L. L. Shelly, K. J. Lei, C. J. Pan, S. F. Sakata, S. Ruppert et al., Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1A, J. Biol. Chem, vol.268, pp.21482-21485, 1993.

J. Y. Chou, D. Matern, B. C. Mansfield, and Y. Chen, Type I Glycogen Storage Diseases: Disorders of the Glucose-6- Phosphatase Complex, Current Molecular Medicine, vol.2, issue.2, pp.121-143, 2002.
DOI : 10.2174/1566524024605798

R. Froissart, M. Piraud, A. M. Boudjemline, C. Vianey-saban, F. Petit et al., Glucose-6-phosphatase deficiency, Orphanet Journal of Rare Diseases, vol.6, issue.1, p.27, 2011.
DOI : 10.2174/156652307780363152

URL : https://hal.archives-ouvertes.fr/inserm-00668423

N. Bruni, F. Rajas, S. Montano, F. Chevalier-porst, I. Maire et al., Enzymatic characterization of four new mutations in the glucose-6 phosphatase (G6PC) gene which cause glycogen storage disease type 1a, Annals of Human Genetics, vol.63, issue.2, pp.141-146, 1999.
DOI : 10.1046/j.1469-1809.1999.6320141.x

K. J. Lei, L. L. Shelly, C. J. Pan, J. B. Sidbury, and J. Y. Chou, Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a, Science, vol.262, issue.5133, pp.580-583, 1993.
DOI : 10.1126/science.8211187

G. Mithieux, F. Rajas, and A. Gautier-stein, A Novel Role for Glucose 6-Phosphatase in the Small Intestine in the Control of Glucose Homeostasis, Journal of Biological Chemistry, vol.279, issue.43, pp.44231-44234, 2004.
DOI : 10.1074/jbc.R400011200

G. Mithieux, I. Bady, A. Gautier, M. Croset, F. Rajas et al., Induction of control genes in intestinal gluconeogenesis is sequential during fasting and maximal in diabetes, AJP: Endocrinology and Metabolism, vol.286, issue.3, pp.370-375, 2004.
DOI : 10.1152/ajpendo.00299.2003

J. Calderaro, P. Labrune, G. Morcrette, S. Rebouissou, D. Franco et al., Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I, Journal of Hepatology, vol.58, issue.2, 2013.
DOI : 10.1016/j.jhep.2012.09.030

L. M. Franco, V. Krishnamurthy, D. Bali, D. A. Weinstein, P. Arn et al., Hepatocellular carcinoma in glycogen storage disease type Ia: A case series, Journal of Inherited Metabolic Disease, vol.28, issue.2, pp.153-162, 2005.
DOI : 10.1007/s10545-005-7500-2

J. P. Rake, G. Visser, P. Labrune, J. V. Leonard, K. Ullrich et al., Guidelines for management of glycogen storage disease type I???European study on glycogen storage disease type I (ESGSD I), European Journal of Pediatrics, vol.20, issue.Suppl 1, pp.112-119, 2002.
DOI : 10.1007/BF02680007

S. Fagiuoli, E. Daina, L. D-'antiga, M. Colledan, and G. Remuzzi, Monogenic diseases that can be cured by liver transplantation, Journal of Hepatology, vol.59, issue.3, pp.595-612, 2013.
DOI : 10.1016/j.jhep.2013.04.004

T. H. Nguyen and N. Ferry, Liver gene therapy: advances and hurdles, Gene Therapy, vol.11, issue.1, pp.76-84, 2004.
DOI : 10.1038/sj.gt.3302373

P. S. Kishnani, E. Faulkner, S. Vancamp, M. Jackson, T. Brown et al., Canine Model and Genomic Structural Organization of Glycogen Storage Disease Type Ia (GSD Ia), Veterinary Pathology, vol.275, issue.1, pp.83-91, 2001.
DOI : 10.1354/vp.38-1-83

D. D. Koeberl, In search of proof-of-concept: gene therapy for glycogen storage disease type Ia, Journal of Inherited Metabolic Disease, vol.13, issue.Suppl 2, pp.671-678, 2012.
DOI : 10.1007/s10545-012-9454-5

