A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. Gerdes, Nanotubular Highways for Intercellular Organelle Transport, Science, vol.303, issue.5660, pp.1007-1017, 2004.
DOI : 10.1126/science.1093133

S. Gurke, J. Barroso, E. Hodneland, N. Bukoreshtliev, O. Schlicker et al., Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells???, Experimental Cell Research, vol.314, issue.20, pp.3669-83, 2008.
DOI : 10.1016/j.yexcr.2008.08.022

D. Davis and S. Sowinski, Membrane nanotubes: dynamic long-distance connections between animal cells, Nature Reviews Molecular Cell Biology, vol.23, issue.6, pp.431-437, 2008.
DOI : 10.1038/nrm2399

B. Onfelt, S. Nedvetzki, K. Yanagi, and D. Davis, Cutting Edge: Membrane Nanotubes Connect Immune Cells, The Journal of Immunology, vol.173, issue.3, pp.511-1513, 2004.
DOI : 10.4049/jimmunol.173.3.1511

N. Sherer and W. Mothes, Cytonemes and tunneling nanotubules in cell???cell communication and viral pathogenesis, Trends in Cell Biology, vol.18, issue.9, pp.414-434, 2008.
DOI : 10.1016/j.tcb.2008.07.003

K. Gousset, Prions hijack tunnelling nanotubes for intercellular spread, Nature Cell Biology, vol.177, issue.3, pp.328-364, 2009.
DOI : 10.1038/nprot.2006.356

URL : https://hal.archives-ouvertes.fr/pasteur-00368712

S. Sowinski, Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nature Cell Biology, vol.8, issue.2, pp.211-220, 2008.
DOI : 10.1074/jbc.C400046200

K. Gousset, L. Marzo, P. Commere, and C. Zurzolo, Myo10 is a key regulator of TNT formation in neuronal cells, Journal of Cell Science, vol.126, issue.19, pp.4424-4459, 2013.
DOI : 10.1242/jcs.129239

URL : https://hal.archives-ouvertes.fr/pasteur-00874699

S. Lachambre, C. Chopard, and B. Beaumelle, Preliminary characterisation of nanotubes connecting T-cells and their use by HIV-1, Biology of the Cell, vol.26, issue.11, pp.394-404, 2014.
DOI : 10.1111/boc.201400037

K. Astanina, M. Koch, C. Jüngst, A. Zumbusch, and A. Kiemer, Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells, Scientific Reports, vol.35, 2015.
DOI : 10.1016/j.bbamem.2008.02.010

E. Eugenin, P. Gaskill, and J. Berman, Tunneling nanotubes (TNT), Communicative & Integrative Biology, vol.1, issue.3, pp.243-247, 2009.
DOI : 10.1038/ncb1544

Y. Wang, J. Cui, X. Sun, and Y. Zhang, Tunneling-nanotube development in astrocytes depends on p53 activation, Cell Death and Differentiation, vol.23, issue.4, pp.732-774, 2010.
DOI : 10.1038/cdd.2010.147

M. Costanzo, Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, Journal of Cell Science, vol.126, issue.16, pp.3678-85, 2013.
DOI : 10.1242/jcs.126086

URL : https://hal.archives-ouvertes.fr/pasteur-00874692

X. Ding, Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure, Oncotarget, vol.6, issue.27, pp.24178-91, 2015.
DOI : 10.18632/oncotarget.4680

M. Goedert and . Neurodegeneration, Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled A??, tau, and ??-synuclein, Science, vol.349, issue.6248
DOI : 10.1126/science.1255555

P. Liberski, Prion, prionoids and infectious amyloid, Parkinsonism & Related Disorders, vol.20, issue.13, pp.80-84, 2014.
DOI : 10.1016/S1353-8020(13)70021-X

M. Jucker and L. Walker, Self-propagation of pathogenic protein aggregates in neurodegenerative diseases, Nature, vol.6, issue.7465, pp.45-51, 2013.
DOI : 10.1038/nature12481

A. Aguzzi and A. Lakkaraju, Cell Biology of Prions and Prionoids: A Status Report, Trends in Cell Biology, vol.26, issue.1, pp.40-51, 2016.
DOI : 10.1016/j.tcb.2015.08.007

R. Caillierez, Lentiviral Delivery of the Human Wild-type Tau Protein Mediates a Slow and Progressive Neurodegenerative Tau Pathology in the Rat Brain, Molecular Therapy, vol.21, issue.7, pp.1358-68, 2013.
DOI : 10.1038/mt.2013.66

N. Sergeant, Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1, Human Molecular Genetics, vol.10, issue.19, pp.2143-55, 2001.
DOI : 10.1093/hmg/10.19.2143

P. Sautiere, M. Caillet-boudin, A. Wattez, and A. Delacourte, Detection of Alzheimer-type tau proteins in okadaic acid-treated SKNSH-SY5Y neuroblastoma cells, Neurodegeneration, vol.3, pp.53-60, 1994.

