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SUMMARY

Dendritic cells (DCs) are professional antigen-
presenting cells that hold great therapeutic poten-
tial. Multiple DC subsets have been described, and
it remains challenging to align them across tissues
and species to analyze their function in the absence
ofmacrophage contamination. Here, we provide and
validate a universal toolbox for the automated iden-
tification of DCs through unsupervised analysis of
conventional flow cytometry and mass cytometry
data obtained from multiple mouse, macaque, and
human tissues. The use of a minimal set of lineage-
imprinted markers was sufficient to subdivide DCs
into conventional type 1 (cDC1s), conventional type
2 (cDC2s), and plasmacytoid DCs (pDCs) across
tissues and species. This way, a large number of
additional markers can still be used to further char-
acterize the heterogeneity of DCs across tissues
and during inflammation. This framework represents
the way forward to a universal, high-throughput,
and standardized analysis of DC populations from
mutant mice and human patients.
Immunity 45, 1–16, Sept
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INTRODUCTION

Conventional dendritic cells (cDCs) are found in almost all

tissues and lymph nodes (LNs) and act as sentinels capable of

integrating multiple environmental signals and conveying them

to CD4+ and CD8+ T lymphocytes. Plasmacytoid DCs (pDCs)

produce type I interferons and can also develop into antigen-pre-

senting cells, particularly when stimulated by virus or self DNA.

Human and mouse cDCs are derived from committed DC pre-

cursors (pre-cDCs) produced in the bone marrow (BM). These

pre-cDCs migrate from the BM into the blood and then seed

the various tissues where they develop into two distinct lineages

of cDC. The existence of two distinct DC lineages is supported

by the identification of lineage-defining transcription factors

(TFs) required for development and/or function of cDC1 (IRF8,

BATF3, ID2) and cDC2 (IRF4, ZEB2) (Breton et al., 2015; Gra-

jales-Reyes et al., 2015; Guilliams et al., 2014; Lee et al., 2015;

Naik et al., 2006; Schlitzer et al., 2015; Scott et al., 2016). A sepa-

rate E2-2-dependent progenitor with prominent pDC potential

has been recently described (Onai et al., 2013).With these recent

molecular insights, it is now clear that cDCs belonging to the

same lineage are present in various tissues and species; how-

ever, these have been historically characterized by different

surface markers. Additionally, macrophages (Macs) have often

contaminated cDC populations. This results from the fact that
ember 20, 2016 ª 2016 The Author(s). Published by Elsevier Inc. 1
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many murine Macs can express the prototypical cDC markers

CD11c or MHCII and, conversely, that cDC2 can express the

Mac marker F4/80 (Bain et al., 2012; Schlitzer et al., 2015; Scott

et al., 2015; Tamoutounour et al., 2012, 2013). Distinguishing

DCs from Macs in human tissues has been equally challenging

(Collin et al., 2013; McGovern et al., 2015). Finally, the lack of

conserved markers to identify DCs hampered communication

between mouse and human experts and was detrimental for

fostering translational medicine. The advent of multicolor flow

cytometry only aggravated the matter by yielding a seem-

ingly ever-growing list of DC subsets based on different marker

combinations. Therefore, a rational approach simplifying the

classification of DC subsets across tissues and species, yet still

permitting the use of additional markers to study tissue- and dis-

ease-specific activation states, is urgently needed.

It was recently proposed to classify DCs based on their

ontogeny before subdividing them based on their micro-anatom-

ical location or specific functional specialization (Guilliams et al.,

2014). This would yield only three subsets of DCs: conventional

type 1 DCs (cDC1s), conventional type 2 DC (cDC2s), and pDCs.

However, due to a lack of consensus regarding how to define

DC subsets experimentally, such classification remains of limited

practical use (Guilliams and van de Laar, 2015). Recent progress

in the unsupervised analysis of high-dimensional flow cytometry

datasets has rendered the identification process of cell subsets

more objective and more reproducible (Saeys et al., 2016).

However, a limitation of those approaches is that they give an

equal weight to all the surface markers, not necessarily yielding

themostbiologicallymeaningful clusters. For instance, bothLang-

erhans cells (LCs) and cDC1s express CD207, CD24, MHCII, and

CD11c, but they have completely different localization, ontogeny,

lifespan, and functional specialization (Malissenet al., 2014). Thus,

the way forward has to be based on better markers to faithfully

identify DC subsets alongside computational approaches that

simplify the classification of DC subsets without compromising

the multidimensional marker combinations necessary to grasp

the fascinating functional heterogeneity of DCs.

RESULTS

A Unique Gating Strategy Allows the Identification of
cDC1s and cDC2s across Mouse Tissues
CD64 is highly expressed on Macs and can be used in combina-

tion with F4/80 to discriminate these cells from cDC2s (Bain

et al., 2012; Gautier et al., 2012; Langlet et al., 2012; Plantinga

et al., 2013; Schlitzer et al., 2013; Scott et al., 2015; Tamoutoun-
Figure 1. Identification of cDC1s and cDC2s across Mouse Tissues

(A) Representative flow cytometry plots showing identification of CD64hiF4/80hi m

cDC1 (blue gate), and XCR1loCD172ahi cDC2 (green gate) in the spleen, liver, lung

S1). Cells were pre-gated as single live CD45+ cells. Lung CD64hiF4/80hi macro

monocyte-derived cells (MC), and MHCIIhiCD11clo interstitial macrophages.

(B) IRF8 and IRF4 expression of cDC1, cDC2, and macrophage (flow panel: see

(C) Relative numbers of cDCs andmacrophages amongCD45+ cells in the indicate

the skin.

(D) Competitive BM chimeric mice were generated by lethally irradiating CD45.1

CD45.2+ BM with WT CD45.1+ BM. The ratio between CD45.1+ and CD45.2+ is

(E) Piecharts of the proportion of cDC1s, cDC2s, macrophages, and LC across mo

experiments, with at least three mice per group (C, D). * = p < 0.05.