J. Y. Chou and B. C. Mansfield, Recombinant AAV-directed gene therapy for type I glycogen storage diseases, Expert Opinion on Biological Therapy, vol.11, issue.8, pp.1011-1024, 2011.
DOI : 10.2174/156652308786848030

Y. M. Lee, H. S. Jun, C. Pan, S. R. Lin, L. H. Wilson et al., Prevention of hepatocellular adenoma and correction of metabolic abnormalities in murine glycogen storage disease type Ia by gene therapy, Hepatology, vol.124, issue.Suppl 1, pp.1719-1729, 2012.
DOI : 10.1002/hep.25717

A. Demaster, X. Luo, S. Curtis, K. D. Williams, D. J. Landau et al., Long-Term Efficacy Following Readministration of an Adeno-Associated Virus Vector in Dogs with Glycogen Storage Disease Type Ia, Human Gene Therapy, vol.23, issue.4, pp.407-418, 2012.
DOI : 10.1089/hum.2011.106

A. Ghosh, M. Allamarvdasht, C. J. Pan, M. S. Sun, B. C. Mansfield et al., Long-term correction of murine glycogen storage disease type Ia by recombinant adeno-associated virus-1-mediated gene transfer, Gene Therapy, vol.14, issue.4, pp.321-329, 2006.
DOI : 10.1038/sj.gt.3301068

M. H. Zahler, A. Irani, H. Malhi, A. T. Reutens, C. Albanese et al., The application of a lentiviral vector for gene transfer in fetal human hepatocytes, The Journal of Gene Medicine, vol.2, issue.3, pp.186-193, 2000.
DOI : 10.1002/(SICI)1521-2254(200005/06)2:3<186::AID-JGM100>3.3.CO;2-Y

C. Baum, U. Modlich, and M. Ott, Hepatic lentiviral gene transfer is associated with clonal selection, but not with tumor formation in serially transplanted rodents, 2013.

N. Ferry, V. Pichard, S. Bony, D. A. Nguyen, and T. H. , Retroviral Vector-mediated Gene Therapy for Metabolic Diseases: An Update, Current Pharmaceutical Design, vol.17, issue.24, pp.2516-2527, 2011.
DOI : 10.2174/138161211797247587

L. G. Gregory, M. Nivsarkar, M. Themis, and M. V. Holder, Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice, Mol. Ther, 2005.

A. Schambach, D. Zychlinski, B. Ehrnstroem, and C. Baum, Biosafety Features of Lentiviral Vectors, Human Gene Therapy, vol.24, issue.2, pp.132-142, 2013.
DOI : 10.1089/hum.2012.229

S. Laplanche and I. Anegon, Lentiviral vectors that express UGT1A1 in liver and contain miR-142 target sequences normalize hyperbilirubinemia in Gunn rats, 2010.

T. H. Nguyen, M. Bellodi-privato, D. Aubert, V. Pichard, A. Myara et al., Therapeutic Lentivirus-Mediated Neonatal in Vivo Gene Therapy in Hyperbilirubinemic Gunn Rats, Molecular Therapy, vol.12, issue.5, pp.852-859, 2005.
DOI : 10.1016/j.ymthe.2005.06.482

D. Angelo, A. Naldini, and L. , A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice, Blood, vol.110, pp.4144-4152, 2007.

H. Matsui, C. Hegadorn, M. Ozelo, E. Burnett, A. Tuttle et al., A MicroRNA-regulated and GP64-pseudotyped Lentiviral Vector Mediates Stable Expression of FVIII in a Murine Model of Hemophilia A, Molecular Therapy, vol.19, issue.4, pp.723-730, 2011.
DOI : 10.1038/mt.2010.290

E. Mutel, A. Abdul-wahed, N. Ramamonjisoa, A. Stefanutti, I. Houberdon et al., Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas, Journal of Hepatology, vol.54, issue.3, pp.529-537, 2011.
DOI : 10.1016/j.jhep.2010.08.014

URL : https://hal.archives-ouvertes.fr/hal-00575314

I. E. Alexander, S. C. Cunningham, G. J. Logan, and J. Christodoulou, Potential of AAV vectors in the treatment of metabolic disease, Gene Therapy, vol.18, issue.11, pp.831-839, 2008.
DOI : 10.1002/jgm.885

R. Waart, J. Twisk, and P. Bosma, Adeno-associated virus vector serotypes mediate sustained correction of bilirubin UDP glucuronosyltransferase deficiency in rats, Mol. Ther. J, 2006.

