, F. Feng, L. Wei et al., Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway, Nature Communications, vol.6, p.6233, 2015.
DOI : 10.1038/emboj.2012.304

S. Yoo and W. S. Dynan, Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein, Nucleic Acids Research, vol.27, issue.24, pp.4679-4686, 1999.
DOI : 10.1093/nar/27.24.4679

S. Yoo, A. Kimzey, and W. S. Dynan, Photocross-linking of an Oriented DNA Repair Complex. Ku BOUND AT A SINGLE DNA END, Journal of Biological Chemistry, vol.274, issue.28, 1999.
DOI : 10.1074/jbc.274.28.20034

S. Zha, C. Guo, C. Boboila, V. Oksenych, H. Cheng et al., ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks, Nature, vol.296, issue.7329, pp.250-254, 2011.
DOI : 10.1038/nature09604

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058373