G. Rabinovici and B. Miller, Frontotemporal Lobar Degeneration, CNS Drugs, vol.17, issue.3, pp.375-98, 2010.
DOI : 10.2165/11533100-000000000-00000

L. Chare, J. Hodges, C. Leyton, C. Mcginley, R. Tan et al., New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications, Journal of Neurology, Neurosurgery & Psychiatry, vol.24, issue.8, pp.865-70, 2014.
DOI : 10.1136/jnnp-2013-306948

M. Gorno-tempini, A. Hillis, S. Weintraub, A. Kertesz, M. Mendez et al., Classification of primary progressive aphasia and its variants, Neurology, vol.76, issue.11, pp.1006-1020, 2011.
DOI : 10.1212/WNL.0b013e31821103e6

J. Burrell, M. Kiernan, S. Vucic, and J. Hodges, Motor Neuron dysfunction in frontotemporal dementia, Brain, vol.134, issue.9, pp.2582-94, 2011.
DOI : 10.1093/brain/awr195

D. Neary, J. Snowden, L. Gustafson, U. Passant, D. Stuss et al., Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria, Neurology, vol.51, issue.6, pp.1546-54, 1998.
DOI : 10.1212/WNL.51.6.1546

H. Seelaar, W. Kamphorst, S. Rosso, A. Azmani, R. Masdjedi et al., Distinct genetic forms of frontotemporal dementia, Neurology, vol.71, issue.16, pp.1220-1226, 2008.
DOI : 10.1212/01.wnl.0000319702.37497.72

M. Hutton, C. Lendon, P. Rizzu, M. Baker, S. Froelich et al., Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17, Nature, vol.393, issue.6686, pp.702-707, 1998.
DOI : 10.1038/31508

M. Baker, I. Mackenzie, S. Pickering-brown, J. Gass, R. Rademakers et al., Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17, Nature, vol.9, issue.7105, pp.916-925, 2006.
DOI : 10.1038/nature05016

M. Cruts, I. Gijselinck, J. Van-der-zee, S. Engelborghs, H. Wils et al., Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21, Nature, vol.15, issue.7105, pp.920-924, 2006.
DOI : 10.1038/nature05017

M. Dejesus-hernandez, I. Mackenzie, B. Boeve, A. Boxer, M. Baker et al., Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS, Neuron, vol.72, issue.2, pp.245-56, 2011.
DOI : 10.1016/j.neuron.2011.09.011

A. Renton, E. Majounie, A. Waite, J. Simón-sánchez, S. Rollinson et al., A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD, Neuron, vol.72, issue.2, pp.257-68, 2011.
DOI : 10.1016/j.neuron.2011.09.010

G. Watts, J. Wymer, M. Kovach, S. Mehta, S. Mumm et al., Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein, Nature Genetics, vol.36, issue.4, pp.377-81, 2004.
DOI : 10.1038/ng1332

G. Skibinski, N. Parkinson, J. Brown, L. Chakrabarti, S. Lloyd et al., Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia, Nature Genetics, vol.57, issue.8, pp.806-814, 2005.
DOI : 10.1038/ng1609

N. Cairns, E. Bigio, I. Mackenzie, J. Schneider, U. Paulo et al., Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration, Acta Neuropathologica, vol.51, issue.Suppl 1, pp.5-22, 2010.
DOI : 10.1007/s00401-007-0237-2

R. Rademakers, M. Neumann, and I. Mackenzie, Advances in understanding the molecular basis of frontotemporal dementia, Nat Rev Neurol, vol.8, pp.423-457, 2012.

