A Bayesian Model to Assess T2 Values and Their Changes Over Time in Quantitative MRI

Benoit Combès 1, * Anne Kerbrat 2 Olivier Commowick 1 Christian Barillot 1
* Auteur correspondant
1 VisAGeS - Vision, Action et Gestion d'informations en Santé
INSERM - Institut National de la Santé et de la Recherche Médicale : U746, Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : Quantifying T2 and T2* relaxation times from MRI becomes a standard tool to assess modifications of biological tissues over time or differences between populations. However, due to the relationship between the relaxation time and the associated MR signals such an analysis is subject to error. In this work, we provide a Bayesian analysis of this relationship. More specifically, we build posterior distributions relating the raw (spin or gradient echo) acquisitions and the relaxation time and its modifications over acquisitions. Such an analysis has three main merits. First, it allows to build hierarchical models including prior information and regularisations over voxels. Second, it provides many estimators of the parameters distribution including the mean and the α-credible intervals. Finally, as credible intervals are available, testing properly whether the relaxation time (or its modification) lies within a certain range with a given credible level is simple. We show the interest of this approach on synthetic datasets and on two real applications in multiple sclerosis.
Type de document :
Communication dans un congrès
19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Oct 2016, Athens, Greece. pp.570 - 578, 2016, 〈10.1007/978-3-319-46726-9_66〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-01349557
Contributeur : Olivier Commowick <>
Soumis le : jeudi 10 novembre 2016 - 10:00:31
Dernière modification le : mercredi 2 août 2017 - 10:08:38
Document(s) archivé(s) le : mercredi 15 mars 2017 - 04:01:53

Fichier

paper518.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Benoit Combès, Anne Kerbrat, Olivier Commowick, Christian Barillot. A Bayesian Model to Assess T2 Values and Their Changes Over Time in Quantitative MRI. 19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Oct 2016, Athens, Greece. pp.570 - 578, 2016, 〈10.1007/978-3-319-46726-9_66〉. 〈inserm-01349557〉

Partager

Métriques

Consultations de
la notice

304

Téléchargements du document

48