J. Krzewska and R. Melki, Molecular chaperones and the assembly of the prion Sup35p, an in vitro study, The EMBO Journal, vol.264, issue.4, pp.822-855, 2006.
DOI : 10.1038/sj.emboj.7600985

URL : https://hal.archives-ouvertes.fr/hal-01183829

H. Gerdes, N. Bukoreshtliev, and J. Barroso, Tunneling nanotubes: A new route for the exchange of components between animal cells, FEBS Letters, vol.18, issue.11, pp.2194-201, 2007.
DOI : 10.1016/j.febslet.2007.03.071

M. Austefjord, H. Gerdes, and X. Wang, Tunneling nanotubes, Communicative & Integrative Biology, vol.7, issue.1, 2014.
DOI : 10.1016/S0092-8674(00)80771-0

D. Wittig, X. Wang, C. Walter, H. Gerdes, R. Funk et al., Multi-Level Communication of Human Retinal Pigment Epithelial Cells via Tunneling Nanotubes, PLoS ONE, vol.57, issue.3, 2012.
DOI : 10.1371/journal.pone.0033195.s002

S. Abounit, E. Delage, and C. Zurzolo, Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking, Curr Protoc Cell Biol, vol.23, 2015.
DOI : 10.1002/0471143030.cb1210s67

M. Benard, confocal approaches, Biology of the Cell, vol.107, issue.11, pp.419-444, 2015.
DOI : 10.1111/boc.201500004

A. Chauveau, A. Aucher, P. Eissmann, E. Vivier, and D. Davis, Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells, Proceedings of the National Academy of Sciences, vol.107, issue.12, pp.5545-50, 2010.
DOI : 10.1073/pnas.0910074107

URL : https://hal.archives-ouvertes.fr/hal-00502976

C. Comerci, E. Mace, P. Banerjee, and J. Orange, CD2 Promotes Human Natural Killer Cell Membrane Nanotube Formation, PLoS ONE, vol.266, issue.10, 2012.
DOI : 10.1371/journal.pone.0047664.s002

F. Luchetti, Fas Signalling Promotes Intercellular Communication in T Cells, PLoS ONE, vol.14, issue.4, 2012.
DOI : 10.1371/journal.pone.0035766.s001

Y. Seyed-razavi, M. Hickey, L. Kuffová, P. Mcmenamin, and H. Chinnery, Membrane nanotubes in myeloid cells in the adult mouse cornea represent a novel mode of immune cell interaction, Immunology and Cell Biology, vol.48, issue.1, pp.89-95, 2013.
DOI : 10.1038/icb.2012.52

X. Sun, Tunneling-nanotube direction determination in neurons and astrocytes, Cell Death and Disease, vol.2, issue.12, 2012.
DOI : 10.1007/BF00656997

K. Hase, M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex, Nature Cell Biology, vol.281, issue.12, pp.1427-1459, 1990.
DOI : 10.1016/j.cell.2006.08.034

N. Bukoreshtliev, X. Wang, E. Hodneland, S. Gurke, J. Barroso et al., Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells, FEBS Letters, vol.42, issue.9, 2009.
DOI : 10.1016/j.febslet.2009.03.065

K. Vallabhaneni, H. Haller, and I. Dumler, Vascular Smooth Muscle Cells Initiate Proliferation of Mesenchymal Stem Cells by Mitochondrial Transfer via Tunneling Nanotubes, Stem Cells and Development, vol.21, issue.17, pp.3104-3117, 2012.
DOI : 10.1089/scd.2011.0691

M. Bucciantini, Toxic effects of amyloid fibrils on cell membranes: the importance of ganglioside GM1, The FASEB Journal, vol.26, issue.2, pp.818-849, 2012.
DOI : 10.1096/fj.11-189381

URL : https://hal.archives-ouvertes.fr/hal-01183161

C. Krammer, Prion protein/protein interactions: fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells, The FASEB Journal, vol.22, issue.3, pp.762-73, 2008.
DOI : 10.1096/fj.07-8733com