Please see Figure S1 for the profile of macrophages from the distinct tissues, an
our et al., 2013) (Figure 1A). Outgating Macs on the basis of their

CD64+F4/80+ phenotype is essential to prevent them from

contaminating the cDC2 gate in most tissues (Figure S1). As

F4/80 is expressed on a part of the cDC2s, it should not be

used alone to exclude Macs, as has been proposed (Gurka

et al., 2015). CD3+ T cells, CD19+B220+ B cells, and NK1.1+ nat-

ural killer (NK) cells were next excluded from further analysis

using a ‘‘lineage mix’’ and the remaining cells gated for expres-

sion of MHCII molecules (Lineage�MHCII+ cells). pDCs can

be found among the lineage+ (Lin+) cells and identified as

120G8(CD317)+B220+CD11c+Ly6C+CD11b� cells (Figure S1).

To obviate the fact that CD11c, a ‘‘classical’’ cDC marker, can

be downregulated on DCs (Osorio et al., 2014) and is lowly ex-

pressed by the ‘‘double-negative’’ cDC2s found in the dermis

(Tussiwand et al., 2015), CD26 was added as an additional

cDC marker, since it is highly expressed on all mouse cDCs

across tissues (see below). This permitted us to identify a

well-defined population of CD11c+CD26+ cDC across tissues

(Figure 1A, cyan gate) that can be further subdivided into

XCR1hiCD172alo (dark blue gate) and XCR1loCD172ahi (green

gate) cDCs.

To validate that XCR1hiCD172alo and XCR1loCD172ahi cells

corresponded to cDC1s and cDC2s, respectively, we relied on

their differential expression on IRF8 and IRF4 (Murphy et al.,

2015; Sichien et al., 2016). Analysis of the co-expression of

both transcription factors (TFs) by intracellular staining revealed

that XCR1hiCD172alo cDC1 and XCR1loCD172ahi cDC2 had an

IRF8hiIRF4lo or IRF8loIRF4hi profile, respectively (Figure 1B),

while Macs and pDCs had an IRF8intIRF4int or IRF8hiIRF4lo-int

profile, respectively (Figure 1B and Figure S1). The pulmonary

CD11c+MHCII+CD64+F4/80+CD172a+ monocyte-derived cells

(often referred to as moDCs) also had an IRF8intIRF4int profile.

As expected, cDCs were lacking in Flt3L�/� mice (Figure 1C)

and competitive BM chimeras showed that cDC1 development

was BATF3 dependent and IRF4 independent in all tissues

analyzed (Figure 1D). cDC2s developed independently of

BATF3, whereas they were IRF4 dependent particularly in the

LNs. This likely reflects a late requirement for IRF4 in cDC2 sur-

vival (Persson et al., 2013; Schlitzer et al., 2013) and is consistent

with the fact that IRF4 deficiency blocks the migration of dermal

cDC2s to cutaneous LNs, but not their intradermal development

(Bajaña et al., 2012). Therefore, the differential dependence on

subset-defining TFs and growth factors validates the correct

identification of cDC1s and cDC2s using just eight surface

markers. Intracellular IRF4-IRF8 double staining can be further

used to validate the correct assignment of cDC1s, cDC2s,
acrophages (orange gate), CD11chiCD26hi cDC (cyan gate), XCR1hiCD172alo

, small intestine, and large intestine of wild-type (WT) mice (flow panel see Table

phages were subdivided in CD11chi alveolar macrophages, MHCIIhiCD11chi

Table S2).

d tissues ofWT and Flt3l�/�mice. See Figure 2 for the gating strategy utilized in

+CD45.2+ WT mice and reconstituting with a 50:50 mix of Batf3�/� or Irf4�/�

shown for cDC1s and cDC2s.

use tissues. Data are representative of three (A, B, C, E) or two (D) independent

d for the identification of pDCs.
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pDCs, and Macs across tissues. Identifying cDC1s and cDC2s

across tissues in parallel allowed us to analyze their relative

abundance in all tissues (Figure 1E).

Inclusion of CD24 Permits the Separation of Langerhans
Cells from Dermal cDC2s
The network of myeloid cells found in the mouse skin and cuta-

neous LNs is particularly complex to dissect due to the presence

of LCs. LCs share many markers with cDCs (MHCII, CD207 [lan-

gerin], CD24, and CD11c) and Macs (F4/80) (Henri et al., 2010;

Malissen et al., 2014). Presently, LC radioresistance constitutes

the best way to distinguish them from radiosensitive dermal

cDCs (Ginhoux et al., 2007; Henri et al., 2010). To distinguish

LCs from cDCs, CD64+F4/80+ Macs were first outgated and

the broadly CD11c+CD26+ cells found among Lin�MHCII+ cells

(Figure 2A, cyan gate) were subdivided into XCR1hiCD172alo

and XCR1loCD172ahi cells. Owing to their CD64loLin�MHCII+

XCR1loCD172ahi phenotype, LCs must be distinguished from

bona fide cDC2s present in the same gate, and CD24 expression

allowed this. On a CD26-CD24 dot plot, CD26intCD24lo cDC2s

(green gate) were readily distinguishable from CD26loCD24hi

LCs (purple gate). The distinction of cDCs from LCs on the basis

of this minimalistic surface marker combination was validated

using BM chimeras (Figure 2B). Intracellular IRF4-IRF8 staining

validated the correct identification of DCs and macrophages

(Macs), in that all cDC1s displayed an IRF8hiIRF4lo profile, all

cDC2s displayed an IRF8loIRF4hi profile, and all Macs and LCs

displayed an IRF8intIRF4int profile (Figures 1 and 2). Therefore,

our gating strategy allows cDC1s and cDC2s to be identified

across mouse tissues when CD24 is added to the panel to sepa-

rate LCs from cDCs in skin.

