D. Lacey, A. Achuthan, A. Fleetwood, H. Dinh, J. Roiniotis et al., Defining GM-CSF- and Macrophage-CSF-Dependent Macrophage Responses by In Vitro Models, The Journal of Immunology, vol.188, issue.11, pp.5752-65, 2012.
DOI : 10.4049/jimmunol.1103426

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, Journal of Clinical Investigation, vol.122, issue.3, pp.787-95, 2012.
DOI : 10.1172/JCI59643DS1

D. Duluc, M. Corvaisier, S. Blanchard, L. Catala, P. Descamps et al., Interferon-?? reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages, International Journal of Cancer, vol.21, issue.2, pp.367-73, 2009.
DOI : 10.1002/ijc.24401

E. Foucher, S. Blanchard, L. Preisser, E. Garo, N. Ifrah et al., IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. antagonistic effects of GM-CSF and IFNgamma, PLoS One, vol.823409120, p.56045, 2013.

W. Zou, Immunosuppressive networks in the tumour environment and their therapeutic relevance, Nature Reviews Cancer, vol.1, issue.4, pp.263-74, 2005.
DOI : 10.1073/pnas.96.26.15074

A. Sica, P. Larghi, A. Mancino, L. Rubino, C. Porta et al., Macrophage polarization in tumour progression, Seminars in Cancer Biology, vol.18, issue.5, pp.349-55, 2008.
DOI : 10.1016/j.semcancer.2008.03.004

A. Mantovani, P. Allavena, and A. Sica, Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression, European Journal of Cancer, vol.40, issue.11, pp.1660-1667, 2004.
DOI : 10.1016/j.ejca.2004.03.016

G. Motz and G. Coukos, Deciphering and Reversing Tumor Immune Suppression, Immunity, vol.39, issue.1, pp.61-73, 2013.
DOI : 10.1016/j.immuni.2013.07.005

D. Duluc, Y. Delneste, F. Tan, M. Moles, L. Grimaud et al., Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells, Blood, vol.110, issue.13, pp.4319-4349, 2007.
DOI : 10.1182/blood-2007-02-072587

D. Metcalf, Control of granulocytes and macrophages: molecular, cellular, and clinical aspects, Science, vol.254, issue.5031, pp.529-562, 1991.
DOI : 10.1126/science.1948028

Y. Ma, S. Adjemian, S. Mattarollo, T. Yamazaki, L. Aymeric et al., Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells, Immunity, vol.38, issue.4, pp.729-770, 2013.
DOI : 10.1016/j.immuni.2013.03.003

Y. Ma, S. Adjemian, H. Yang, J. Catani, D. Hannani et al., ATPdependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy, Onco Immunol, vol.2, 2013.

M. Idzko, D. Ferrari, and H. Eltzschig, Nucleotide signalling during inflammation, Nature, vol.186, issue.7500, pp.310-317, 2014.
DOI : 10.1038/nature13085

M. Netea, C. Nold-petry, M. Nold, L. Joosten, B. Opitz et al., Differential requirement for the activation of the inflammasome for processing and release of IL-1?? in monocytes and macrophages, Blood, vol.113, issue.10, pp.2324-2359, 2009.
DOI : 10.1182/blood-2008-03-146720

A. Piccini, S. Carta, S. Tassi, D. Lasiglie, G. Fossati et al., ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1?? and IL-18 secretion in an autocrine way, Proceedings of the National Academy of Sciences, vol.105, issue.23, pp.8067-720709684105, 2008.
DOI : 10.1073/pnas.0709684105

E. Lazarowski, J. Sesma, L. Seminario-vidal, and S. Kreda, Molecular Mechanisms of Purine and Pyrimidine Nucleotide Release, Adv Pharmacol, vol.61, pp.221-61, 2011.
DOI : 10.1016/B978-0-12-385526-8.00008-4

M. Elliott, F. Chekeni, P. Trampont, E. Lazarowski, A. Kadl et al., Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance, Nature, vol.127, issue.7261, pp.282-165, 2009.
DOI : 10.1038/nature08296

L. Aymeric, L. Apetoh, F. Ghiringhelli, A. Tesniere, I. Martins et al., Tumor Cell Death and ATP Release Prime Dendritic Cells and Efficient Anticancer Immunity, Cancer Research, vol.70, issue.3, pp.855-863, 2010.
DOI : 10.1158/0008-5472.CAN-09-3566

A. Ohta, E. Gorelik, S. Prasad, F. Ronchese, D. Lukashev et al., A2A adenosine receptor protects tumors from antitumor T cells, Proceedings of the National Academy of Sciences, vol.103, issue.35, pp.13132-13139, 2006.
DOI : 10.1073/pnas.0605251103

A. Ohta and M. Sitkovsky, Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage, Nature, vol.120, issue.6866, pp.916-936, 2001.
DOI : 10.1038/414916a

G. Hasko, D. Kuhel, J. Chen, M. Schwarzschild, E. Deitch et al., Adenosine inhibits IL-12 and TNF-alpha production via adenosine A2a receptor-dependent and independent mechanisms, The FASEB Journal, vol.14, issue.13, pp.2065-7499, 2000.
DOI : 10.1096/fj.99-0508com

G. Hasko, C. Szabo, Z. Nemeth, V. Kvetan, S. Pastores et al., Adenosine receptor agonists differentially regulate IL-10, TNF-a and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice, J Immunol, vol.157, pp.4634-408906843, 1996.