C. Krammer, The yeast Sup35NM domain propagates as a prion in mammalian cells, Proceedings of the National Academy of Sciences, vol.106, issue.2, pp.462-469, 2009.
DOI : 10.1073/pnas.0811571106

I. Kadiu and H. Gendelman, Human Immunodeficiency Virus type 1 Endocytic Trafficking Through Macrophage Bridging Conduits Facilitates Spread of Infection, Journal of Neuroimmune Pharmacology, vol.2, issue.Pt 24, pp.658-75, 2011.
DOI : 10.1007/s11481-011-9298-z

L. Marzo, K. Gousset, and C. Zurzolo, Multifaceted Roles of Tunneling Nanotubes in Intercellular Communication, Frontiers in Physiology, vol.3, 2012.
DOI : 10.3389/fphys.2012.00072

URL : https://hal.archives-ouvertes.fr/pasteur-00716379

D. Pantaloni, L. Clainche, C. Carlier, and M. , Mechanism of Actin-Based Motility, Science, vol.292, issue.5521, pp.1502-1508, 2001.
DOI : 10.1126/science.1059975

G. Lindwall and R. Cole, Phosphorylation affects the ability of tau protein to promote microtubule assembly, J Biol Chem, vol.259, pp.5301-5306, 1984.

J. Cho and G. Johnson, Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3?? (GSK3??) plays a critical role in regulating tau's ability to bind and stabilize microtubules, Journal of Neurochemistry, vol.6, issue.2, pp.349-58, 2004.
DOI : 10.1111/j.1471-4159.2004.02155.x

M. Weingarten, A. Lockwood, S. Hwo, and M. Kirschner, A protein factor essential for microtubule assembly., Proceedings of the National Academy of Sciences, vol.72, issue.5, pp.1858-62, 1975.
DOI : 10.1073/pnas.72.5.1858

K. Iqbal, F. Liu, and C. Gong, Tau and neurodegenerative disease: the story so far, Nature Reviews Neurology, vol.6, issue.1, pp.15-27, 2016.
DOI : 10.1038/nrneurol.2015.225

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathologica, vol.80, issue.4, pp.239-59, 1991.
DOI : 10.1007/BF00308809

A. Delacourte, The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease, Neurology, vol.52, issue.6, pp.1158-65, 1999.
DOI : 10.1212/WNL.52.6.1158

C. Duyckaerts, Modeling the Relation Between Neurofibrillary Tangles and Intellectual Status, Neurobiology of Aging, vol.18, issue.3, pp.267-73, 1997.
DOI : 10.1016/S0197-4580(97)80306-5

M. Qu, Neuronal tau induces DNA conformational changes observed by atomic force microscopy, Neuroreport, vol.15, pp.2723-2730, 2004.

M. Sjöberg, E. Shestakova, Z. Mansuroglu, R. Maccioni, and E. Bonnefoy, Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization, Journal of Cell Science, vol.119, issue.10, pp.2025-2059, 2006.
DOI : 10.1242/jcs.02907

A. Sultan, Nuclear Tau, a Key Player in Neuronal DNA Protection, Journal of Biological Chemistry, vol.286, issue.6, pp.4566-75, 2011.
DOI : 10.1074/jbc.M110.199976

M. Violet, A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions, Frontiers in Cellular Neuroscience, vol.17, 2014.
DOI : 10.1091/mbc.e06-03-0177

R. Brandt, J. Léger, and G. Lee, Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain, The Journal of Cell Biology, vol.131, issue.5, pp.1327-1367, 1995.
DOI : 10.1083/jcb.131.5.1327

A. Pooler, A. Usardi, C. Evans, K. Philpott, W. Noble et al., Dynamic association of tau with neuronal membranes is regulated by phosphorylation, Neurobiology of Aging, vol.33, issue.2, 2012.
DOI : 10.1016/j.neurobiolaging.2011.01.005

L. Ittner, Dendritic Function of Tau Mediates Amyloid-?? Toxicity in Alzheimer's Disease Mouse Models, Cell, vol.142, issue.3, pp.387-97, 2010.
DOI : 10.1016/j.cell.2010.06.036

S. Mondragón-rodríguez, E. Trillaud-doppia, A. Dudilot, C. Bourgeois, M. Lauzon et al., Interaction of Endogenous Tau Protein with Synaptic Proteins Is Regulated by N-Methyl-D-aspartate Receptor-dependent Tau Phosphorylation, Journal of Biological Chemistry, vol.287, issue.38, pp.32040-53, 2012.
DOI : 10.1074/jbc.M112.401240