The dermis has been shown to contain cDC1s with a CD103hi

and CD103lo phenotype and double-negative cDC2s that have

low expression of CD11c and CD11b (Henri et al., 2010; Tussi-

wand et al., 2015). Therefore, we added CD103 and CD11b to

the panel. Skin cDC1s indeed comprised both CD103hi and

CD103lo cells. Among skin cDC2s, CD11b expression permitted

CD11bloCD11clo double-negative cDC2s (olive green gate) to be

distinguished from CD11bhiCD11chi cDC2s (green gate). None-

theless, all cDC1s had a homogeneous IRF8hiIRF4lo profile and

were BATF3 dependent and IRF4 independent, whereas all

cDC2s showed a homogeneous IRF8loIRF4hi profile and were
Figure 2. Identification of cDC1 and cDC2 in the Murine Skin and Kidn

(A) Representative flow cytometry plots showing identification of CD64hiF4/80hi m

cDC1 (blue gate), XCR1loCD172ahi cDC2 (green gate), and CD24hiCD26lo LC

intracellular IRF8-IRF4 panel, see Table S2). Cells were pre-gated as single live C

(B) BM chimeric mice were generated by lethally irradiating CD45.2+ WT mice

CD45.2+CD45.1� MHCIIhiCD11chi cells in the skin and the skin-draining auricul

(purple) and LN (pink) LCs, is shown.

(C) Competitive BM chimeric mice were generated by lethally irradiating CD45.1

CD45.2+ BM with WT CD45.1+ BM. The ratio between CD45.1+ and CD45.2+ is

cDC2s. Data are representative of three (A) and two independent experiments (B

(D) Representative flow cytometry plots showing identification of CD64+F4/80+ ce

gate), and XCR1loCD172ahi cDC2 (green gate) in the kidney of WT mice (extra

CD64+F4/80+ cells, cDC1s, and cDC2s were subsequently analyzed for express

show CD64, F4/80, CD26, and CD11c expression among CD64+F4/80+IRF4intIR

(E) Proportion (of Live CD45+) and absolute number of CD26+CD11c+CD64� cDC

(purple gate) in the kidneys of Flt3L+/+ and Flt3L�/� mice. **p < 0.01, ***p < 0.0

experiments (B–D) or are pooled from two independent experiments (E) with n =

Please see Figure S2 for the use of FlowSOM to analyze mutant mouse strains a
BATF3 independent and IRF4 dependent (Figures 2A and 2C).

This illustrates that using a restricted set of lineage-imprinted

markers facilitates the correct alignment of cDCs into cDC1s

and cDC2s according to their ontogeny while still permitting

the inclusion of additional markers to further gauge the presence

of different subsets of cDC1s and cDC2s within a given tissue.

Kidney CD64+ cDC2 Can Be Identified by Their
CD26hiCD11chiIRF8loIRF4hi Profile
Clec9A-based fate-mapping identified a putative cDC2 subpop-

ulation expressing CD64 in the kidney (Schraml et al., 2013).

Consistent with this, our gating strategy revealed that, unlike in

other organs, kidney CD64+F4/80+ cells were not homoge-

neously IRF8intIRF4int (Figure 1) but contained a small population

of IRF8loIRF4hi cDC2-like cells (Figure 2D). These IRF8loIRF4hi

cells expressed higher CD26 and CD11c and lower F4/80

and CD64 compared with IRF8intIRF4int cells (Figure 2D).

Furthermore, IRF8loIRF4hiCD64+F4/80+ cells, but not the

IRF8intIRF4intCD64+F4/80+ cells, were Flt3L dependent, identi-

fying the IRF8loIRF4hi and IRF8intIRF4int cells as cDC2s and

Macs, respectively. Therefore, regardless of the expression of

CD64 on a small fraction of kidney cDC2s, our gating strategy

unambiguously identified cDC2s in the kidney.

Unsupervised Analysis Aligns cDC1 and cDC2 across
Mouse Tissues
The flow cytometry dataset from distinct tissues was subjected

to the unsupervised identification method FlowSOM (Van Gas-

sen et al., 2015). FlowSOM uses a self-organizing map (SOM)

to cluster cells in different nodes based on the expression of

the distinct markers used in a given flow cytometry dataset

and subsequently structures the nodes in a minimal spanning

tree. We first concatenated live CD45+ cells from all tissues

and used FlowSOM to generate a single FlowSOM tree. To iden-

tify the node(s) corresponding to the cDC1s and cDC2s, we

defined them ab initio as XCR1hiCD24hiCD26hiCD11chiMHCIIhi

CD11bloCD172aloF4/80loCD64loLinloFSCloSSClo and CD11bhi

CD172ahiCD26hiCD11chiMHCIIhiXCR1loF4/80loCD64loLinloFSClo

SSClo cells, respectively (Figure 3). For each node, we calculated

a final score indicating its correspondence with the defined

cDC1 or cDC2 profile. First, a marker score was calculated for

each node as the difference between the median value of the
eys

acrophages (orange gate), CD11chiCD26hi cDC (cyan gate), XCR1hiCD172alo

(purple gate) in the skin of WT mice (extracellular flow panel, see Table S1;

D45+ cells.

and reconstituting with CD45.1+ BM. Radioresistant LC were identified as

ar lymph nodes. The CD26-CD24, as well as the CD11b-F4/80 profile of skin

+CD45.2+ WT mice and reconstituting with a 50:50 mix of Batf3�/� or Irf4�/�

shown for CD103hi and CD103lo cDC1s, as well as for CD11bhi and CD11blo

and C).

lls (orange gate), CD11c+CD26+ cDC (cyan gate), XCR1hiCD172alo cDC1 (blue

cellular flow panel see Table S1). Cells were pre-gated as single live CD45+.

ion of IRF4 and IRF8 (intracellular IRF8-IRF4 panel, see Table S2). Histograms

F8int cells (red gate) and CD64hiF4/80hiIRF8loIRF4hi cells (purple gate).

s (cyan gate), IRF4intIRF8intCD64+ cells (red gate), and IRF4hiIRF8loCD64+ cells

01 Student’s t test. Data are representative of three (A) and two independent

7 per group.