M. Neumann, D. Sampathu, L. Kwong, A. Truax, M. Micsenyi et al., Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis, Science, vol.314, issue.5796, pp.130-133, 2006.
DOI : 10.1126/science.1134108

T. Arai, M. Hasegawa, H. Akiyama, K. Ikeda, T. Nonaka et al., TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis, Biochemical and Biophysical Research Communications, vol.351, issue.3, pp.602-613, 2006.
DOI : 10.1016/j.bbrc.2006.10.093

M. Neumann, R. Rademakers, S. Roeber, M. Baker, H. Kretzschmar et al., A new subtype of frontotemporal lobar degeneration with FUS pathology, Brain, vol.132, issue.11, pp.2922-2953, 2009.
DOI : 10.1093/brain/awp214

H. Urwin, K. Josephs, J. Rohrer, I. Mackenzie, M. Neumann et al., FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration, Acta Neuropathologica, vol.115, issue.1, pp.33-41, 2010.
DOI : 10.1007/s00401-010-0698-6

I. Holm, A. Isaacs, and I. Mackenzie, Absence of FUS-immunoreactive pathology in frontotemporal dementia linked to chromosome 3 (FTD-3) caused by mutation in the CHMP2B gene, Acta Neuropathologica, vol.17, issue.5, pp.719-739, 2009.
DOI : 10.1007/s00401-009-0593-1

V. Zhukareva, V. Vogelsberg-ragaglia, V. Van-deerlin, J. Bruce, T. Shuck et al., Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia, Annals of Neurology, vol.274, issue.2, pp.165-75, 2001.
DOI : 10.1002/1531-8249(20010201)49:2<165::AID-ANA36>3.0.CO;2-3

V. Zhukareva, S. Sundarraj, D. Mann, M. Sjogren, K. Blenow et al., Selective reduction of soluble tau proteins in sporadic and familial frontotemporal dementias: an international follow-up study, Acta Neuropathol, vol.105, pp.469-76, 2003.

I. Mackenzie, M. Neumann, E. Bigio, N. Cairns, I. Alafuzoff et al., Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations, Acta Neuropathologica, vol.67, issue.1, pp.15-23, 2009.
DOI : 10.1007/s00401-008-0460-5

I. Mackenzie, J. Shi, C. Shaw, D. Duplessis, D. Neary et al., Dementia lacking distinctive histology (DLDH) revisited, Acta Neuropathologica, vol.102, issue.suppl1, pp.551-560, 2006.
DOI : 10.1007/s00401-006-0123-3

F. Fernandez-gomez, F. Jumeau, M. Derisbourg, S. Burnouf, H. Tran et al., Consensus Brain-derived Protein, Extraction Protocol for the Study of Human and Murine Brain Proteome Using Both 2D-DIGE and Mini 2DE Immunoblotting, Journal of Visualized Experiments, vol.3, issue.86, pp.1-8, 2014.
DOI : 10.3791/51339

K. Livak and T. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???????CT Method, Methods, vol.25, issue.4, pp.402-410, 2001.
DOI : 10.1006/meth.2001.1262

R. Behrouzi, X. Liu, D. Wu, A. Robinson, S. Tanaguchi-watanabe et al., Pathological tau deposition in Motor Neurone Disease and frontotemporal lobar degeneration associated with TDP-43 proteinopathy, Acta Neuropathologica Communications, vol.13, issue.suppl, p.33, 2016.
DOI : 10.1186/s40478-016-0301-z

L. Buée, T. Bussière, V. Buée-scherrer, A. Delacourte, and P. Hof, Tau protein isoforms, phosphorylation and role in neurodegenerative disorders11These authors contributed equally to this work., Brain Research Reviews, vol.33, issue.1, pp.95-130, 2000.
DOI : 10.1016/S0165-0173(00)00019-9

C. Lagier-tourenne, M. Polymenidou, and D. Cleveland, TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration, Human Molecular Genetics, vol.19, issue.R1, pp.46-64, 2010.
DOI : 10.1093/hmg/ddq137

A. Chen-plotkin, V. Lee, and J. Trojanowski, TAR DNA-binding protein 43 in neurodegenerative disease, Nature Reviews Neurology, vol.314, issue.4, pp.211-231, 2010.
DOI : 10.1038/nrneurol.2010.18

E. Lee, V. Lee, and J. Trojanowski, Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration, Nature Reviews Neuroscience, vol.119, pp.38-50, 2012.
DOI : 10.1038/nrn3121

N. Alami, R. Smith, M. Carrasco, L. Williams, C. Winborn et al., Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations, Neuron, vol.81, issue.3, pp.536-579, 2014.
DOI : 10.1016/j.neuron.2013.12.018

S. Aronov, G. Aranda, L. Behar, and I. Ginzburg, Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal, J Neurosci, vol.21, pp.6577-87, 2001.

