J. Gavard, E. Dejana, E. Tournier-lasserve, B. M. Weinstein, J. Gavard et al., The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2, FEBS Lett Dev Cell Nat Cell Biol Nat Commun Dev Cell, vol.5836, issue.23, pp.1-6, 1208.

D. E. Conway, M. T. Breckenridge, E. Hinde, E. Gratton, C. S. Chen et al., Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1 p21-activated kinase regulates endothelial permeability through modulation of contractility The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis, Curr Biol J Biol Chem Nat Cell Biol, vol.23, issue.169, pp.46621-46651, 1024.

A. Taddei, Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5, Nature Cell Biology, vol.72, issue.8, pp.923-957, 2008.
DOI : 10.1016/S1534-5807(02)00401-X

J. Gavard and J. S. Gutkind, VE-cadherin and claudin-5: it takes two to tango, Nature Cell Biology, vol.115, issue.8, pp.883-888, 2008.
DOI : 10.1038/84675

URL : https://hal.archives-ouvertes.fr/hal-00340308

M. F. Oellerich and M. Potente, FOXOs and Sirtuins in Vascular Growth, Maintenance, and Aging, Circulation Research, vol.110, issue.9, pp.1238-51, 2012.
DOI : 10.1161/CIRCRESAHA.111.246488

K. Wilhelm, FOXO1 couples metabolic activity and growth state in the vascular endothelium, Nature, vol.439, issue.7585, pp.216-236, 2016.
DOI : 10.1038/nature16498

F. Gao, Akt1 promotes stimuli-induced endothelial-barrier protection through FoxO-mediated tight-junction protein turnover Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex, Cell Mol Life Sci Nat Cell Biol, vol.14, issue.4, pp.222-253, 2002.

K. Xiao, D. F. Allison, M. D. Kottke, S. Summers, G. P. Sorescu et al., Mechanisms of VE-cadherin Processing and Degradation in Microvascular Endothelial Cells, Journal of Biological Chemistry, vol.278, issue.21, pp.19199-208, 2003.
DOI : 10.1074/jbc.M211746200

B. A. Nanes, C. Chiasson-mackenzie, A. M. Lowery, N. Ishiyama, V. Faundez et al., p120-catenin binding masks an endocytic signal conserved in classical cadherins, The Journal of Cell Biology, vol.46, issue.2, pp.365-80, 2012.
DOI : 10.1016/j.cell.2005.09.020

K. Xiao, D. F. Allison, K. M. Buckley, M. D. Kottke, P. A. Vincent et al., Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells, The Journal of Cell Biology, vol.276, issue.3, pp.535-580, 2003.
DOI : 10.1083/jcb.141.3.779

G. S. Zhang, The ??-Secretase Blocker DAPT Reduces the Permeability of the Blood-Brain Barrier by Decreasing the Ubiquitination and Degradation of Occludin During Permanent Brain Ischemia, CNS Neuroscience & Therapeutics, vol.91, issue.1, pp.53-60, 2013.
DOI : 10.1111/cns.12032

M. Mansouri, P. P. Rose, A. V. Moses, and K. Fruh, Remodeling of Endothelial Adherens Junctions by Kaposi's Sarcoma-Associated Herpesvirus, Journal of Virology, vol.82, issue.19, pp.9615-9643, 2008.
DOI : 10.1128/JVI.02633-07

M. Mansouri, J. Douglas, P. P. Rose, K. Gouveia, G. Thomas et al., Kaposi sarcoma herpesvirus K5 removes CD31/PECAM from endothelial cells, Blood, vol.108, issue.6, pp.1932-1972, 2006.
DOI : 10.1182/blood-2005-11-4404

E. M. Hatchi, K. Poalas, N. Cordeiro, M. N-'debi, J. Gavard et al., Participation of the E3-ligase TRIM13 in NF-??B p65 activation and NFAT-dependent activation of c-Rel upon T-cell receptor engagement, The International Journal of Biochemistry & Cell Biology, vol.54, pp.217-239, 2014.
DOI : 10.1016/j.biocel.2014.07.012