utomatically.
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Figure 3. Unsupervised Identification of cDC1 and cDC2 across Mouse Tissues Using FlowSOM

(A–C) Cells from the lungs, spleens, livers, small intestines, and colons from threeWTmice were stained with the extracellular panel (Table S1). Single live CD45+

for each sample were exported and concatenated. This concatenated file was then analyzed using FlowSOM and cells were clustered into 49 nodes. To identify

the node(s) corresponding to the cDC1s and cDC2s, we defined cDC1 as XCR1hiCD24hiCD26hiCD11chiMHCIIhiCD11bloCD172aloF4/80loCD64loLinloFSCloSSClo

and cDC2 as CD11bhiCD172ahiCD26hiCD11chiMHCIIhiXCR1loF4/80loCD64loLinloFSCloSSClo. A score indicating the correspondence with the requested cell

profile was then attributed to each node in the FlowSOM tree. (C) All nodes with a final score of at least 0.95 times the highest score were selected as fitting the

requested profile, yielding one cDC1 node (blue) and two cDC2 nodes (green).

(D) FlowSOM trees for each tissue separately.

(E) The cells present in the cDC1 and cDC2 nodes of the distinct tissues were exported andmanually analyzed for their XCR1, CD172a, CD11c, CD26, CD64, and

F4/80 expression. The black gates correspond to the manual gates used in Figure 1. The data shown are representative of two independent experiments. The

FlowSOM algorithm was run five times to ensure reproducibility of the results.

Please see Figure S3 for the use of FlowSOM and tSNE to analyze mutant mouse strains automatically.
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node for that marker and theminimumormaximummedian node

value present in the tree. Then, for each marker, the score was

normalized between zero and one, and the final node score

was then computed as the mean of its scores for each individual

marker. All nodeswith a final node score of at least 0.95 times the

highest scorewere selected as fitting the profile. This yielded one

cDC1 node and two cDC2 nodes (Figure 3C). Separate analysis

of each tissue confirmed the presence of discrete cDC1 and

cDC2 nodes in all tissues (Figure 3D). Finally, exporting the

cells within the cDC1 and cDC2 nodes identified by FlowSOM

on XCR1-CD172a, CD11c-CD26, and CD64-F4/80 dot plots

confirmed that cDC1 and cDC2 were correctly identified across

tissues (Figure 3E). Notably, although cDC2s are defined as

F4/80lo, FlowSOM clustered F4/80int cDC2 with the F4/80lo

cDC2 (Figure 3E), since a small difference in one marker is not

sufficient to separate cells into two separate clusters. Therefore,

unsupervised analysis corroborated our manual gating strategy

and allowed the robust and fully automated identification of

cDC1s and cDC2s across mouse tissues.

Unsupervised Analysis of Mutant Mouse Strains Using
FlowSOM and tSNE Outperforms Manual Analysis
An additional advantage of unsupervised identification algo-

rithms such as FlowSOM or tSNE is that each marker on a cell

is analyzed simultaneously, compared with manual techniques

that rely on sequential gating using pairs of surface markers.

We have recently reported that splenic cDC1s lacking XBP1

downregulate their surface expression of CD11c (Osorio et al.,

2014). This results in the loss of a fraction of CD11clo cDC1s

from the analysis when using a classical manual gating strategy

(Figure S2A). In contrast, since our proposed manual gating

strategy includes identification of cDCs by their CD11c+CD26+

profile, it was easier to avoid missing the CD11clo cDC1s, as

these cells maintained their high CD26 profile (Figure S2B).

More importantly, both FlowSOM (Figures S2D and S2E) and

tSNE (Figure S2F) readily identified cDC1s regardless of

their lower CD11c expression because the remaining XCR1hi

CD172aloCD64loF4/80loMHCIIhiCD26hi profile was sufficient to

identify these cells as cDC1s in a fully unsupervised way. This

demonstrates that unsupervised gating using FlowSOM or

tSNE outperformed classical manual gating for the analysis of

the DC compartment of XBP1-deficient mice.

A Conserved Gating Strategy Aligns cDC Subsets in
Mouse, Human, and Macaque Tissues
We next aimed to align DCs across mouse, macaque, and hu-

man tissues (Figures 4 and S3). We first had to overcome a

few obstacles, such as the species-specific expression pattern

of some markers (CD64 in human and macaque) and the lack

of cross-reactive antibodies (CD26 for macaque and XCR1 for

human and macaque). In human and macaque, CD64 cannot

be used, as cDCs also express some CD64 (Figure S3E). There-

fore, we opted to exclude monocytes and macs on the basis

of CD14 and CD16 expression as classically used. In mouse,

human, and macaque and in all organs tested (spleen, liver,

lung for mouse and spleen, blood, lung for human and

macaque), cDCs were thus defined as CD45+Lin�MHCIIhi

CD11cint-hi cells that are F4/80lo-intCD64lo in mouse and

CD14loCD16lo in human and macaque. As in the mouse, CD26
was further used to define cDCs in humans. Although mouse

cDC1s and cDC2s were both CD11chiCD26hi, human cDC1s

were CD26hiCD11cint, whereas cDC2s were CD26loCD11chi

(Figure S3B).

