E. K. Hedlund and M. C. Rusch, The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes, Nat. Commun, 2014.

Y. Kudo, K. Tateishi, K. Yamamoto, S. Yamamoto, Y. Asaoka et al., Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation, Cancer Science, vol.473, issue.4, pp.670-676, 2012.
DOI : 10.1111/j.1349-7006.2012.02213.x

C. Zhang, L. M. Moore, X. Li, W. K. Yung, and W. Zhang, IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma, Neuro-Oncology, vol.15, issue.9, pp.1114-1126, 2013.
DOI : 10.1093/neuonc/not087

J. U. Marquardt and S. S. Thorgeirsson, Linking MLL and the HGF-MET signaling pathway in liver cancer, Journal of Clinical Investigation, vol.123, issue.7, pp.2780-2783, 2013.
DOI : 10.1172/JCI70235

G. D. Rocco, A. Redler, and L. Lacroix, Epigenetic-related gene expression profile in medullary thyroid cancer revealed the overexpression of the histone methyltransferases EZH2 and SMYD3 in aggressive tumours, Mol. Cell. Endocrinol, vol.392, pp.8-13, 2014.

A. D. Viny and R. L. Levine, Genetics of Myeloproliferative Neoplasms, The Cancer Journal, vol.20, issue.1, pp.61-65
DOI : 10.1097/PPO.0000000000000013

M. Sattler and R. Salgia, c-Met and hepatocyte growth factor: Potential as novel targets in cancer therapy, Current Oncology Reports, vol.60, issue.2, pp.102-108, 2007.
DOI : 10.1007/s11912-007-0005-4

P. M. Comoglio, S. Giordano, and L. Trusolino, Drug development of MET inhibitors: targeting oncogene addiction and expedience, Nature Reviews Drug Discovery, vol.189, issue.6, pp.504-516, 2008.
DOI : 10.1038/nrd2530

L. Landi, G. Minuti, A. Incecco, and F. Cappuzzo, Targeting c-MET in the battle against advanced nonsmall-cell lung cancer, Current Opinion in Oncology, vol.25, issue.2, pp.130-136, 2013.
DOI : 10.1097/CCO.0b013e32835daf37

S. Yu, Y. Yu, N. Zhao, J. Cui, W. Li et al., c-Met as a Prognostic Marker in Gastric Cancer: A Systematic Review and Meta-Analysis, PLoS ONE, vol.21, issue.11, p.79137, 2013.
DOI : 10.1371/journal.pone.0079137.s003

R. Barrow-mcgee and S. Kermorgant, Met endosomal signalling: In the right place, at the right time, The International Journal of Biochemistry & Cell Biology, vol.49, pp.69-74, 2014.
DOI : 10.1016/j.biocel.2014.01.009

M. Hino, M. Inaba, H. Goto, Y. Nishizawa, N. Tatsumi et al., Hepatocyte growth factor levels in bone marrow plasma of patients with leukaemia and its gene expression in leukaemic blast cells, British Journal of Cancer, vol.73, issue.1, pp.119-123, 1996.
DOI : 10.1038/bjc.1996.22

P. W. Derksen, D. J. De-gorter, H. P. Meijer, R. J. Bende, M. Van-dijk et al., The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma, Leukemia, vol.17, issue.4, pp.764-774, 2003.
DOI : 10.1038/sj.leu.2402875

C. L. Ho, T. L. Lasho, J. H. Butterfield, and A. Tefferi, Global cytokine analysis in myeloproliferative disorders, Leukemia Research, vol.31, issue.10, pp.31-1389, 2007.
DOI : 10.1016/j.leukres.2006.12.024

M. Boissinot, C. Cleyrat, M. Vilaine, and Y. Jacques, Anti-inflammatory cytokines hepatocyte growth factor and interleukin-11 are over-expressed in Polycythemia vera and contribute to the growth of clonal erythroblasts independently of JAK2V617F, Oncogene, vol.82, issue.8, pp.990-1001, 2011.
DOI : 10.1007/s00005-008-0022-5

S. Cerny-reiterer, V. Ghanim, G. Hoermann, K. J. Aichberger, H. Herrmann et al., Identification of Basophils as a Major Source of Hepatocyte Growth Factor in Chronic Myeloid Leukemia: A Novel Mechanism of BCR-ABL1-Independent Disease Progression, Neoplasia, vol.14, issue.7, pp.572-584, 2012.
DOI : 10.1593/neo.12724

K. B. Lee, Clinical implications of angiogenic factors in patients with acute or chronic leukemia: Hepatocyte growth factor levels have prognostic impact, especially in patients with acute myeloid leukemia, Leuk. Lymphoma, vol.46, pp.885-891, 2005.

W. Jiang, S. Hiscox, K. Matsumoto, and T. Nakamura, Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer, Critical Reviews in Oncology/Hematology, vol.29, issue.3, pp.209-248, 1999.
DOI : 10.1016/S1040-8428(98)00019-5

C. Ponzetto, A. Bardelli, F. Maina, P. Longati, G. Panayotou et al., A novel recognition motif for phosphatidylinositol 3-kinase binding mediates its association with the hepatocyte growth factor/scatter factor receptor., Molecular and Cellular Biology, vol.13, issue.8, pp.4600-4608, 1993.
DOI : 10.1128/MCB.13.8.4600

E. Gherardi, W. Birchmeier, C. Birchmeier, and G. Vande-woude, Targeting MET in cancer: rationale and progress, Nature Reviews Cancer, vol.15, issue.2, pp.89-103, 2012.
DOI : 10.1038/nrc3205

L. Toschi and P. A. Jä-nne, Single-Agent and Combination Therapeutic Strategies to Inhibit Hepatocyte Growth Factor/MET Signaling in Cancer, Clinical Cancer Research, vol.14, issue.19, pp.5941-5946, 2008.
DOI : 10.1158/1078-0432.CCR-08-0071

C. Ponzetto, A. Bardelli, Z. Zhen, F. Maina, P. Dalla-zonca et al., A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family, Cell, vol.77, issue.2, pp.261-271, 1994.
DOI : 10.1016/0092-8674(94)90318-2

K. M. Weidner, S. Di-cesare, M. Sachs, V. Brinkmann, J. Behrens et al., Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis, Nature, vol.384, issue.6605, pp.173-176, 1996.
DOI : 10.1038/384173a0

E. D. Fixman, T. M. Fournier, D. M. Kamikura, M. A. Naujokas, and M. Park, Pathways downstream of Shc and Grb2 are required for cell transformation by the tpr-Met oncoprotein, J. Biol. Chem, vol.271, pp.13116-13122, 1996.

