A. Cowman and B. Crabb, Invasion of Red Blood Cells by Malaria Parasites, Cell, vol.124, issue.4, pp.755-66, 2006.
DOI : 10.1016/j.cell.2006.02.006

R. Waller and G. Mcfadden, The apicoplast: a review of the derived plastid of apicomplexan parasites. Current issues in molecular biology, pp.57-79, 2005.

S. Ralph, G. Van-dooren, R. Waller, M. Crawford, M. Fraunholz et al., Metabolic maps and functions of the Plasmodium falciparum apicoplast, Nature Reviews Microbiology, vol.16, issue.3, pp.203-219, 2004.
DOI : 10.1093/nar/gkg081

L. Kats, C. Black, N. Proellocks, and R. Coppel, Plasmodium rhoptries: how things went pear-shaped, Trends in Parasitology, vol.22, issue.6, pp.269-76, 2006.
DOI : 10.1016/j.pt.2006.04.001

D. Soldati, J. Dubremetz, and M. Lebrun, Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii, International Journal for Parasitology, vol.31, issue.12, pp.1293-302, 2001.
DOI : 10.1016/S0020-7519(01)00257-0

C. Mercier, K. Adjogble, W. Daubener, and M. Delauw, Dense granules: Are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites?, International Journal for Parasitology, vol.35, issue.8, pp.829-878, 2005.
DOI : 10.1016/j.ijpara.2005.03.011

URL : https://hal.archives-ouvertes.fr/hal-00173252

N. Counihan, M. Kalanon, R. Coppel, and T. De-koning-ward, Plasmodium rhoptry proteins: why order is important, Trends in Parasitology, vol.29, issue.5, pp.228-264, 2013.
DOI : 10.1016/j.pt.2013.03.003

J. Bonifacino and B. Glick, The Mechanisms of Vesicle Budding and Fusion, Cell, vol.116, issue.2, pp.153-66, 2004.
DOI : 10.1016/S0092-8674(03)01079-1

C. Van-vliet, E. Thomas, A. Merino-trigo, R. Teasdale, and P. Gleeson, Intracellular sorting and transport of proteins, Progress in Biophysics and Molecular Biology, vol.83, issue.1, pp.1-45, 2003.
DOI : 10.1016/S0079-6107(03)00019-1

T. Sudhof and J. Rothman, Membrane Fusion: Grappling with SNARE and SM Proteins, Science, vol.323, issue.5913, pp.474-481, 2009.
DOI : 10.1126/science.1161748

H. Cai, K. Reinisch, and S. Ferro-novick, Coats, Tethers, Rabs, and SNAREs Work Together to Mediate the Intracellular Destination of a Transport Vesicle, Developmental Cell, vol.12, issue.5, pp.671-82, 2007.
DOI : 10.1016/j.devcel.2007.04.005

B. Frei, S. Rahl, P. Nussbaum, M. Briggs, B. Calero et al., Bioinformatic and Comparative Localization of Rab Proteins Reveals Functional Insights into the Uncharacterized GTPases Ypt10p and Ypt11p, Molecular and Cellular Biology, vol.26, issue.19, pp.7299-317, 2006.
DOI : 10.1128/MCB.02405-05

E. Quevillon, T. Spielmann, K. Brahimi, D. Chattopadhyay, E. Yeramian et al., The Plasmodium falciparum family of Rab GTPases, Gene, vol.306, pp.13-25, 2003.
DOI : 10.1016/S0378-1119(03)00381-0

H. Stenmark and V. Olkkonen, The Rab GTPase family, Genome biology, vol.2, issue.5, p.138937, 2001.

S. Rutherford and I. Moore, The Arabidopsis Rab GTPase family: another enigma variation, Current Opinion in Plant Biology, vol.5, issue.6, pp.518-546, 2002.
DOI : 10.1016/S1369-5266(02)00307-2

R. Collins, Application of Phylogenetic Algorithms to Assess Rab Functional Relationships, Methods Enzymol, vol.403, pp.19-28, 2005.
DOI : 10.1016/S0076-6879(05)03003-X

N. Segev, J. Mulholland, and D. Botstein, The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery, Cell, vol.52, issue.6, pp.915-939, 1988.
DOI : 10.1016/0092-8674(88)90433-3

B. Singer-kruger, H. Stenmark, and M. Zerial, Yeast Ypt51p and mammalian Rab5: counterparts with similar function in the early endocytic pathway, J Cell Sci, vol.108, pp.3509-3530, 1995.