H. Eltzschig, J. Ibla, G. Furuta, M. Leonard, K. Jacobson et al., Coordinated Adenine Nucleotide Phosphohydrolysis and Nucleoside Signaling in Posthypoxic Endothelium, The Journal of Experimental Medicine, vol.271, issue.5, pp.783-96, 2003.
DOI : 10.1515/BC.2003.054

G. Hasko and P. Pacher, Regulation of Macrophage Function by Adenosine, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.4, pp.865-874, 2012.
DOI : 10.1161/ATVBAHA.111.226852

G. Hasko and B. Cronstein, Adenosine: an endogenous regulator of innate immunity, Trends in Immunology, vol.25, issue.1, pp.33-42, 2004.
DOI : 10.1016/j.it.2003.11.003

G. Hasko, J. Linden, B. Cronstein, and P. Pacher, Adenosine receptors: therapeutic aspects for inflammatory and immune diseases, Nat Rev Drug Discov, vol.7, pp.759-70, 2008.
DOI : 10.1201/9781420005776

L. Antonioli, P. Pacher, E. Vizi, and G. Hasko, CD39 and CD73 in immunity and inflammation, Trends in Molecular Medicine, vol.19, issue.6, pp.355-67, 2013.
DOI : 10.1016/j.molmed.2013.03.005

R. Resta, Y. Yamashita, and L. Thompson, Ecto-enzyme and signaling functions of lymphocyte CD 7 3, Immunological Reviews, vol.149, issue.1, pp.95-109, 1998.
DOI : 10.1083/jcb.115.1.75

J. Stagg and M. Smyth, Extracellular adenosine triphosphate and adenosine in cancer, Oncogene, vol.283, issue.39, pp.5346-58, 2010.
DOI : 10.1038/onc.2010.292

M. Odashima, G. Bamias, J. Rivera-nieves, J. Linden, C. Nast et al., Activation of A2A Adenosine Receptor Attenuates Intestinal Inflammation in Animal Models of Inflammatory Bowel Disease, Gastroenterology, vol.129, issue.1, pp.26-33, 2005.
DOI : 10.1053/j.gastro.2005.05.032

M. Odashima, M. Otaka, J. M. Komatsu, K. Wada, I. Matsuhashi et al., Selective A2A adenosine agonist ATL-146e attenuates acute lethal liver injury in mice, Journal of Gastroenterology, vol.40, issue.5, pp.526-535, 2005.
DOI : 10.1007/s00535-005-1609-9

S. Huang, S. Apasov, M. Koshiba, and M. Sitkovsky, Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion, Blood, vol.90, pp.1600-109269779, 1997.

C. Cekic, Y. Day, D. Sag, and J. Linden, Myeloid Expression of Adenosine A2A Receptor Suppresses T and NK Cell Responses in the Solid Tumor Microenvironment, Cancer Research, vol.74, issue.24, pp.7250-7259, 2014.
DOI : 10.1158/0008-5472.CAN-13-3583

M. Sitkovsky, J. Kjaergaard, D. Lukashev, and A. Ohta, Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia Oct 1:5947; PMID:18829471, Clin Cancer Res, vol.http, 2008.

J. Stagg, U. Divisekera, N. Mclaughlin, J. Sharkey, S. Pommey et al., Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis, Proceedings of the National Academy of Sciences, vol.107, issue.4, pp.1547-52, 2010.
DOI : 10.1073/pnas.0908801107

J. Bastid, A. Cottalorda-regairaz, G. Alberici, N. Bonnefoy, J. Eliaou et al., ENTPD1/CD39 is a promising therapeutic target in oncology, Oncogene, vol.22, issue.14, pp.1743-51, 2013.
DOI : 10.1038/onc.2012.269

S. Hausler, D. Barrio, I. Diessner, J. Stein, R. Strohschein et al., Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion, Am J Transl Res, vol.6, pp.129-3924489992, 2014.