C. Boccaccio, M. Andò, L. Tamagnone, A. Bardelli, P. Michieli et al., Induction of epithelial tubules by growth factor HGF depends on the STAT pathway, Nature, vol.391, issue.6664, pp.285-288, 1998.
DOI : 10.1038/34657

S. Sipeki, E. Bander, L. Buday, G. Farkas, E. Bá-csy et al., Phosphatidylinositol 3-kinase contributes to Erk1/Erk2 MAP kinase activation associated with hepatocyte growth factor-induced cell scattering. Cell Signal, pp.885-890, 1999.

C. R. Maroun, M. Holgado-madruga, I. Royal, M. A. Naujokas, T. M. Fournier et al., The Gab1 PH Domain Is Required for Localization of Gab1 at Sites of Cell-Cell Contact and Epithelial Morphogenesis Downstream from the Met Receptor Tyrosine Kinase, Molecular and Cellular Biology, vol.19, issue.3, pp.1784-1799, 1999.
DOI : 10.1128/MCB.19.3.1784

C. R. Maroun, M. A. Naujokas, M. Holgado-madruga, A. J. Wong, and M. Park, The Tyrosine Phosphatase SHP-2 Is Required for Sustained Activation of Extracellular Signal-Regulated Kinase and Epithelial Morphogenesis Downstream from the Met Receptor Tyrosine Kinase, Molecular and Cellular Biology, vol.20, issue.22, pp.8513-8525, 2000.
DOI : 10.1128/MCB.20.22.8513-8525.2000

M. Müller, A. Morotti, and C. Ponzetto, Activation of NF-??B Is Essential for Hepatocyte Growth Factor-Mediated Proliferation and Tubulogenesis, Molecular and Cellular Biology, vol.22, issue.4, pp.1060-1072, 2002.
DOI : 10.1128/MCB.22.4.1060-1072.2002

B. R. Son, L. A. Marquez-curtis, M. Kucia, M. Wysoczynski, A. R. Turner et al., Migration of Bone Marrow and Cord Blood Mesenchymal Stem Cells In Vitro Is Regulated by Stromal-Derived Factor-1-CXCR4 and Hepatocyte Growth Factor-c-met Axes and Involves Matrix Metalloproteinases, Stem Cells, vol.276, issue.5, pp.1254-1264, 2006.
DOI : 10.1634/stemcells.2005-0271

P. Peschard and M. Park, Escape from Cbl-mediated downregulation, Cancer Cell, vol.3, issue.6, pp.519-523, 2003.
DOI : 10.1016/S1535-6108(03)00136-3

URL : http://doi.org/10.1016/s1535-6108(03)00136-3

D. Tulasne, J. Deheuninck, F. C. Lourenco, F. Lamballe, Z. Ji et al., Proapoptotic Function of the MET Tyrosine Kinase Receptor through Caspase Cleavage, Molecular and Cellular Biology, vol.24, issue.23, pp.10328-10339, 2004.
DOI : 10.1128/MCB.24.23.10328-10339.2004

URL : https://hal.archives-ouvertes.fr/hal-00311369

L. Trusolino, A. Bertotti, and P. M. Comoglio, MET signalling: principles and functions in development, organ regeneration and cancer, Nature Reviews Molecular Cell Biology, vol.98, issue.12, pp.834-848, 2010.
DOI : 10.1038/nrm3012

A. Jalili, N. Shirvaikar, L. A. Marquez-curtis, and A. R. Turner, The HGF/c-Met Axis Synergizes with G-CSF in the Mobilization of Hematopoietic Stem/Progenitor Cells, Stem Cells and Development, vol.19, issue.8, pp.1143-1151, 2010.
DOI : 10.1089/scd.2009.0376

T. Nakamura and S. Mizuno, The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine, Proceedings of the Japan Academy, Series B, vol.86, issue.6, pp.588-610, 2010.
DOI : 10.2183/pjab.86.588

A. Bernet and P. Mehlen, Dependence receptors: When apoptosis controls tumor progression, Bull. Cancer, vol.94, pp.12-17, 2007.

C. Kopitz, M. Gerg, O. R. Bandapalli, D. Ister, C. J. Pennington et al., Tissue Inhibitor of Metalloproteinases-1 Promotes Liver Metastasis by Induction of Hepatocyte Growth Factor Signaling, Cancer Research, vol.67, issue.18, pp.8615-8623, 2007.
DOI : 10.1158/0008-5472.CAN-07-0232

N. Shinomiya, C. F. Gao, Q. Xie, M. Gustafson, D. J. Waters et al., RNA Interference Reveals that Ligand-Independent Met Activity Is Required for Tumor Cell Signaling and Survival, Cancer Research, vol.64, issue.21, pp.7962-7970, 2004.
DOI : 10.1158/0008-5472.CAN-04-1043

M. Z. Ratajczak, W. Marlicz, J. Ratajczak, M. Wasik, B. Machalinski et al., Effect of hepatocyte growth factor on early human haemopoietic cell development, British Journal of Haematology, vol.99, issue.1, pp.228-236, 1997.
DOI : 10.1046/j.1365-2141.1997.3563170.x

R. Gong, Multi-target anti-inflammatory action of hepatocyte growth factor, Curr. Opin. Investig. Drugs, vol.9, pp.1163-1170, 2008.

Y. Ohda, K. Hori, T. Tomita, N. Hida, T. Kosaka et al., Effects of Hepatocyte Growth Factor on Rat Inflammatory Bowel Disease Models, Digestive Diseases and Sciences, vol.113, issue.5, pp.914-921, 2005.
DOI : 10.1007/s10620-005-2664-z

H. Kusunoki, Y. Taniyama, R. Otsu, H. Rakugi, and R. Morishita, Anti-inflammatory effects of hepatocyte growth factor on the vicious cycle of macrophages and adipocytes, Hypertension Research, vol.153, issue.6, pp.500-506, 2014.
DOI : 10.1038/hr.2014.41

L. Wang, Y. Xu, Q. Yu, Q. Sun, Y. Xu et al., H-RN, a novel antiangiogenic peptide derived from hepatocyte growth factor inhibits inflammation in vitro and in vivo through PI3K/AKT/IKK/NF-??B signal pathway, Biochemical Pharmacology, vol.89, issue.2, pp.255-265, 2014.
DOI : 10.1016/j.bcp.2014.02.026

L. Bousse-kerdilè-s, M. C. Martyré, M. C. Samson, and M. , Cellular and molecular mechanisms underlying bone marrow and liver fibrosis: A review, Eur. Cytokine Netw, vol.19, pp.69-80, 2008.