J. Dwyer, The guanine exchange factor SWAP70 mediates vGPCR-induced endothelial plasticity, Cell Communication and Signaling, vol.13, issue.1, p.11, 2015.
DOI : 10.1593/tlo.09172

URL : https://hal.archives-ouvertes.fr/inserm-01264495

H. Fukuda, N. Nakamura, and S. Hirose, MARCH-III Is a Novel Component of Endosomes with Properties Similar to Those of MARCH-II, Journal of Biochemistry, vol.139, issue.1, pp.137-182, 2006.
DOI : 10.1093/jb/mvj012

K. Fatehchand, Toll-like receptor 4 ligands down-regulate FcgammaRIIb via MARCH3-mediated ubiquitination, J Biol Chem, 2015.

J. Gavard, X. Hou, Y. Qu, A. Masedunskas, D. Martin et al., A Role for a CXCR2/Phosphatidylinositol 3-Kinase ?? Signaling Axis in Acute and Chronic Vascular Permeability, Molecular and Cellular Biology, vol.29, issue.9, pp.2469-80, 2009.
DOI : 10.1128/MCB.01304-08

B. B. Weksler, Blood-brain barrier-specific properties of a human adult brain endothelial cell line, The FASEB Journal, vol.19, pp.1872-1876, 2005.
DOI : 10.1096/fj.04-3458fje

L. Guelte and A. , Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation, Journal of Cell Science, vol.125, issue.17, pp.4137-4183, 2012.
DOI : 10.1242/jcs.108282

J. Sunayama, Dual blocking of mTor and PI3K elicits a prodifferentiation effect on glioblastoma stem-like cells, Neuro-Oncology, vol.12, pp.1205-1224, 2010.
DOI : 10.1093/neuonc/noq103

T. Murakami, E. A. Felinski, and D. A. Antonetti, Occludin Phosphorylation and Ubiquitination Regulate Tight Junction Trafficking and Vascular Endothelial Growth Factor-induced Permeability, Journal of Biological Chemistry, vol.284, issue.31, pp.21036-21082, 2009.
DOI : 10.1074/jbc.M109.016766

I. Mandel, T. Paperna, A. Volkowich, M. Merhav, L. Glass-marmor et al., The ubiquitin-proteasome pathway regulates claudin 5 degradation, Journal of Cellular Biochemistry, vol.57, issue.Suppl 1, pp.2415-2438, 2012.
DOI : 10.1002/jcb.24118

S. Takahashi, N. Iwamoto, H. Sasaki, M. Ohashi, Y. Oda et al., The E3 ubiquitin ligase LNX1p80 promotes the removal of claudins from tight junctions in MDCK cells, Journal of Cell Science, vol.122, issue.7, pp.985-94, 2009.
DOI : 10.1242/jcs.040055

L. Deng, The Ubiquitination of RagA GTPase by RNF152 Negatively Regulates mTORC1 Activation, Molecular Cell, vol.58, issue.5, pp.804-822, 2015.
DOI : 10.1016/j.molcel.2015.03.033

S. Sun, Constitutive Activation of mTORC1 in Endothelial Cells Leads to the Development and Progression of Lymphangiosarcoma through VEGF Autocrine Signaling, Cancer Cell, vol.28, issue.6, pp.758-772, 2015.
DOI : 10.1016/j.ccell.2015.10.004

H. M. Leclair, S. M. Dubois, S. Azzi, J. Dwyer, N. Bidere et al., Control of CXCR2 activity through its ubiquitination on K327 residue, BMC Cell Biology, vol.6, issue.4, p.38, 2014.
DOI : 10.1186/s12860-014-0038-0

URL : https://hal.archives-ouvertes.fr/inserm-01089432