We investigated whether CADM1 could be used as a cDC1

marker instead of XCR1 since CADM1 is expressed on porcine

and macaque cDC1s (Dutertre et al., 2014; Maisonnasse et al.,

2015). To compare the degree of overlap between the expres-

sion of XCR1 and CADM1, we used a chimeric protein consisting

of human XCL1—the ligand of XCR1—and of the mCherry fluo-

rescent protein (mCherry-XCL1 vaccibodies [Fossum et al.,

2015]) to detect XCR1 on human and macaque spleen cells

(Figure S4). All CADM1hiCD172alo cDC in human, macaque,

and mouse spleen displayed a high XCR1 expression and also

strongly expressed IRF8, but not IRF4 (Figure S4). Thus,

cDC1s can be defined as CADM1hiCD172alo cDC in mouse, hu-

man, and macaque. We next evaluated the use of this panel in

multiple mouse, human, and macaque tissues in combination

with classical human DC markers such as CD1c (BDCA1) (Fig-

ure 4). While CADM1loCD172ahi cells comprised only IRF4hi

IRF8lo bona fide cDC2s in mouse, two populations of CADM1lo

CD172ahi cells were detected in human and macaque lung: a

population of bona fide cDC2s with a CD1chiIRF4hiIRF8lo pheno-

type and a population of CD1clo cells showing the typical

IRF4intIRF8int expression observed for macs (Figures 4C and

S4A). Therefore, in the case of human and macaque, mono-

cytes or macs were not properly outgated using CD14 and

CD16 expression, and CD1c expression was further required

to define cDC2s. Hence, across tissues and species,

cDC1s and cDC2s could be identified as CADM1hiCD172alo

CD11cint-hiCD26hiIRF8hiIRF4lo and CADM1loCD172ahiCD1chi

CD11chiIRF4hiIRF8lo cells, respectively. Akin to mouse pDCs,

human and macaque pDCs (defined as CD45+CD11cloHLADRhi

cells) were IRF8hiIRF4int across tissues (Figures S4B–S4D).

Finally, in the human and macaque skin, the gating strategy

required an additional marker, CD1a, to identify and outgate

CD1ahiCD11cint LC before cDC1s and cDC2s could be faithfully

identified (Figure S4). Therefore, using a limited number of flow

cytometry markers, it is possible to align cDC subsets across

several human, macaque, andmouse tissues, including the skin.

tSNE Automatically Identifies cDCs across Tissues and
Species
We next used tSNE to perform an unsupervised analysis of the

flow cytometry dataset generated from different tissues of

mouse, human, and macaque (Figure 5). For each species (Fig-

ures 5A, 5E, and 5I), CD45+Lin�MHCIIhi cells of the distinct

tissues were exported, concatenated, and displayed in a single

tSNE contour plot (tSNE_dim1-tSNE_dim2). Heatmap represen-

tations of the expression of various markers that define Macs,

cDCs, and pDCs defined clusters of cells corresponding to the

different cell subsets (Figures 5B, 5F, and 5J). Cells falling in

the cDC1 (blue), cDC2 (green), and (for human and macaque)

pDC (pink) tSNE cell clusters were overlaid on classical contour

plots, indicating that the DC subsets automatically delineated

on tSNE fit the criteria used to define them by manual gating

(Figures 5C, 5G, and 5K). Comparison of the different tis-

sues showed that equivalent DC subsets always fell in the

same tSNE regions (Figures 5D, 5H, and 5L). Additionally,
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Figure 4. Defining cDC Subsets in Mouse,

Human, and Macaque Using Similar Gating

Strategies in Different Tissues

(A) Representative flow cytometry plots showing

identification of cDC1 (blue gate) and cDC2 (green

gate) in mouse, human, and macaque spleens.

(B) Representative flow cytometry plots showing

identification of cDC1s (blue gate) and cDC2s

(green gate) in the mouse liver and peripheral

human and macaque blood.

(C) Representative flow cytometry plots showing

identification of cDC1 (blue gate) and cDC2 (green

gate) in mouse, human, and macaque lungs. Macs

were outgated using CD64-F4/80 for mouse tis-

sues and CD14-CD16 for human and macaque

tissues (see Figure S4). Among CADM1loCD172ahi

cells, cDC2 were validated as XCR1lo cells in

mouse tissues. Human and macaque cDC2s

were gated as CD11chiCD1chi among CADM1lo

CD172ahi cells to avoid contamination of

CD11chiCD1clo cells (see Figure S5). CADM1hi

CD172alo cells were further analyzed for the

expression of XCR1 (mouse), CD26 (human), and

IRF8 (macaque) to validate the correct cDC1

identification. For each organ, the IRF8-IRF4 pro-

files of cDC1 (blue) and cDC2 (green) are shown.

Data are representative of at least three inde-

pendent experiments using cells from different

individuals.

Please see Figure S4 for the gating strategies.
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tSNE analysis confirmed that, in human lung, CD14loCD16lo

HLADRhiCD172ahiCD1cloIRF4intIRF8int cells, identified by manual

gating (Figures 4 and S4A), were indeed related to monocytes or

Macs since they clustered with CD14loCD16hi monocytes (Fig-

ures S4C and S4D).

One-SENSE Analysis of CyTOF Data Reveals
Heterogeneity of DC Subsets across Mouse and Human
Tissues
To elucidate the heterogeneity among the DC subsets, mass

cytometry (CyTOF) data were acquired from different mouse
8 Immunity 45, 1–16, September 20, 2016
and human tissues and total DC

events were analyzed using One-SENSE

(one-dimensional soli-expression by

nonlinear stochastic embedding) (Cheng

et al., 2015). Here, manually chosen

lineage-imprinted markers define the

first dimension, and the other markers

define the second dimension (Figure 6).

The ‘‘lineage dimension’’ was defined

using two positive markers per DC

subset. This resulted in the generation

of multiple clusters of CADM1hiCD26hi

cDC1 (blue), CD172ahiCD11bhi (mouse),

or CD172ahiCD1chi (human) cDC2s

(green) and SiglecHhiB220hi (mouse) or

CD123hiCD303hi (human) pDCs (pink)

(Figures 6A and 6D). Binned frequency

heatmaps were generated for each

dimension.
In human tissues, the lineage dimension validated the estab-

lished DC subsets and also revealed contaminating CD172ahi

CD1clo cells (regiondelineatedbyanorange rectangle), separating

them from the bona fide CD172ahiCD1chi cDC2s (Figure 6D). As

before, these contaminating cells were confirmed to be CD11chi

CD26loCADM1loCD172ahiCD1clo cells when visualized in classical

two-dimensional (2D) contour plots (Figure 6E).