H. C. Hasselbalch, The role of cytokines in the initiation and progression of myelofibrosis, Cytokine & Growth Factor Reviews, vol.24, issue.2, pp.133-145, 2013.
DOI : 10.1016/j.cytogfr.2013.01.004

A. Pardanani, C. Finke, R. A. Abdelrahman, T. L. Lasho, and A. Tefferi, Associations and prognostic interactions between circulating levels of hepcidin, ferritin and inflammatory cytokines in primary myelofibrosis, American Journal of Hematology, vol.114, issue.4, pp.312-316, 2013.
DOI : 10.1002/ajh.23406

T. Barbui, A. Carobbio, G. Finazzi, A. M. Vannucchi, G. Barosi et al., Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3, Haematologica, vol.96, issue.2, pp.315-318, 2011.
DOI : 10.3324/haematol.2010.031070

H. C. Hasselbalch, Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer?, Blood, vol.119, issue.14, pp.3219-3225, 2012.
DOI : 10.1182/blood-2011-11-394775

V. Skov, T. S. Larsen, M. Thomassen, C. H. Riley, M. K. Jensen et al., Molecular profiling of peripheral blood cells from patients with polycythemia vera and related neoplasms: Identification of deregulated genes of significance for inflammation and immune surveillance, Leukemia Research, vol.36, issue.11, pp.1387-1392, 2012.
DOI : 10.1016/j.leukres.2012.07.009

H. C. Hasselbalch, Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?, Leukemia Research, vol.37, issue.2, pp.214-220, 2013.
DOI : 10.1016/j.leukres.2012.10.020

A. Tefferi, J. Thiele, and J. W. Vardiman, The 2008 World Health Organization classification system for myeloproliferative neoplasms, Cancer, vol.22, issue.17, pp.3842-3847, 2009.
DOI : 10.1002/cncr.24440

J. Groffen, J. R. Stephenson, N. Heisterkamp, A. De-klein, C. R. Bartram et al., Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22, Cell, vol.36, issue.1, pp.93-99, 1984.
DOI : 10.1016/0092-8674(84)90077-1

C. James, V. Ugo, J. P. Le-coué-dic, J. Staerk, F. Delhommeau et al., A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, Nature, vol.100, issue.7037, pp.1144-1148, 2005.
DOI : 10.1182/blood-2002-09-2839

R. Kralovics, F. Passamonti, A. S. Buser, S. S. Teo, R. Tiedt et al., in Myeloproliferative Disorders, New England Journal of Medicine, vol.352, issue.17, pp.1779-1790, 2005.
DOI : 10.1056/NEJMoa051113

Y. Pikman, B. H. Lee, T. Mercher, E. Mcdowell, B. L. Ebert et al., MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia, PLoS Medicine, vol.102, issue.7, p.270, 2006.
DOI : 10.1371/journal.pmed.0030270.st001

L. M. Scott, W. Tong, R. L. Levine, M. A. Scott, P. A. Beer et al., Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis, JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis, pp.459-468, 2007.
DOI : 10.1056/NEJMoa065202

S. Schnittger, U. Bacher, C. Haferlach, D. Beelen, P. Bojko et al., Characterization of 35 new cases with four different MPLW515 mutations and essential thrombocytosis or primary myelofibrosis, Haematologica, vol.94, issue.1, pp.141-144, 2009.
DOI : 10.3324/haematol.13224

T. Klampfl, H. Gisslinger, A. S. Harutyunyan, H. Nivarthi, E. Rumi et al., Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms, New England Journal of Medicine, vol.369, issue.25, pp.2379-2390, 2013.
DOI : 10.1056/NEJMoa1311347

E. Lippert, M. Boissinot, R. Kralovics, F. Girodon, I. Dobo et al., The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera, Blood, vol.108, issue.6, pp.1865-1867, 2006.
DOI : 10.1182/blood-2006-01-013540

C. Cleyrat, J. Jelinek, F. Girodon, M. Boissinot, T. Ponge et al., JAK2 mutation and disease phenotype: a double L611V/V617F in cis mutation of JAK2 is associated with isolated erythrocytosis and increased activation of AKT and ERK1/2 rather than STAT5, Leukemia, vol.24, issue.5, pp.1069-1073, 2010.
DOI : 10.3324/haematol.13081

A. L. Petzer, C. J. Eaves, P. M. Lansdorp, L. Ponchio, M. J. Barnett et al., Characterization of primitive subpopulations of normal and leukemic cells present in the blood of patients with newly diagnosed as well as established chronic myeloid leukemia, Blood, vol.88, pp.2162-2171, 1996.

G. Q. Daley and D. Baltimore, Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein., Proc. Natl. Acad. Sci, pp.9312-9316, 1988.
DOI : 10.1073/pnas.85.23.9312

J. H. Kabarowski, P. B. Allen, and L. M. Wiedemann, A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells, EMBO J, vol.13, pp.5887-5895, 1994.

L. Puil, J. Liu, G. Gish, G. Mbamalu, D. Bowtell et al., Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway, EMBO J, vol.13, pp.764-773, 1994.

A. Bedi, B. A. Zehnbauer, J. P. Barber, S. J. Sharkis, and R. J. Jones, Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia, Blood, vol.83, pp.2038-2044, 1994.

R. Salgia, E. Pisick, M. Sattler, J. L. Li, N. Uemura et al., p130CAS Forms a Signaling Complex with the Adapter Protein CRKL in Hematopoietic Cells Transformed by the BCR/ABL Oncogene, Journal of Biological Chemistry, vol.271, issue.41, pp.25198-25203, 1996.
DOI : 10.1074/jbc.271.41.25198

D. Perrotti, C. Jamieson, J. Goldman, and T. Skorski, Chronic myeloid leukemia: mechanisms of blastic transformation, Journal of Clinical Investigation, vol.120, issue.7, pp.2254-2264, 2010.
DOI : 10.1172/JCI41246

B. J. Druker, M. Talpaz, D. J. Resta, B. Peng, E. Buchdunger et al., Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia, New England Journal of Medicine, vol.344, issue.14, pp.1031-1037, 2001.
DOI : 10.1056/NEJM200104053441401

S. Okoli and C. Harrison, Emerging treatments for essential thrombocythemia, J. Blood Med, vol.2, pp.151-159, 2011.

H. Vaquez, Sur une forme spéciale de cyanose s'accompagnant d'hyperglobulie excessive et persistante (In French), ) 1892, pp.384-388