A. Pooler, E. Phillips, D. Lau, W. Noble, and D. Hanger, Physiological release of endogenous tau is stimulated by neuronal activity, EMBO reports, vol.309, issue.4, pp.389-94, 2013.
DOI : 10.1016/j.nbd.2011.01.029

K. Yamada, Neuronal activity regulates extracellular tau in vivo, The Journal of Experimental Medicine, vol.5, issue.3, pp.387-93, 2014.
DOI : 10.1523/JNEUROSCI.2569-11.2011

G. Johnson, P. Seubert, T. Cox, R. Motter, J. Brown et al., The ?? Protein in Human Cerebrospinal Fluid in Alzheimer's Disease Consists of Proteolytically Derived Fragments, Journal of Neurochemistry, vol.68, issue.1, pp.430-433, 1997.
DOI : 10.1046/j.1471-4159.1997.68010430.x

V. Plouffe, N. Mohamed, J. Rivest-mcgraw, J. Bertrand, M. Lauzon et al., Hyperphosphorylation and Cleavage at D421 Enhance Tau Secretion, PLoS ONE, vol.168, issue.5, 2012.
DOI : 10.1371/journal.pone.0036873.t001

X. Chai, J. Dage, and M. Citron, Constitutive secretion of tau protein by an unconventional mechanism, Neurobiology of Disease, vol.48, issue.3, pp.356-66, 2012.
DOI : 10.1016/j.nbd.2012.05.021

K. Yamada, In Vivo Microdialysis Reveals Age-Dependent Decrease of Brain Interstitial Fluid Tau Levels in P301S Human Tau Transgenic Mice, Journal of Neuroscience, vol.31, issue.37, pp.13110-13117, 2011.
DOI : 10.1523/JNEUROSCI.2569-11.2011

F. Clavaguera, Brain homogenates from human tauopathies induce tau inclusions in mouse brain, Proceedings of the National Academy of Sciences, vol.110, issue.23, pp.9535-9575, 2013.
DOI : 10.1073/pnas.1301175110

D. Sanders, Distinct Tau Prion Strains Propagate in Cells and Mice and Define Different Tauopathies, Neuron, vol.82, issue.6, pp.1271-88, 2014.
DOI : 10.1016/j.neuron.2014.04.047

S. Dujardin, Ectosomes: A New Mechanism for Non-Exosomal Secretion of Tau Protein, PLoS ONE, vol.121, issue.6, 2014.
DOI : 10.1371/journal.pone.0100760.g006

URL : https://hal.archives-ouvertes.fr/hal-01181185

D. Simón, E. García-garcía, A. Gómez-ramos, J. Falcón-pérez, M. Díaz-hernández et al., Tau Overexpression Results in Its Secretion via Membrane Vesicles, Neurodegenerative Diseases, vol.10, issue.1-4, pp.73-78, 2012.
DOI : 10.1159/000334915

S. Saman, Exosome-associated Tau Is Secreted in Tauopathy Models and Is Selectively Phosphorylated in Cerebrospinal Fluid in Early Alzheimer Disease, Journal of Biological Chemistry, vol.287, issue.6, pp.3842-3851, 2012.
DOI : 10.1074/jbc.M111.277061

H. Asai, Depletion of microglia and inhibition of exosome synthesis halt tau propagation, Nature Neuroscience, vol.88, issue.11, pp.1584-93, 2015.
DOI : 10.1371/journal.pone.0079416

S. Takeda, Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer???s disease brain, Nature Communications, vol.299, 2015.
DOI : 10.1039/c3lc50959a

A. Elie, Tau co-organizes dynamic microtubule and actin networks, Scientific Reports, vol.9, issue.1, 2015.
DOI : 10.1038/nmeth.2089

URL : https://hal.archives-ouvertes.fr/hal-01166807

H. He, X. Wang, R. Pan, D. Wang, M. Liu et al., The proline-rich domain of tau plays a role in interactions with actin, BMC Cell Biology, vol.10, issue.1, pp.81-91, 2009.
DOI : 10.1186/1471-2121-10-81

H. Chinnery, E. Pearlman, and P. Mcmenamin, Cells in the Mouse Cornea, The Journal of Immunology, vol.180, issue.9, pp.5779-83, 2008.
DOI : 10.4049/jimmunol.180.9.5779