The marker dimension gave key information concerning the

degree of heterogeneity that exists among DC subsets (Figures

6A and 6D). Such heterogeneity can be primarily accounted for

by tissue imprinting (Figures 6B and 6F). Heatmaps (Figures



(legend on next page)
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6C and 6G), 2D contour plots, or histograms (Figure S5) illus-

trated the mean expression of the list of differentially expressed

markers for each of the three DC subsets. In mouse, this analysis

confirmed that ESAMhi cDC2s (cluster 3) were mainly found

in the spleen, while spleen cDC1s (cluster 5) had the highest

CD8a and the lowest CD103 expression compared with the

majority of cDC1s in the lung and gut (clusters 4 and 6, Fig-

ure 6C). In humans, cDC phenotypic heterogeneity was also

mostly explained by the tissue of residence (Figure 6F). Further-

more, some heterogeneity could be observed for human pDCs

with a subset expressing higher CD141, CD56, CLA, CD62L,

CD5, CXCR3, CD2, CX3CR1, and CD39 (cluster 6) being

observed in the spleen and in lower proportions in the blood

and lung. Therefore, our analysis reveals a previously unappreci-

ated phenotypic heterogeneity in both mouse and human DCs

that can now be mined for functional relevance.

One-SENSE Analysis of CyTOF Data Automatically
Delineates DC Activation during Inflammation
To demonstrate the usefulness of our approach in inflamma-

tory settings, we utilized One-SENSE to track the activation

of cDC1s, cDC2s, and monocyte-derived cells upon LPS-

induced inflammation in mice. Lin�MHCII+CD11c+ cells from

the lung and mediastinal LNs harvested 1, 2, or 3 days

following intranasal treatment with LPS were profiled using

CyTOF followed by One-SENSE analysis (Figures 7 and

S6A). Lin�MHCII+CD11c+ cells from the different time points

post-LPS were exported and concatenated, yielding a single

One-SENSE analysis for the lung (Figure 7A) and for the LN

(Figure 7F). F4/80 and CD64 were added to the lineage

markers to analyze monocyte-derived cells, yielding separated

clusters of CD26hiCADM1hiCD11bloCD172alo cDC1 (blue clus-

ters), CD11bhiCD172ahiF4/80lo-intCD64lo-int cDC2 (green clus-

ters), and CD11bhiCD172ahiF4/80hiCD64hi monocyte-derived

cells (orange clusters). These were then further subdivided

into multiple smaller clusters along the ‘‘marker dimension,’’

revealing variations linked to the duration of LPS treatment

(Figures 7B, 7C, 7G, and 7H), including progressive pheno-

typic changes in expression of costimulatory receptors and

inflammatory cytokines (Figures 7D, 7E, 7I, and 7J). This anal-

ysis also revealed striking differences in the proportion of

cDCs and monocyte-derived cells in both organs after LPS

challenge. Day 1 (D1) following LPS-treatment, cDC1s and

cDC2s were strongly reduced in the lung, which was paral-

leled by a massive accumulation of monocyte-derived cells

that represented 95% of all lung Lin�MHCII+CD11c+ cells by

D3 after LPS. Monocyte-derived cells appeared later in the

LN, and their frequency gradually increased from below 1%

at D0 and D1 to 36% at D3.
Figure 5. tSNE Analysis of Flow Cytometry Data from Lineage–MHCII+

Unsupervised analysis of single live CD45+Lin–MHCIIhi events from the flow cyt

macaque blood, spleen, and lung using nonlinear dimensionality reduction in co

(A, E, and I) tSNE plot of concatenated above-cited organs are shown.

(B, F, and J) The heatmaps of the selected markers on the concatenated tSNE plo

cDC1, cDC2 or pDC (only for human and macaque).

(C, G, and K) Backgating of the cDC1 (blue), cDC2 (green), and pDC (pink) cluste

(D, H, and L) tSNE plots obtained for each individual (D) mouse, (H) human, or

CD11chiCD1clo CADM1loCD172ahi cells and identification of cDCs in the human
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At D0, both cDC subsets found in the lung and LN were not

activated (low CD40, CD80, and CD86 expression), and cDCs

reached maximal activation only after migration to the LNs (see

migratory cDC2 #3, cDC1 #6, and #7 at D1 in the LN). Lung

monocyte-derived cells upregulated the costimulatory mole-

cules CD80 and CD86, as well as the inhibitory receptor PDL1

(see monocyte-derived cells #3 at D3). We also observed a

progressive increase of FcεRI, Bst2, and Sca1 expression by

monocyte-derived cells in the lung post-challenge (expression:

#1 < #2 < #3; Figures 7D and 7E). LN monocyte-derived cells

likely represent cells directly recruited from the bloodstream,

as previously described (Nakano et al., 2009). Both lung and

LN monocyte-derived cells expressed inflammatory cytokines

IL-12p70, tumor necrosis factor (TNF), and interleukin-6 (IL-6),

whereas high costimulatory molecule expression was limited to

those in the lung. Altogether, this analysis demonstrates the

power of our approach in which cDCs and monocyte-derived

cell activation can be tracked automatically during an inflamma-

tory response. This open-ended approach could, in the future,

include phospho-STAT signaling analysis or a wider range of

cytokines, chemokines, or costimulatory receptors.

DISCUSSION

Recent developments in computational methods permit more

robust analysis of flow cytometry and CyTOF data. Relying on

objective mathematical principles to define cellular clusters,

automated analyses increase the reproducibility of flow analysis

by circumventing manual gating (Saeys et al., 2016). This consti-

tutes a major improvement, since manual gating is one of the

largest variables in the analysis of flow cytometry experiments

(Mair et al., 2015). Furthermore, automated analyses assess

the expression of all markers simultaneously and are not influ-

enced by the order in which cells are gated, as inmanual sequen-

tial pairwise comparisons. Finally, these techniques simplify the

visualization of the multidimensional datasets, which is particu-

larly important when analyzing such data with more than 30

markers. However, application of these techniques for the study

of DCs has remained limited.