W. Osler, CHRONIC CYANOSIS, WITH POLYCYTH??MIA AND ENLARGED SPLEEN, The American Journal of the Medical Sciences, vol.126, issue.2, pp.411-417, 2008.
DOI : 10.1097/00000441-190308000-00001

C. Butcher and R. J. Andrea, Molecular aspects of polycythemia vera (review)., International Journal of Molecular Medicine, vol.6, pp.243-252, 2000.
DOI : 10.3892/ijmm.6.3.243

A. Tefferi, Pathogenesis of Myelofibrosis With Myeloid Metaplasia, Journal of Clinical Oncology, vol.23, issue.33, pp.8520-8530, 2008.
DOI : 10.1200/JCO.2004.00.9316

S. Verstovsek, R. A. Mesa, J. Gotlib, R. S. Levy, V. Gupta et al., A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis, New England Journal of Medicine, vol.366, issue.9, pp.799-807, 2012.
DOI : 10.1056/NEJMoa1110557

C. Harrison, J. J. Kiladjian, H. K. Ali, H. Gisslinger, R. Waltzman et al., JAK Inhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis, New England Journal of Medicine, vol.366, issue.9, pp.787-798, 2012.
DOI : 10.1056/NEJMoa1110556

M. Murakami, S. Dirnhofer, K. U. Wagner, and T. Radimerski, Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2-V617F polycythemia vera mouse model, Blood, vol.121, pp.1188-1199, 2013.

S. Verstovsek, F. Passamonti, A. Rambaldi, G. Barosi, P. J. Rosen et al., A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea, Cancer, vol.86, issue.4, pp.513-520, 2014.
DOI : 10.1002/cncr.28441

A. Guerci and B. Varet, Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: The prospective, multicentre Stop Imatinib (STIM) trial, Lancet. Oncol, vol.11, pp.1029-1035, 2010.

P. Rousselot, A. Charbonnier, P. Cony-makhoul, P. Agape, F. E. Nicolini et al., Loss of Major Molecular Response As a Trigger for Restarting Tyrosine Kinase Inhibitor Therapy in Patients With Chronic-Phase Chronic Myelogenous Leukemia Who Have Stopped Imatinib After Durable Undetectable Disease, Journal of Clinical Oncology, vol.32, issue.5, pp.424-430, 2014.
DOI : 10.1200/JCO.2012.48.5797

M. E. Gorre, M. Mohammed, K. Ellwood, N. Hsu, R. Paquette et al., Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification, Science, vol.293, issue.5531, pp.876-880, 2001.
DOI : 10.1126/science.1062538

K. Inokuchi, H. Yamaguchi, M. Tarusawa, M. Futaki, H. Hanawa et al., Abnormality of c-kit oncoprotein in certain patients with chronic myelogenous leukemia ??? potential clinical significance, Leukemia, vol.16, issue.2, pp.170-177, 2002.
DOI : 10.1038/sj.leu.2402341

R. Tiedt, E. Degenkolbe, P. Furet, B. A. Appleton, S. Wagner et al., A Drug Resistance Screen Using a Selective MET Inhibitor Reveals a Spectrum of Mutations That Partially Overlap with Activating Mutations Found in Cancer Patients, Cancer Research, vol.71, issue.15, pp.5255-5264, 2011.
DOI : 10.1158/0008-5472.CAN-10-4433

D. L. White, V. A. Saunders, P. Dang, J. Engler, A. C. Zannettino et al., OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib, Blood, vol.108, issue.2, pp.697-704, 2006.
DOI : 10.1182/blood-2005-11-4687

B. Zhang, A. C. Strauss, S. Chu, M. Li, Y. Ho et al., Effective Targeting of Quiescent Chronic Myelogenous Leukemia Stem Cells by Histone Deacetylase Inhibitors in Combination with Imatinib Mesylate, Cancer Cell, vol.17, issue.5, pp.427-442, 2010.
DOI : 10.1016/j.ccr.2010.03.011

S. Okabe, T. Tauchi, S. Katagiri, Y. Tanaka, and K. Ohyashiki, Combination of the ABL kinase inhibitor imatinib with the Janus kinase 2 inhibitor TG101348 for targeting residual BCR-ABL-positive cells, Journal of Hematology & Oncology, vol.7, issue.1, pp.10-1186, 2014.
DOI : 10.1016/j.bbrc.2013.05.022

K. Beider, M. Darash-yahana, O. Blaier, M. Koren-michowitz, M. Abraham et al., Combination of Imatinib with CXCR4 Antagonist BKT140 Overcomes the Protective Effect of Stroma and Targets CML In Vitro and In Vivo, Molecular Cancer Therapeutics, vol.13, issue.5, pp.1155-1169, 2014.
DOI : 10.1158/1535-7163.MCT-13-0410

L. J. Crawford, E. T. Chan, M. Aujay, T. L. Holyoake, J. V. Melo et al., Synergistic effects of proteasome inhibitor carfilzomib in combination with tyrosine kinase inhibitors in imatinib-sensitive and -resistant chronic myeloid leukemia models, Oncogenesis, vol.89, issue.3, p.90, 2014.
DOI : 10.1016/0065-2571(84)90007-4

B. Simonsson, T. Gedde-dahl, B. Markevä-rn, K. Remes, J. Stentoft et al., Combination of pegylated IFN-??2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia, Blood, vol.118, issue.12, pp.3228-3235, 2011.
DOI : 10.1182/blood-2011-02-336685

I. S. Weimar, N. Miranda, E. J. Muller, A. Hekman, J. M. Kerst et al., Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+), Exp. Hematol, vol.26, pp.885-894, 1998.

Y. Matsuda-hashii and K. Takai, Hepatocyte growth factor plays roles in the induction and autocrine maintenance of bone marrow stromal cell IL-11, SDF-1??, and stem cell factor, Experimental Hematology, vol.32, issue.10, pp.955-961, 2004.
DOI : 10.1016/j.exphem.2004.06.012

M. Hino and M. Inaba, Hepatocyte growth factor levels in bone marrow plasma of patients with leukaemia and its gene expression in leukaemic blast cells, British Journal of Cancer, vol.73, issue.1, pp.119-123, 1996.
DOI : 10.1038/bjc.1996.22

I. S. Weimar and C. Voermans, Hepatocyte growth factor/scatter factor (HGF/SF) affects proliferation and migration of myeloid leukemic cells, Leukemia, vol.12, issue.8, pp.1195-1203, 1998.
DOI : 10.1038/sj.leu.2401080

M. Børset and C. Seidel, The Role of Hepatocyte Growth Factor and its Receptor C-Met in Multiple Myeloma and Other Blood Malignancies, Leukemia & Lymphoma, vol.150, issue.3-4, pp.249-256, 1999.
DOI : 10.1111/j.1365-2141.1994.tb08304.x

A. Kentsis and C. Reed, Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia, Nature Medicine, vol.62, issue.7, pp.1118-1122, 2012.
DOI : 10.1016/S1535-6108(03)00003-5

S. Verstovsek, H. Kantarjian, E. Estey, A. Aguayo, F. J. Giles et al., Plasma hepatocyte growth factor is a prognostic factor in patients with acute myeloid leukemia but not in patients with myelodysplastic syndrome, Leukemia, vol.15, issue.8, pp.1165-1170, 2001.
DOI : 10.1038/sj.leu.2402182

M. Z. Ratajczak, Bcr-abl-positive cells secrete angiogenic factors including matrix metalloproteinases and stimulate angiogenesis in vivo in Matrigel implants, Leukemia, vol.16, pp.1160-1166, 2002.