F. Park and M. A. Kay, Modified HIV-1 Based Lentiviral Vectors Have an Effect on Viral Transduction Efficiency and Gene Expression in Vitro and in Vivo, Molecular Therapy, vol.4, issue.3, 2001.
DOI : 10.1006/mthe.2001.0450

A. Grinshpun, R. Condiotti, S. N. Waddington, M. Peer, E. Zeig et al., Neonatal Gene Therapy of Glycogen Storage Disease Type Ia Using a Feline Immunodeficiency Virus???based Vector, Molecular Therapy, vol.18, issue.9, 2010.
DOI : 10.1038/mt.2010.119

C. Mejia, Hepatic diseases related to triglyceride metabolism, Mini Rev. Med. Chem, vol.13, pp.1691-1699, 2013.

X. Duan, L. Zhang, J. Fan, and L. Qiao, NAFLD leads to liver cancer: Do we have sufficient evidence?, Cancer Letters, vol.345, issue.2, pp.230-234, 2014.
DOI : 10.1016/j.canlet.2013.07.033

S. Petta and A. Craxì, Hepatocellular Carcinoma and Non-Alcoholic Fatty Liver Disease: From a Clinical to a Molecular Association, Current Pharmaceutical Design, vol.16, issue.6, pp.741-752, 2010.
DOI : 10.2174/138161210790883787

N. Nair, M. Y. Rincon, H. Evens, S. Sarcar, S. Dastidar et al., Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy, Blood, vol.123, issue.20, pp.3195-3199, 2014.
DOI : 10.1182/blood-2013-10-534032

M. K. Chuah, I. Petrus, P. De-bleser, L. Guiner, C. Gernoux et al., Liver-Specific Transcriptional Modules Identified by Genome-Wide In Silico Analysis Enable Efficient Gene Therapy in Mice and Non-Human Primates, Molecular Therapy, vol.22, issue.9, pp.1605-1613, 2014.
DOI : 10.1038/mt.2014.114

B. D. Brown, M. A. Venneri, A. Zingale, L. Sergi-sergi, and L. Naldini, Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer, Nature Medicine, vol.295, issue.5, pp.585-591, 2006.
DOI : 10.1038/nm1398

M. Nagy, M. Leuba, F. Arrighi, and J. , Efficient transduction of primary human B lymphocytes and nondividing myeloma B cells with HIV-1-derived lentiviral vectors, 2003.

A. Follenzi, L. E. Ailles, S. Bakovic, M. Geuna, and L. Naldini, Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences, Nat. Genet, vol.25, pp.217-222, 2000.

V. Zennou, C. Petit, D. Guetard, U. Nerhbass, L. Montagnier et al., HIV-1 Genome Nuclear Import Is Mediated by a Central DNA Flap, Cell, vol.101, issue.2, pp.173-185, 2000.
DOI : 10.1016/S0092-8674(00)80828-4

R. Zufferey, J. E. Donello, D. Trono, and T. J. Hope, Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors, J. Virol, vol.73, pp.2886-2892, 1999.

G. Pfleiderer, Glycogen, pp.59-62, 1974.
DOI : 10.1016/B978-0-12-395630-9.50012-8

E. G. Bligh and W. J. Dyer, A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION, Canadian Journal of Biochemistry and Physiology, vol.37, issue.8, pp.911-917, 1959.
DOI : 10.1139/o59-099

B. Pillot, M. Soty, A. Gautier-stein, C. Zitoun, and G. Mithieux, Protein Feeding Promotes Redistribution of Endogenous Glucose Production to the Kidney and Potentiates Its Suppression by Insulin, Endocrinology, vol.150, issue.2, pp.616-624, 2009.
DOI : 10.1210/en.2008-0601

F. Rajas, H. Jourdan-pineau, A. Stefanutti, E. A. Mrad, P. B. Iynedjian et al., Immunocytochemical localization of glucose 6-phosphatase and cytosolic phosphoenolpyruvate carboxykinase in gluconeogenic tissues reveals unsuspected metabolic zonation, Histochemistry and Cell Biology, vol.38, issue.5, pp.555-565, 2007.
DOI : 10.1007/s00418-006-0263-5