Here, we have defined lineage-imprinted surface markers that

permit the faithful identification of cDC1s and cDC2s across

species and tissues by adding CD26 as a cDC marker comple-

mentary to CD11c, combiningCD64 and F4/80 to ensure a better

distinction between DCs and Macs in mice, using CADM1 or

XCR1 in combination with CD172a to separate cDC1s from

cDC2s, and using IRF8-IRF4 staining to validate the identifi-

cation of cDC1s and cDC2s. Our strategy was validated using

ontogenic criteria. Moreover, unsupervised computational tech-

niques, such as FlowSOM and tSNE, confirmed the robustness
Cells across Mouse, Human, and Macaque Tissues

ometry data of (A–D) mouse liver, spleen, and lung and (E–H) human or (I–L)

njunction with the t-distributed stochastic linear embedding (tSNE) algorithm.

ts are used to define the clusters of cells (circled) that display the phenotype of

rs defined in the tSNE plots into classical flow cytometry dot plots.

(L) macaque organs. Please see Figure S5 for analysis of the contaminating

and macaque skin.



Figure 6. One-SENSE Unsupervised Analysis of CyTOF Data to Simultaneously Define DC Subsets and Their Heterogeneity across Mouse

and Human Tissues

Lin�MHCII+CD26+CD11c+ or SiglecH+ events from mouse (A–C) and Lin�HLADR+ events from human (D–G) from CyTOF data from mouse spleen, lung, and

intestine (A–C) and human blood, spleen, lung, and intestine (D–G) were analyzed using nonlinear dimensionality reduction in conjunction with the One-SENSE

algorithm.

(legend continued on next page)
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of our strategy for defining cDC1s and cDC2s across mouse,

human, and macaque tissues. These techniques could also

identify cDC1 and cDC2 populations automatically, paving the

way toward the reliable analysis of the DC compartment of

many mutant mice in a high-throughput, unsupervised, and

standardized manner. Importantly, automated identification

can outperform classical manual gating in the analysis of mutant

strains when markers change their expression profile, as was

exemplified here with the correct identification of CD11clo

XBP1-deficient cDC1s that were missed by the classical manual

gating strategy.

Although XCR1 identifies cDC1s in mouse (Crozat et al., 2010;

Dorner et al., 2009) and is highly expressed on human and ma-

caque cDC1s, as demonstrated with XCL1-mCherry vaccibod-

ies, no commercial anti-human or anti-macaque XCR1 antibody

is currently available. Similarly, although CD26 is expressed by

macaque DCs at the RNA level (data not shown), none of the

commercial anti-CD26 antibodies tested showed cross-reac-

tivity with macaque. Generating cross-species reactive anti-

XCR1 and anti-CD26 antibodies will be invaluable, as it will allow

further simplification of the minimalistic and universal cDC

phenotyping panel proposed here. Likewise, identifying better

Mac-specific markers will smoothen this approach. Ideally, we

would need one or two surface markers that allow the identifica-

tion of all Macs (including LCs) across tissues and species, an

essential issue to avoid contamination of the cDC2 population

since Macs are also XCR1loCD172ahi.

As confirmed by the addition of additional markers to our

standard minimalistic panel, previous studies have shown that

heterogeneity exists within the cDC1 and cDC2 populations.

For instance, mouse skin XCR1hiCD172aloIRF8hiIRF4lo cDC1s

comprise both CD103hi and CD103lo cells (Henri et al., 2010). In

mouse, the foundations ofDCsubset specialization are imprinted

in the BM, as pre-cDCs already contain cells committed toward

the cDC1 or cDC2 lineage before colonizing peripheral tissues

(Grajales-Reyes et al., 2015; Schlitzer et al., 2015). These line-

age-imprinted programs include the mutually exclusive expres-

sion of XCR1 versus CD172a and of IRF8 versus IRF4. To acquire

the phenotype of terminally differentiated tissue cDC1s and

cDC2s, precursors likely further integrate tissue-associated pro-

grams on the top of those lineage-imprinted foundations.

In some organs, cDCs occupy distinct micro-anatomical com-

partments that can provide distinct environmental cues to devel-

oping cDC1s and cDC2s. For example, only those cDC2s that

are localized in the splenic bridging channels specifically ex-

press CD4. This subset of splenic cDC2s requires Notch2 for

their terminal differentiation (Caton et al., 2007; Lewis et al.,
(A and B) The lineage dimension of the mouse One-SENSE plots includes CAD

Siglec-H and B220 as pDC markers.

(D and F) The lineage dimension of the human One-SENSE plots includes CADM1

andCD303 as pDCmarkers. Themarkers dimension includes all the other non-line

are displayed for both dimensions. cDC1 clusters (delineated in blue), cDC2 clu

CD172aloCD1clo contaminating myeloid cell clusters (orange), are shown on the

individual plots for each organ (B and F).

(E) Classical contour plots showing the expression of CD123, CD11c, CD26,

CD172ahiCD1clo cells (orange).

(C and G) Heatmaps of themean expression intensity of selectedmarkers for the d

clusters shown in the analysis of the file containing the concatenated cells from

Please see Figure S6 for classical contour plots, histograms of the mouse surfac
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2011) and depends on the expression of chemotactic receptor

EBI2 for their localization in the bridging channels (Gatto et al.,

2013). Analysis by flow cytometry of the splenic DC compart-

ment of EBI2-deficient or NOTCH2-deficient mice using only

XCR1 and CD172a yields a less dramatic phenotype than

with the inclusion of CD4, because a significant fraction of

CD172a+CD4� cDC2s are found in thesemice. Use of additional,

tissue-imprinted markers such as CD4 is therefore required to

fully appreciate the functional heterogeneity of the splenic cDC

compartment. As such, understanding those tissue-imprinted

programs requires a second level of analysis. The One-SENSE

approach we have described fulfills such a requirement, as it

first aligns the DC across tissues based on lineage-imprinted

markers yielding a simplified lineage dimension and subse-

quently analyzes the heterogeneity resulting from the tissue-im-

printed programs through an unsupervised ‘‘marker dimension.’’