D. Mahadevan, J. Dimento, K. D. Croce, C. Riley, B. George et al., Transcriptosome and serum cytokine profiling of an atypical case of myelodysplastic syndrome with progression to acute myelogenous leukemia, American Journal of Hematology, vol.276, issue.10, pp.779-786, 2006.
DOI : 10.1002/ajh.20690

A. Tefferi, R. Vaidya, D. Caramazza, C. Finke, T. Lasho et al., Circulating Interleukin (IL)-8, IL-2R, IL-12, and IL-15 Levels Are Independently Prognostic in Primary Myelofibrosis: A Comprehensive Cytokine Profiling Study, Journal of Clinical Oncology, vol.29, issue.10, pp.1356-1363, 2011.
DOI : 10.1200/JCO.2010.32.9490

R. Vaidya, N. Gangat, T. Jimma, C. M. Finke, T. L. Lasho et al., Plasma cytokines in polycythemia vera: Phenotypic correlates, prognostic relevance, and comparison with myelofibrosis, American Journal of Hematology, vol.117, issue.11, pp.1003-1005, 2012.
DOI : 10.1002/ajh.23295

E. Pourcelot, C. Trocme, J. Mondet, S. Bailly, B. Toussaint et al., Cytokine profiles in polycythemia vera and essential thrombocythemia patients: Clinical implications, Experimental Hematology, vol.42, issue.5, pp.360-368, 2014.
DOI : 10.1016/j.exphem.2014.01.006

URL : https://hal.archives-ouvertes.fr/hal-00949162

B. L. Yen, M. L. Yen, P. J. Hsu, K. J. Liu, C. J. Wang et al., Multipotent Human Mesenchymal Stromal Cells Mediate Expansion of Myeloid-Derived Suppressor Cells via Hepatocyte Growth Factor/c-Met and??STAT3, Met and STAT3. Stem Cell Reports, pp.139-151, 2013.
DOI : 10.1016/j.stemcr.2013.06.006

C. R. Maroun and T. Rowlands, The Met receptor tyrosine kinase: A key player in oncogenesis and drug resistance, Pharmacology & Therapeutics, vol.142, issue.3, pp.316-338, 2014.
DOI : 10.1016/j.pharmthera.2013.12.014

S. Pennacchietti, P. Michieli, M. Galluzzo, M. Mazzone, S. Giordano et al., Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene, Cancer Cell, vol.3, issue.4, pp.347-361, 2003.
DOI : 10.1016/S1535-6108(03)00085-0

H. Liang, S. O-'reilly, Y. Liu, R. Abounader, J. Laterra et al., Sp1 regulates expression of MET, and ribozyme-induced down-regulation of MET in fibrosarcoma-derived human cells reduces or eliminates their tumorigenicity, International Journal of Oncology, vol.24, pp.1057-1067, 2004.
DOI : 10.3892/ijo.24.5.1057

G. Gambarotta, C. Boccaccio, S. Giordano, M. And?, M. C. Stella et al., Ets up-regulates MET transcription, Oncogene, vol.13, pp.1911-1917, 1996.

C. Migliore, V. Martin, V. P. Leoni, A. Restivo, L. Atzori et al., MiR-1 Downregulation Cooperates with MACC1 in Promoting MET Overexpression in Human Colon Cancer, Clinical Cancer Research, vol.18, issue.3, pp.737-747, 2012.
DOI : 10.1158/1078-0432.CCR-11-1699

D. C. Corney, C. I. Hwang, A. Matoso, M. Vogt, A. Flesken-nikitin et al., Frequent Downregulation of miR-34 Family in Human Ovarian Cancers, Clinical Cancer Research, vol.16, issue.4, pp.1119-1128, 2010.
DOI : 10.1158/1078-0432.CCR-09-2642

W. Luo, B. Huang, Z. Li, H. Li, L. Sun et al., MicroRNA-449a Is Downregulated in Non-Small Cell Lung Cancer and Inhibits Migration and Invasion by Targeting c-Met, PLoS ONE, vol.18, issue.5, p.64759, 2013.
DOI : 10.1371/journal.pone.0064759.s003

S. Patanè, S. Avnet, N. Coltella, B. Costa, S. Sponza et al., MET Overexpression Turns Human Primary Osteoblasts into Osteosarcomas, Cancer Research, vol.66, issue.9, pp.4750-4757, 2006.
DOI : 10.1158/0008-5472.CAN-05-4422

P. Giannoni, S. Scaglione, R. Quarto, R. Narcisi, M. Parodi et al., An interaction between hepatocyte growth factor and its receptor (c-MET) prolongs the survival of chronic lymphocytic leukemic cells through STAT3 phosphorylation: a potential role of mesenchymal cells in the disease, Haematologica, vol.96, issue.7, pp.1015-1023, 2011.
DOI : 10.3324/haematol.2010.029736

J. Mellado-gil, T. C. Rosa, C. Demirci, J. A. Gonzalez-pertusa, S. Velazquez-garcia et al., Disruption of Hepatocyte Growth Factor/c-Met Signaling Enhances Pancreatic ??-Cell Death and Accelerates the Onset of Diabetes, Diabetes, vol.60, issue.2, pp.525-536, 2011.
DOI : 10.2337/db09-1305

G. M. Coudriet, J. He, M. Trucco, W. M. Mars, and J. D. Piganelli, Hepatocyte Growth Factor Modulates Interleukin-6 Production in Bone Marrow Derived Macrophages: Implications for Inflammatory Mediated Diseases, PLoS ONE, vol.36, issue.11, p.15384, 2010.
DOI : 10.1371/journal.pone.0015384.g007