P. Piscopo, D. Albani, A. Castellano, G. Forloni, and A. Confaloni, Frontotemporal Lobar Degeneration and MicroRNAs, Frontiers in Aging Neuroscience, vol.275, issue.265, pp.1-7, 2016.
DOI : 10.1016/j.neuroscience.2014.06.013

E. Gascon and F. Gao, Cause or Effect: Misregulation of microRNA Pathways in Neurodegeneration, Frontiers in Neuroscience, vol.6, pp.1-10, 2012.
DOI : 10.3389/fnins.2012.00048

I. Santa-maria, M. Alaniz, N. Renwick, C. Cela, T. Fulga et al., Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau, Journal of Clinical Investigation, vol.125, issue.2, pp.681-687, 2015.
DOI : 10.1172/JCI78421DS1

Y. Kawahara and A. Mieda-sato, TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes, Proceedings of the National Academy of Sciences, vol.109, issue.9, pp.3347-52, 2012.
DOI : 10.1073/pnas.1112427109

S. Dujardin, S. Begard, R. Caillierez, C. Lachaud, L. Delattre et al., Ectosomes: A New Mechanism for Non-Exosomal Secretion of Tau Protein, PLoS ONE, vol.121, issue.6, pp.28-31, 2014.
DOI : 10.1371/journal.pone.0100760.g006

URL : https://hal.archives-ouvertes.fr/hal-01181185

T. Petkau and B. Leavitt, Progranulin in neurodegenerative disease, Trends in Neurosciences, vol.37, issue.7, pp.388-98, 2014.
DOI : 10.1016/j.tins.2014.04.003

B. Cenik, C. Sephton, B. Cenik, J. Herz, and G. Yu, Progranulin: A Proteolytically Processed Protein at the Crossroads of Inflammation and Neurodegeneration, Journal of Biological Chemistry, vol.287, issue.39, pp.32298-306, 2012.
DOI : 10.1074/jbc.R112.399170

T. Petkau, S. Neal, P. Orban, J. Macdonald, M. Hill-a et al., Progranulin expression in the developing and adult murine brain, The Journal of Comparative Neurology, vol.111, issue.19, pp.3931-3978, 2010.
DOI : 10.1002/cne.22430

J. Gass, W. Lee, C. Cook, N. Finch, C. Stetler et al., Progranulin regulates neuronal outgrowth independent of Sortilin, Molecular Neurodegeneration, vol.7, issue.1, p.33, 2012.
DOI : 10.1038/nn2000

L. Tapia, A. Milnerwood, A. Guo, F. Mills, E. Yoshida et al., Progranulin Deficiency Decreases Gross Neural Connectivity But Enhances Transmission at Individual Synapses, Journal of Neuroscience, vol.31, issue.31, pp.11126-11158, 2011.
DOI : 10.1523/JNEUROSCI.6244-10.2011

S. Almeida, Z. Zhang, G. Coppola, W. Mao, K. Futai et al., Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects, Cell Reports, vol.2, issue.4, pp.789-98, 2012.
DOI : 10.1016/j.celrep.2012.09.007

K. Smith, J. Damiano, S. Franceschetti, S. Carpenter, L. Canafoglia et al., Strikingly Different Clinicopathological Phenotypes Determined by Progranulin-Mutation Dosage, The American Journal of Human Genetics, vol.90, issue.6, pp.1102-1109, 2012.
DOI : 10.1016/j.ajhg.2012.04.021