A. Young, D. Mittal, J. Stagg, and M. Smyth, Targeting Cancer-Derived Adenosine:New Therapeutic Approaches, Cancer Discovery, vol.4, issue.8, p.879, 2014.
DOI : 10.1158/2159-8290.CD-14-0341

P. Beavis, N. Milenkovsky, H. Ma, L. John, B. Allard et al., Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses, Cancer Immunology Research, vol.3, issue.5, p.506, 2015.
DOI : 10.1158/2326-6066.CIR-14-0211

B. Allard, S. Pommey, M. Smyth, and J. Stagg, Targeting CD73 Enhances the Antitumor Activity of Anti-PD-1 and Anti-CTLA-4 mAbs, Clinical Cancer Research, vol.19, issue.20, p.5626, 2013.
DOI : 10.1158/1078-0432.CCR-13-0545

J. Bastid, A. Regairaz, N. Bonnefoy, C. Dejou, J. Giustiniani et al., Inhibition of CD39 Enzymatic Function at the Surface of Tumor Cells Alleviates Their Immunosuppressive Activity, Cancer Immunology Research, vol.3, issue.3, pp.254-65, 2015.
DOI : 10.1158/2326-6066.CIR-14-0018

B. Zhang, B. Cheng, F. Li, J. Ding, Y. Feng et al., High expression of CD39/ENTPD1 in malignant epithelial cells of human rectal adenocarcinoma, Tumor Biology, vol.8, issue.12, pp.9411-9420, 2015.
DOI : 10.1007/s13277-015-3683-9

X. Sun, Y. Wu, W. Gao, K. Enjyoji, E. Csizmadia et al., CD39/ENTPD1 Expression by CD4+Foxp3+ Regulatory T Cells Promotes Hepatic Metastatic Tumor Growth in Mice, Gastroenterology, vol.139, issue.3, pp.1030-1070, 2010.
DOI : 10.1053/j.gastro.2010.05.007

S. Deaglio, K. Dwyer, W. Gao, D. Friedman, A. Usheva et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression, The Journal of Experimental Medicine, vol.261, issue.6, pp.1257-65, 2007.
DOI : 10.1074/jbc.275.3.2057

R. Zanin, E. Braganhol, L. Bergamin, L. Campesato, A. Filho et al., Differential Macrophage Activation Alters the Expression Profile of NTPDase and Ecto-5???-Nucleotidase, PLoS ONE, vol.265, issue.2, 2012.
DOI : 10.1371/journal.pone.0031205.s001

M. Thibaudin, M. Chaix, R. Boidot, F. Vegran, V. Derangere et al., Human ectonucleotidase-expressing CD25high Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions, Onco Immunol, vol.5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438254

F. Martinon, V. Petrilli, A. Mayor, A. Tardivel, and J. Tschopp, Gout-associated uric acid crystals activate the NALP3 inflammasome, Nature, vol.20, issue.7081, pp.237-278, 2006.
DOI : 10.1038/nature04516

E. Foucher, S. Blanchard, L. Preisser, P. Descamps, N. Ifrah et al., IL-34-and M-CSF-induced macrophages switch memory T cells into Th17 cells via membrane IL-1alpha

G. Hasko, P. Pacher, E. Deitch, and E. Vizi, Shaping of monocyte and macrophage function by adenosine receptors, Pharmacology & Therapeutics, vol.113, issue.2, pp.264-75, 2007.
DOI : 10.1016/j.pharmthera.2006.08.003

I. Mascanfroni, A. Yeste, S. Vieira, E. Burns, B. Patel et al., IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39, Nature Immunology, vol.2010, issue.10
DOI : 10.1053/j.gastro.2010.05.007

D. Sekar, C. Hahn, B. Brune, E. Roberts, and A. Weigert, Apoptotic tumor cells induce IL-27 release from human DCs to activate Treg cells that express CD69 and attenuate cytotoxicity, European Journal of Immunology, vol.14, issue.6, pp.1585-98, 2012.
DOI : 10.1002/eji.201142093

H. Cohen, K. Briggs, J. Marino, K. Ravid, S. Robson et al., TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses, Blood, vol.122, issue.11, pp.1935-1980, 2013.
DOI : 10.1182/blood-2013-04-496216

N. Dubois-colas, L. Petit-jentreau, L. Barreiro, S. Durand, G. Soubigou et al., Extracellular Adenosine Triphosphate Affects the Response of Human Macrophages Infected With Mycobacterium tuberculosis, Journal of Infectious Diseases, vol.210, issue.5, pp.824-857, 2014.
DOI : 10.1093/infdis/jiu135

C. Dinarello, Immunological and Inflammatory Functions of the Interleukin-1 Family, Annual Review of Immunology, vol.27, issue.1, pp.519-50, 2009.
DOI : 10.1146/annurev.immunol.021908.132612