H. Wang, Y. F. Yang, L. Zhao, F. J. Xiao, Q. W. Zhang et al., Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Reduce Radiation-Induced Lung Injury, Human Gene Therapy, vol.24, issue.3, pp.343-353
DOI : 10.1089/hum.2012.177

Y. Cao, T. Luetkens, S. Kobold, Y. Hildebrandt, M. Gordic et al., The cytokine/chemokine pattern in the bone marrow environment of multiple myeloma patients, Experimental Hematology, vol.38, issue.10, pp.860-867, 2010.
DOI : 10.1016/j.exphem.2010.06.012

H. Hov, E. Tian, T. Holien, R. U. Holt, T. K. Vå-tsveen et al., c-Met signaling promotes IL-6-induced myeloma cell proliferation, European Journal of Haematology, vol.163, issue.4, pp.277-287, 2009.
DOI : 10.1111/j.1600-0609.2009.01212.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2704927

K. Krasagakis, C. Garbe, C. C. Zouboulis, and C. Orfanos, Growth control of melanoma cells and melanocytes by cytokines. Recent Results Cancer Res, pp.169-182, 1995.

G. Hoermann, S. Cerny-reiterer, H. Herrmann, K. Blatt, M. Bilban et al., Identification of oncostatin M as a JAK2V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms, FASEB J. 2012, vol.26, pp.894-906

R. Kralovics, S. S. Teo, S. Li, A. Theocharides, A. S. Buser et al., Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders, Blood, vol.108, issue.4, pp.1377-1380, 2006.
DOI : 10.1182/blood-2005-11-009605

R. H. Nussenzveig, S. I. Swierczek, J. Jelinek, A. Gaikwad, E. Liu et al., Polycythemia vera is not initiated by JAK2V617F mutation, Experimental Hematology, vol.35, issue.1, pp.32-38, 2007.
DOI : 10.1016/j.exphem.2006.11.012

F. X. Schaub, R. Jä-ger, R. Looser, H. Hao-shen, S. Hermouet et al., Clonal analysis of deletions on chromosome 20q and JAK2-V617F in MPD suggests that del20q acts independently and is not one of the predisposing mutations for JAK2-V617F, Blood, vol.113, issue.9, pp.2022-2027, 2009.
DOI : 10.1182/blood-2008-07-167056

F. X. Schaub, R. Looser, S. Li, H. Hao-shen, T. Lehmann et al., Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms, Blood, vol.115, issue.10, 2003.
DOI : 10.1182/blood-2009-09-245381

M. Vilaine, D. Olcaydu, A. Harutyunyan, J. Bergeman, M. Tiab et al., Homologous recombination of wild-type JAK2, a novel early step in the development of myeloproliferative neoplasm, Blood, vol.118, issue.24, pp.6468-6470, 2011.
DOI : 10.1182/blood-2011-08-372813

H. Hjorth-hansen, C. Seidel, J. Lamvik, M. Börset, A. Sundan et al., Elevated serum concentrations of hepatocyte growth factor in acute myelocytic leukaemia, European Journal of Haematology, vol.91, issue.2, pp.129-134, 1999.
DOI : 10.1111/j.1600-0609.1999.tb01733.x

M. Jücker, A. Günther, G. Gradl, C. Fonatsch, G. Krueger et al., The Met/Hepatocyte growth factor receptor (HGFR) gene is overexpressed in some cases of human leukemia and lymphoma, Leukemia Research, vol.18, issue.1, pp.7-16, 1994.
DOI : 10.1016/0145-2126(94)90003-5

P. Lundberg, A. Karow, R. Nienhold, R. Looser, H. Hao-shen et al., Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms, Blood, vol.123, issue.14, pp.2220-2228, 2014.
DOI : 10.1182/blood-2013-11-537167

J. W. Tyner, L. B. Fletcher, E. Q. Wang, W. F. Yang, M. L. Rutenberg-schoenberg et al., MET Receptor Sequence Variants R970C and T992I Lack Transforming Capacity, Cancer Research, vol.70, issue.15, pp.6233-6237, 2010.
DOI : 10.1158/0008-5472.CAN-10-0429

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913476

C. Boccaccio and P. M. Comoglio, Invasive growth: a MET-driven genetic programme for cancer and stem cells, Nature Reviews Cancer, vol.16, issue.8, pp.637-645, 2006.
DOI : 10.1038/nrc1912

J. Roman-gomez, A. Jimenez-velasco, X. Agirre, F. Cervantes, J. Sanchez et al., Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia, Oncogene, vol.159, issue.48, pp.7213-7236, 2005.
DOI : 10.1093/nar/29.21.4493

T. H. Brümmendorf, T. L. Holyoake, N. Rufer, M. J. Barnett, M. Schulzer et al., Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry, Blood, vol.95, pp.1883-1890, 2000.

M. Drummond, A. Lennard, T. Brûmmendorf, and T. Holyoake, Telomere Shortening Correlates with Prognostic Score at Diagnosis and Proceeds Rapidly during Progression of Chronic Myeloid Leukemia, Leukemia & Lymphoma, vol.45, issue.9, pp.1775-1781, 2004.
DOI : 10.1080/10428190410001693542

M. Braig, N. Pä-llmann, M. Preukschas, D. Steinemann, W. Hofmann et al., A ???telomere-associated secretory phenotype??? cooperates with BCR-ABL to drive malignant proliferation of leukemic cells, Leukemia, vol.51, issue.10, 2014.
DOI : 10.1038/leu.2014.95

W. Berkofsky-fessler, M. Buzzai, M. K. Kim, S. Fruchtman, V. Najfeld et al., Transcriptional Profiling of Polycythemia Vera Identifies Gene Expression Patterns Both Dependent and Independent from the Action of JAK2V617F, Clinical Cancer Research, vol.16, issue.17, pp.4339-4352, 2010.
DOI : 10.1158/1078-0432.CCR-10-1092

S. Singbrant, M. Wall, J. Moody, G. Karlsson, A. M. Chalk et al., The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease, Haematologica, vol.99, issue.4, pp.647-655, 2013.
DOI : 10.3324/haematol.2013.093971

L. J. Mortensen, C. Alt, and R. Turcotte, Direct measurement of local oxygen concentration in the bone marrow of live animals, Nature, vol.508, pp.269-273, 2014.