It simplifies the classification of DCs into cDC1s and cDC2s

across tissues and species based on conserved lineage-im-

printed markers without losing the power that multi-dimensional

analyses offer. On that basis, we have gauged the differences

that exist in cDC1s and cDC2s according to their tissue of resi-

dence and following an inflammatory insult. This highlighted

the importance of peripheral programming on cDC develop-

ment. This type of analysis can be readily expanded to track

any parameters of interest, such as the production of inflamma-

tory mediators, or to dissect particular signaling pathways using

phospho-flow approaches.

In conclusion, the herein described methodology should pro-

vide a useful framework to analyze the complexity of the DC

compartment, paving the way toward the identification of the

best DC subset(s) to target for specific therapeutic applications

such as the development of next-generation vaccines.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6 mice used in France and Belgium were obtained from Harlan or

Janvier Laboratories. Flt3l�/� and Itgaxcre x Xbp1fl/fl mice were housed in the

VIB-UGent animal facility. C57BL/6 mice for the experiment in Singapore

were from the Biological Resource Center (BRC), Agency for Science, Tech-

nology and Research (A*STAR). All animals were housed under specific

pathogen-free conditions in individually ventilated cages in a controlled day-

night cycle and were given food and water ad libitum. All animal experiments

performed were approved by the local animal ethics committee (VIB-UGent;

Institutional Animal Care and Use Committee of the Biological Resource

Center, A*STAR; CIML) and were performed according to the guidelines of

Belgian, French, and European animal protection law and of the Agri-Food

and Veterinary Authority and the National Advisory Committee for Laboratory

Animal Research of Singapore. See Supplemental Experimental Procedures
M1 and CD26 as cDC1 markers, CD172a and CD11b as cDC2 markers, and

and CD26 as cDC1markers, CD1c and CD172a as cDC2 markers, and CD123

agemarkers of the CyTOF panels. Frequency heatmaps ofmarkers expression

sters (delineated in green), pDC clusters (delineated in pink), and for human,

concatenated files containing the cells from all organs (A and D) and on the

CD172a, CADM1, and CD1c of cDC1 (blue), cDC2 (green), pDC (pink), and

ifferent clusters are shown. The numbers in (C and G) correspond to each of the

all organs (A and D).

e markers, and histograms of the human surface markers.
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for additional information about the generation of BM chimeras, the intranasal

LPS treatment, and the digestion of mouse tissues.

Intranasal LPS

C57BL/6 mice were treated or not intranasally with 5mg LPS (Invivogen)

and were euthanized 1, 2, or 3 days later. 8 hr before euthanasia, mice

were injected intraperiotoneally with 0.25mg of BrefeldinA (sigma) in

200 mL PBS.

Human Tissues

Human samples were obtained with approval from Singapore Singhealth and

National Health Care Group Research Ethics Committees. Normal skin was

obtained from mammoplasty and breast reconstruction surgery. Lung was

obtained from peritumoral tissue. Spleen was obtained from distal pancreat-

omy patients with pancreatic tumors. Samples were prepared as described

previously for skin (McGovern et al., 2014), lung (Schlitzer et al., 2013), and

colon (Watchmaker et al., 2014). Spleen was prepared in a similar manner

to lung.

Flow Cytometry Stainings

The antibodies and reagents used for FACS analyses of mouse tissues

are listed in Tables S1 (extracellular panel) and S2 (IRF4 and IRF8). The anti-

bodies used for FACS analyses of human tissues were all mouse anti-human

monoclonal antibodies, except the chicken anti-human CADM1 IgY primary

mAb. The list of antibodies and reagents used for human and macaque flow

cytometry experiments are listed in Table S3, and details of the antibody com-

binations (panels) can be found in Table S4. See Supplemental Experimental

Procedures for additional information.

Mass Cytometry Stainings, Barcoding, Acquisition, and Data Pre-

processing

For mass cytometry CyTOF analyses, purified antibodies were obtained from

Invitrogen, Becton Dickinson, Biolegend, eBioscience, BioXCell Fluidigm,

R&D biosystems AbD, and AbD Serotec using clones as listed in Table S5

for mouse experiments and in Table S6 for human experiments. Cells were

acquired and analyzed using a CyTOF Mass cytometer. The data were

exported as a traditional flow cytometry file (.fcs) format, and cells for each

barcode were deconvoluted using Boolean gating. One-SENSE analysis was

performed as recently described (Cheng et al., 2015). See Supplemental

Experimental Procedures for additional information.

FlowSOM and tSNE-Based Unsupervised Analysis

The automated analysis was performed by the FlowSOM algorithm (Van

Gassen et al., 2015) or the tSNE algorithm (Becher et al., 2014; Wong

et al., 2015). See Supplemental Experimental Procedures for additional

information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and seven tables and can be found with this article online at

http://dx.doi.org/10.1016/j.immuni.2016.08.015.
Figure 7. One-SENSE Unsupervised Analysis of CyTOF Data Unravels

following Intranasal LPS Administration

Analysis of (CD3-D19-CD49b-CD90-Ly6G)�MHCIIhiCD11c+ cells from the lung (A

to (D0) or at D1, D2, or D3 post intranasal LPS treatment were analyzed using CyT

algorithm.

(A, B, F, and G) The lineage dimension of the One-SENSE plots includes CADM1

and CD64 as monocyte-derived cell markers. The markers dimension includes ot

expression are displayed for both dimensions. cDC1 (delineated in blue), cDC2

clusters are shown on the concatenated files containing the cells from both orga

(C and H) Histograms of the proportion of each cluster are shown among total D

(D and I) Heatmaps of the mean expression intensity of selected markers for the d

clusters shown in the analysis of the file containing the concatenated cells from

(E and J) Classical contour plots showing the expression of F4/80, CD64, PDL1,

Please see Figure S7 for the CD11c-MHCII gates and for classical dotsplots of t
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