N. Riteau, L. Baron, B. Villeret, N. Guillou, F. Savigny et al., ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation, Cell Death and Disease, vol.176, issue.10, 2012.
DOI : 10.1164/rccm.200808-1274OC

S. Levesque, F. Kukulski, K. Enjyoji, S. Robson, and J. Sevigny, NTPDase1 governs P2X7-dependent functions in murine macrophages, European Journal of Immunology, vol.497, issue.5, pp.1473-85, 2010.
DOI : 10.1002/eji.200939741

S. Hausler, M. Del-barrio, I. Strohschein, J. , A. Chandran et al., Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity, Cancer Immunology, Immunotherapy, vol.249, issue.1???2, pp.1405-1423, 2011.
DOI : 10.1007/s00262-011-1040-4

R. Noy and J. Pollard, Tumor-Associated Macrophages: From Mechanisms to Therapy, Immunity, vol.41, issue.1, pp.49-61, 2014.
DOI : 10.1016/j.immuni.2014.06.010

D. Eichin, J. Laurila, S. Jalkanen, and M. Salmi, CD73 activity is dispensable for the polarization of M2 macrophages PMID:26258883, PLoS One, vol.10, 2015.

C. Hunter and R. Kastelein, Interleukin-27: Balancing Protective and Pathological Immunity, Immunity, vol.37, issue.6, pp.960-969, 2012.
DOI : 10.1016/j.immuni.2012.11.003

L. Apetoh, F. Quintana, C. Pot, N. Joller, S. Xiao et al., The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27, Nature Immunology, vol.181, issue.9, pp.854-61, 2010.
DOI : 10.1371/journal.pone.0009478

M. Kido, S. Takeuchi, N. Sugiyama, H. Esaki, H. Nakashima et al., T cell-specific overexpression of interleukin-27 receptor ?? subunit (WSX-1) prevents spontaneous skin inflammation in MRL/lpr mice, British Journal of Dermatology, vol.131, issue.Suppl. 1, pp.1214-1234, 2011.
DOI : 10.1111/j.1365-2133.2011.10244.x

J. Jung and C. Robinson, IL-12 and IL-27 regulate the phagolysosomal pathway in mycobacteria-infected human macrophages PMID:24618498, Cell Commun Signal, vol.12, issue.16, pp.1478-811, 2014.

G. Kalliolias and L. Ivashkiv, IL-27 Activates Human Monocytes via STAT1 and Suppresses IL-10 Production but the Inflammatory Functions of IL-27 Are Abrogated by TLRs and p38, The Journal of Immunology, vol.180, issue.9, pp.6325-6358, 2008.
DOI : 10.4049/jimmunol.180.9.6325

Z. Zhang, B. Zhou, Y. Wu, Q. Gao, K. Zhang et al., Prognostic value of IL-27 polymorphisms and the susceptibility to epithelial ovarian cancer in a Chinese population, Immunogenetics, vol.28, issue.7, pp.85-92, 2014.
DOI : 10.1007/s00251-013-0753-2

J. Brahmer, S. Tykodi, L. Chow, W. Hwu, S. Topalian et al., Safety and Activity of Anti???PD-L1 Antibody in Patients with Advanced Cancer, New England Journal of Medicine, vol.366, issue.26, pp.2455-65, 2012.
DOI : 10.1056/NEJMoa1200694

J. Duraiswamy, G. Freeman, and G. Coukos, Therapeutic PD-1 Pathway Blockade Augments with Other Modalities of Immunotherapy T-Cell Function to Prevent Immune Decline in Ovarian Cancer, Cancer Research, vol.73, issue.23, pp.6900-6912, 2013.
DOI : 10.1158/0008-5472.CAN-13-1550

K. Abiko, M. Mandai, J. Hamanishi, Y. Yoshioka, N. Matsumura et al., PD-L1 on Tumor Cells Is Induced in Ascites and Promotes Peritoneal Dissemination of Ovarian Cancer through CTL Dysfunction, Clinical Cancer Research, vol.19, issue.6, pp.1363-74, 2013.
DOI : 10.1158/1078-0432.CCR-12-2199

C. Maine, N. Aziz, J. Chatterjee, C. Hayford, N. Brewig et al., Programmed death ligand-1 over-expression correlates with malignancy and contributes to immune regulation in ovarian cancer, Cancer Immunology, Immunotherapy, vol.73, issue.12, pp.215-239, 2014.
DOI : 10.1007/s00262-013-1503-x

B. Levitt, R. Head, and D. Westfall, High-pressure liquid chromatographic-fluorometric detection of adenosine and adenine nucleotides: Application to endogenous content and electrically induced release of adenyl purines in guinea pig vas deferens, Analytical Biochemistry, vol.137, issue.1, pp.93-1000003, 1984.
DOI : 10.1016/0003-2697(84)90352-X