L. Tacchini, P. Dansi, E. Matteucci, and M. A. Desiderio, Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells, Carcinogenesis, vol.22, issue.9, pp.1363-1371, 2001.
DOI : 10.1093/carcin/22.9.1363

Y. Kitajima, T. Ide, T. Ohtsuka, and K. Miyazaki, Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer, Cancer Science, vol.8, issue.7, pp.1341-1347, 2008.
DOI : 10.1210/en.2005-0416

H. Zhang, H. Li, H. S. Xi, and S. Li, HIF1?? is required for survival maintenance of chronic myeloid leukemia stem cells, Blood, vol.119, issue.11, pp.2595-2607, 2012.
DOI : 10.1182/blood-2011-10-387381

C. T. Taylor and E. P. Cummins, The role of NF-kappaB in hypoxia-induced gene expression, Ann. NY Acad. Sci, pp.1177-178, 2009.

C. Culver, A. Sundqvist, S. Mudie, A. Melvin, D. Xirodimas et al., Mechanism of Hypoxia-Induced NF-??B, Molecular and Cellular Biology, vol.30, issue.20, pp.4901-4921, 2010.
DOI : 10.1128/MCB.00409-10

P. Van-uden, N. S. Kenneth, and S. Rocha, Regulation of hypoxia-inducible factor-1?? by NF-??B, Biochemical Journal, vol.412, issue.3, pp.477-484, 2008.
DOI : 10.1042/BJ20080476

J. Y. Dai, M. C. Defrances, C. Zou, C. J. Johnson, and R. Zarnegar, The Met protooncogene is a transcriptional target of NFkappaB: Implications for cell survival, Journal of Cellular Biochemistry, vol.13, issue.6, pp.1222-1236, 2009.
DOI : 10.1002/jcb.22226

R. Gong, A. Rifai, Y. Ge, S. Chen, and L. D. Dworkin, Hepatocyte Growth Factor Suppresses Proinflammatory NF??B Activation through GSK3?? Inactivation in Renal Tubular Epithelial Cells, Journal of Biological Chemistry, vol.283, issue.12, pp.7401-7410, 2008.
DOI : 10.1074/jbc.M710396200

C. Seidel, M. Borset, I. Turesson, N. Abildgaard, A. Sundan et al., Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group, Blood, vol.91, pp.806-812, 1998.

M. Borset, H. Hjorth-hansen, A. Waage, and A. Sundan, Hepatocyte growth factor and its receptor c-Met in multiple myeloma, Blood, vol.88, pp.3998-4004, 1996.

. Van-andel-institute, Available online: http://www.vai.org/metinhibitors (accessed on 10, 2014.

. Van-andel-institute, Available online: http://www.vai.org/metclinicaltrials (accessed on 10, 2014.

S. Peters and A. A. Adjei, MET: a promising anticancer therapeutic target, Nature Reviews Clinical Oncology, vol.29, issue.6, pp.314-326
DOI : 10.1038/nrclinonc.2012.71

T. L. Underiner, T. Herbertz, and S. J. Miknyoczki, Discovery of Small Molecule c-Met Inhibitors: Evolution and Profiles of Clinical Candidates, Anti-Cancer Agents in Medicinal Chemistry, vol.10, issue.1, pp.7-27, 2010.
DOI : 10.2174/1871520611009010007

F. Frasca, P. Vigneri, V. Vella, R. Vigneri, and J. Wang, Tyrosine kinase inhibitor STI571 enhances thyroid cancer cell motile response to Hepatocyte Growth Factor, Oncogene, vol.20, issue.29, pp.3845-3856, 2001.
DOI : 10.1038/sj.onc.1204531

A. Furlan, V. Stagni, A. Hussain, S. Richelme, F. Conti et al., Abl interconnects oncogenic Met and p53 core pathways in cancer cells, Cell Death and Differentiation, vol.14, issue.10, pp.1608-1616, 2011.
DOI : 10.1038/cdd.2011.23

URL : https://hal.archives-ouvertes.fr/hal-00628278

T. Burgess, A. Coxon, S. Meyer, J. Sun, K. Rex et al., Fully Human Monoclonal Antibodies to Hepatocyte Growth Factor with Therapeutic Potential against Hepatocyte Growth Factor/c-Met-Dependent Human Tumors, Cancer Research, vol.66, issue.3, pp.1721-1729, 2006.
DOI : 10.1158/0008-5472.CAN-05-3329

S. A. Greenall, E. Gherardi, Z. Liu, J. F. Donoghue, A. A. Vitali et al., Non-Agonistic Bivalent Antibodies That Promote c-MET Degradation and Inhibit Tumor Growth and Others Specific for Tumor Related c-MET, PLoS ONE, vol.106, issue.Pt 2, p.34658, 2012.
DOI : 10.1371/journal.pone.0034658.s003

T. Baade-rø, Anti-c-MET nanobody?a new potential drug in multiple myeloma treatment, Eur. J. Haematol, vol.91, pp.399-410, 2013.

A. A. Adjei, B. Schwartz, and E. Garmey, Early Clinical Development of ARQ 197, a Selective, Non-ATP-Competitive Inhibitor Targeting MET Tyrosine Kinase for the Treatment of Advanced Cancers, The Oncologist, vol.16, issue.6, pp.788-799, 2011.
DOI : 10.1634/theoncologist.2010-0380

C. Fialin, C. Larrue, F. Vergez, J. E. Sarry, S. Bertoli et al., The short form of RON is expressed in acute myeloid leukemia and sensitizes leukemic cells to cMET inhibitors, Leukemia, vol.156, issue.2, pp.325-335, 2013.
DOI : 10.1182/blood-2010-10-313692

H. Hov, R. U. Holt, T. B. Rø, U. M. Fagerli, H. Hjorth-hansen et al., A Selective c-Met Inhibitor Blocks an Autocrine Hepatocyte Growth Factor Growth Loop in ANBL-6 Cells and Prevents Migration and Adhesion of Myeloma Cells, Clinical Cancer Research, vol.10, issue.19, pp.6686-6694, 2004.
DOI : 10.1158/1078-0432.CCR-04-0874

C. J. Phillip, S. Zaman, S. Shentu, K. Balakrishnan, J. Zhang et al., Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines, J. Hematol. Oncol. 2013, vol.6, pp.10-1186

M. Sattler, Y. B. Pride, P. Ma, J. L. Gramlich, S. C. Chu et al., A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase, Cancer Res, vol.63, pp.5462-5469, 2003.