F. Mallard, B. Tang, T. Galli, D. Tenza, A. Saint-pol et al., Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform, The Journal of Cell Biology, vol.109, issue.4, pp.653-64, 2002.
DOI : 10.1091/mbc.10.7.2251

C. Bucci, R. Parton, I. Mather, H. Stunnenberg, K. Simons et al., The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway, Cell, vol.70, issue.5, pp.715-743, 1992.
DOI : 10.1016/0092-8674(92)90306-W

M. Elias, N. Patron, and P. Keeling, Defines a Unique Paralog Shared by Chromalveolates and Rhizaria, Journal of Eukaryotic Microbiology, vol.56, issue.4, pp.348-56, 2009.
DOI : 10.1111/j.1550-7408.2009.00408.x

K. Kremer, D. Kamin, E. Rittweger, J. Wilkes, H. Flammer et al., An Overexpression Screen of Toxoplasma gondii Rab-GTPases Reveals Distinct Transport Routes to the Micronemes, PLoS Pathogens, vol.14, issue.3, p.3591302, 2013.
DOI : 10.1371/journal.ppat.1003213.s016

K. Kibria, K. Rawat, K. Klinger, C. Datta, G. Panchal et al., A role for adaptor protein complex 1 in protein targeting to rhoptry organelles in Plasmodium falciparum, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1853, issue.3, pp.699-710, 2015.
DOI : 10.1016/j.bbamcr.2014.12.030

J. Zhang, K. Schulze, P. Hiesinger, K. Suyama, S. Wang et al., Thirty-One Flavors of Drosophila Rab Proteins, Genetics, vol.176, issue.2, pp.1307-1329, 2007.
DOI : 10.1534/genetics.106.066761

A. Herm-gotz, C. Agop-nersesian, S. Munter, J. Grimley, T. Wandless et al., Rapid control of protein level in the apicomplexan Toxoplasma gondii, Nature Methods, vol.115, issue.12, pp.1003-1008, 2007.
DOI : 10.1083/jcb.200311137

C. Tonkin, G. Van-dooren, T. Spurck, N. Struck, R. Good et al., Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method, Molecular and Biochemical Parasitology, vol.137, issue.1, pp.13-21, 2004.
DOI : 10.1016/j.molbiopara.2004.05.009

R. Waller, M. Reed, A. Cowman, and G. Mcfadden, Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway, The EMBO Journal, vol.19, issue.8, pp.1794-802, 2000.
DOI : 10.1093/emboj/19.8.1794

D. Richard, L. Kats, C. Langer, C. Black, K. Mitri et al., Identification of Rhoptry Trafficking Determinants and Evidence for a Novel Sorting Mechanism in the Malaria Parasite Plasmodium falciparum, PLoS Pathogens, vol.14, issue.3, p.2648313, 2009.
DOI : 10.1371/journal.ppat.1000328.s004

R. Mesa, C. Salomon, M. Roggero, P. Stahl, and L. Mayorga, Rab22a affects the morphology and function of the endocytic pathway, J Cell Sci, vol.114, pp.4041-4050, 2001.

R. Roberts, M. Barbieri, K. Pryse, M. Chua, J. Morisaki et al., Endosome fusion in living cells overexpressing GFP-rab5, J Cell Sci, vol.112, pp.3667-75, 1999.

B. Welter and L. Temesvari, Overexpression of a Mutant Form of EhRabA, a Unique Rab GTPase of Entamoeba histolytica, Alters Endoplasmic Reticulum Morphology and Localization of the Gal/GalNAc Adherence Lectin, Eukaryotic Cell, vol.8, issue.7, pp.1014-1040, 2009.
DOI : 10.1128/EC.00030-09

O. Martinez, C. Antony, G. Pehau-arnaudet, E. Berger, J. Salamero et al., GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum, Proceedings of the National Academy of Sciences, vol.94, issue.5, pp.1828-1861, 1997.
DOI : 10.1073/pnas.94.5.1828

F. Peter, C. Nuoffer, S. Pind, and W. Balch, Guanine nucleotide dissociation inhibitor is essential for Rab1 function in budding from the endoplasmic reticulum and transport through the Golgi stack, The Journal of Cell Biology, vol.126, issue.6, pp.1393-406, 1994.
DOI : 10.1083/jcb.126.6.1393

J. Saraste, U. Lahtinen, and B. Goud, Localization of the small GTP-binding protein rab1p to early compartments of the secretory pathway, J Cell Sci, vol.108, pp.1541-52, 1995.