J. J. Kiladjian, B. Cassinat, P. Turlure, N. Cambier, M. Roussel et al., High molecular response rate of polycythemia vera patients treated with pegylated interferon ??-2a, Blood, vol.108, issue.6, pp.2037-2040, 2006.
DOI : 10.1182/blood-2006-03-009860

J. J. Kiladjian, R. A. Mesa, and R. Hoffman, The renaissance of interferon therapy for the treatment of myeloid malignancies, Blood, vol.117, issue.18, pp.4706-4715, 2011.
DOI : 10.1182/blood-2010-08-258772

S. Radaeva, B. Jaruga, F. Hong, W. H. Kim, S. Fan et al., Interferon-?? activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes, Gastroenterology, vol.122, issue.4, pp.1020-1034, 2002.
DOI : 10.1053/gast.2002.32388

D. Raimondo, F. Palumbo, G. A. Molica, S. Giustolisi, and R. , Angiogenesis in Chronic Myeloproliferative Diseases, Acta Haematologica, vol.106, issue.4, pp.177-183, 2001.
DOI : 10.1159/000046614

E. Monti and M. B. Gariboldi, HIF-1 as a Target for Cancer Chemotherapy, Chemosensitization and Chemoprevention, Current Molecular Pharmacology, vol.4, issue.1, pp.62-77, 2011.
DOI : 10.2174/1874467211104010062

Y. Xia, H. Choi, and K. Lee, Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors, European Journal of Medicinal Chemistry, vol.49, pp.24-40, 2012.
DOI : 10.1016/j.ejmech.2012.01.033

C. Q. Chen, K. Yu, Q. X. Yan, C. Y. Xing, Y. Chen et al., Pure curcumin increases the expression of SOCS1 and SOCS3 in myeloproliferative neoplasms through suppressing class I histone deacetylases, Carcinogenesis, vol.34, issue.7, pp.1442-1449, 2013.
DOI : 10.1093/carcin/bgt070

A. Baghdadi, T. Abonour, R. Boswell, and H. S. , Novel Combination Treatments Targeting Chronic Myeloid Leukemia Stem Cells, Clinical Lymphoma Myeloma and Leukemia, vol.12, issue.2, pp.94-105, 2012.
DOI : 10.1016/j.clml.2011.10.003

L. M. Lafave and R. L. Levine, JAK2 the future: therapeutic strategies for JAK-dependent malignancies, Trends in Pharmacological Sciences, vol.33, issue.11, pp.574-582, 2012.
DOI : 10.1016/j.tips.2012.08.005

N. Bartalucci, P. Guglielmelli, and A. M. Vannucchi, Rationale for Targeting the PI3K/Akt/mTOR Pathway in Myeloproliferative Neoplasms, Clinical Lymphoma Myeloma and Leukemia, vol.13, pp.307-309, 2013.
DOI : 10.1016/j.clml.2013.07.011

G. Barosi, E. Gattoni, P. Guglielmelli, R. Campanelli, F. Facchetti et al., Phase I/II study of single-agent bortezomib for the treatment of patients with myelofibrosis. Clinical and biological effects of proteasome inhibition, American Journal of Hematology, vol.21, issue.8, pp.616-619, 2010.
DOI : 10.1002/ajh.21754

P. Zhang, Q. Yao, L. Lu, Y. Li, P. J. Chen et al., Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep, pp.1110-1121, 2014.

O. Fuchs, Transcription Factor NF-??B Inhibitors as Single Therapeutic Agents or in Combination with Classical Chemotherapeutic Agents for the Treatment of Hematologic Malignancies, Current Molecular Pharmacology, vol.3, issue.3, pp.98-122, 2010.
DOI : 10.2174/1874467211003030098

Z. Lu, Y. Jin, C. Chen, J. Li, Q. Cao et al., Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-??B signaling and depleting Bcr-Abl, Molecular Cancer, vol.9, issue.1, p.112, 2010.
DOI : 10.1186/1476-4598-9-112

O. Wagner-ballon, D. F. Pisani, T. Gastinne, M. Tulliez, R. Chaligné et al., Proteasome inhibitor bortezomib impairs both myelofibrosis and osteosclerosis induced by high thrombopoietin levels in mice, Blood, vol.110, issue.1, pp.345-353, 2007.
DOI : 10.1182/blood-2006-10-054502

A. M. Vannucchi, F. H. Heidel, V. Ribrag, J. J. Kiladjian, F. Passamonti et al., Ruxolitinib plus panobinostat in patients with primary myelofibrosis, post-polycythemia vera myelofibrosis or post-essential thrombocythemia myelofibrosis: A phase 1b dose-finding study, Available, vol.online, 2014.

M. Moschetta, A. Basile, A. Ferrucci, M. A. Frassanito, L. Rao et al., Novel Targeting of Phospho-cMET Overcomes Drug Resistance and Induces Antitumor Activity in Multiple Myeloma, Clinical Cancer Research, vol.19, issue.16, pp.4371-4382
DOI : 10.1158/1078-0432.CCR-13-0039

J. G. Christensen, J. Burrows, and R. Salgia, c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention, Cancer Letters, vol.225, issue.1, pp.1-26, 2005.
DOI : 10.1016/j.canlet.2004.09.044

K. P. Xu and F. S. Yu, Cross Talk between c-Met and Epidermal Growth Factor Receptor during Retinal Pigment Epithelial Wound Healing, Investigative Opthalmology & Visual Science, vol.48, issue.5, pp.2242-2248, 2007.
DOI : 10.1167/iovs.06-0560

V. G. Cooke, V. S. Lebleu, D. Keskin, Z. Khan, J. T. Connell et al., Pericyte Depletion Results in Hypoxia-Associated Epithelial-to-Mesenchymal Transition and Metastasis Mediated by Met Signaling Pathway, Cancer Cell, vol.21, issue.1, pp.66-81, 2012.
DOI : 10.1016/j.ccr.2011.11.024

Y. Wang, D. Cai, C. Brendel, C. Barett, P. Erben et al., Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation, Blood, vol.109, issue.5, pp.2147-2155, 2007.
DOI : 10.1182/blood-2006-08-040022

E. Balleari, C. Bason, G. Visani, M. Gobbi, E. Ottaviani et al., Serum levels of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in treated patients with chronic myelogenous leukemia in chronic phase, Haematologica, vol.79, pp.7-12, 1994.

M. P. Té-treault, P. Chailler, and N. Rivard, Differential growth factor induction and modulation of human gastric epithelial regeneration, Experimental Cell Research, vol.306, issue.1, pp.285-297, 2005.
DOI : 10.1016/j.yexcr.2005.02.019

J. Li, D. G. Kent, A. L. Godfrey, H. Manning, J. Nangalia et al., JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease, Blood, vol.123, issue.20, pp.3139-3151, 2014.
DOI : 10.1182/blood-2013-06-510222

. Servier, Available online: http://www.servier.fr/servier-medical-art (accessed on 3, 2014.