M. Jin, L. Saucan, M. Farquhar, and G. Palade, Rab1a and Multiple Other Rab Proteins Are Associated with the Transcytotic Pathway in Rat Liver, Journal of Biological Chemistry, vol.271, issue.47, pp.30105-30118, 1996.
DOI : 10.1074/jbc.271.47.30105

R. Sannerud, M. M. Nizak, C. Dale, H. Pernet-gallay, K. Perez et al., Rab1 Defines a Novel Pathway Connecting the Pre-Golgi Intermediate Compartment with the Cell Periphery, Molecular Biology of the Cell, vol.17, issue.4, pp.1514-1540, 2006.
DOI : 10.1091/mbc.E05-08-0792

URL : https://hal.archives-ouvertes.fr/hal-00565238

P. Sloves, S. Delhaye, T. Mouveaux, E. Werkmeister, C. Slomianny et al., Toxoplasma Sortilin-like Receptor Regulates Protein Transport and Is Essential for Apical Secretory Organelle Biogenesis and Host Infection, Cell Host & Microbe, vol.11, issue.5, pp.515-542, 2012.
DOI : 10.1016/j.chom.2012.03.006

URL : https://hal.archives-ouvertes.fr/hal-00701381

M. Weir, H. Xie, A. Klip, and W. Trimble, VAP-A Binds Promiscuously to both v- and tSNAREs, Biochemical and Biophysical Research Communications, vol.286, issue.3, pp.616-637, 2001.
DOI : 10.1006/bbrc.2001.5437

D. Lacount, M. Vignali, R. Chettier, A. Phansalkar, R. Bell et al., A protein interaction network of the malaria parasite Plasmodium falciparum, Nature, vol.306, issue.7064, pp.103-110, 2005.
DOI : 10.1038/nature04104

Y. Gong, Y. Kakihara, N. Krogan, J. Greenblatt, A. Emili et al., An atlas of chaperone???protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell, Molecular Systems Biology, vol.4, p.2710862, 2009.
DOI : 10.1083/jcb.200709061

M. Mateyak and T. Kinzy, eEF1A: Thinking Outside the Ribosome, Journal of Biological Chemistry, vol.285, issue.28, pp.21209-21222, 2010.
DOI : 10.1074/jbc.R110.113795

P. Sanders, P. Gilson, G. Cantin, D. Greenbaum, T. Nebl et al., Distinct Protein Classes Including Novel Merozoite Surface Antigens in Raft-like Membranes of Plasmodium falciparum, Journal of Biological Chemistry, vol.280, issue.48, pp.40169-76, 2005.
DOI : 10.1074/jbc.M509631200

J. Boothroyd and J. Dubremetz, Kiss and spit: the dual roles of Toxoplasma rhoptries, Nature Reviews Microbiology, vol.44, issue.1, pp.79-88, 1800.
DOI : 10.1038/nrmicro1800

URL : https://hal.archives-ouvertes.fr/hal-00203079

N. Jaikaria, C. Rozario, R. Ridley, and M. Perkins, Biogenesis of rhoptry organelles in Plasmodium falciparum, Molecular and Biochemical Parasitology, vol.57, issue.2, pp.269-79, 1993.
DOI : 10.1016/0166-6851(93)90203-A

H. Ngo, M. Yang, K. Paprotka, M. Pypaert, H. Hoppe et al., AP-1 in Toxoplasma gondii Mediates Biogenesis of the Rhoptry Secretory Organelle from a Post-Golgi Compartment, Journal of Biological Chemistry, vol.278, issue.7, pp.5343-52, 2003.
DOI : 10.1074/jbc.M208291200

M. Breinich, D. Ferguson, B. Foth, G. Van-dooren, M. Lebrun et al., A Dynamin Is Required for the Biogenesis of Secretory Organelles in Toxoplasma gondii, Current Biology, vol.19, issue.4, pp.277-86, 2009.
DOI : 10.1016/j.cub.2009.01.039

URL : https://hal.archives-ouvertes.fr/hal-00373663

L. Bannister, J. Hopkins, R. Fowler, S. Krishna, and G. Mitchell, Ultrastructure of rhoptry development in Plasmodium falciparum erythrocytic schizonts, Parasitology, vol.121, issue.3, pp.273-87, 2000.
DOI : 10.1017/S0031182099006320