D. Salazar, V. Butler, R. Hsu, T. Mason, A. Nakamura et al., The Progranulin Cleavage Products, Granulins, Exacerbate TDP-43 Toxicity and Increase TDP-43 Levels, Journal of Neuroscience, vol.35, issue.25, pp.9315-9343, 2015.
DOI : 10.1523/JNEUROSCI.4808-14.2015

L. Binder, A. Frankfurter, and L. Rebhun, The distribution of tau in the mammalian central nervous system, The Journal of Cell Biology, vol.101, issue.4, pp.1371-1379, 1985.
DOI : 10.1083/jcb.101.4.1371

D. Drechsel, . Hyman, M. Cobb, and M. Kirschner, Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau., Molecular Biology of the Cell, vol.3, issue.10, pp.1141-54, 1992.
DOI : 10.1091/mbc.3.10.1141

M. Weingarten, A. Lockwood, S. Hwo, and M. Kirschner, A protein factor essential for microtubule assembly., Proceedings of the National Academy of Sciences, vol.72, issue.5, pp.1858-62, 1975.
DOI : 10.1073/pnas.72.5.1858

R. Dixit, J. Ross, Y. Goldman, and E. Holzbaur, Differential Regulation of Dynein and Kinesin Motor Proteins by Tau, Science, vol.319, issue.5866, pp.1086-1095, 2010.
DOI : 10.1126/science.1152993

L. Ittner, Y. Ke, F. Delerue, M. Bi, A. Gladbach et al., Dendritic Function of Tau Mediates Amyloid-?? Toxicity in Alzheimer's Disease Mouse Models, Cell, vol.142, issue.3, pp.387-97, 2010.
DOI : 10.1016/j.cell.2010.06.036

S. Mondragon-rodriguez, E. Trillaud-doppia, A. Dudilot, C. Bourgeois, M. Lauzon et al., Interaction of Endogenous Tau Protein with Synaptic Proteins Is Regulated by N-Methyl-D-aspartate Receptor-dependent Tau Phosphorylation, Journal of Biological Chemistry, vol.287, issue.38, pp.32040-53, 2012.
DOI : 10.1074/jbc.M112.401240

A. Sultan, F. Nesslany, M. Violet, S. Bégard, A. Loyens et al., Nuclear Tau, a Key Player in Neuronal DNA Protection, Journal of Biological Chemistry, vol.286, issue.6, pp.4566-75, 2011.
DOI : 10.1074/jbc.M110.199976

M. Violet, L. Delattre, M. Tardivel, A. Sultan, A. Chauderlier et al., A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions, Frontiers in Cellular Neuroscience, vol.17, p.84, 2014.
DOI : 10.1091/mbc.e06-03-0177

A. Harada, K. Oguchi, S. Okabe, J. Kuno, S. Terada et al., Altered microtubule organization in small-calibre axons of mice lacking tau protein, Nature, vol.369, issue.6480, pp.488-91, 1994.
DOI : 10.1038/369488a0

P. Lei, S. Ayton, S. Moon, Q. Zhang, I. Volitakis et al., Motor and cognitive deficits in aged tau knockout mice in two background strains, Molecular Neurodegeneration, vol.9, issue.1, p.29, 2014.
DOI : 10.1186/1750-1326-9-29

P. Lei, S. Ayton, D. Finkelstein, L. Spoerri, G. Ciccotosto et al., Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export, Nature Medicine, vol.114, issue.2, pp.291-296, 2012.
DOI : 10.1046/j.1471-4159.2001.00183.x

A. Fuster-matanzo, M. Llorens-martín, J. Jurado-arjona, J. Avila, and F. Hernández, Tau Protein and Adult Hippocampal Neurogenesis, Frontiers in Neuroscience, vol.6, pp.1-6, 2012.
DOI : 10.3389/fnins.2012.00104

T. Ahmed, A. Van-der-jeugd, D. Blum, M. Galas, D. Hooge et al., Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion, Neurobiology of Aging, vol.35, issue.11, pp.2474-2482, 2014.
DOI : 10.1016/j.neurobiolaging.2014.05.005

T. Kimura, D. Whitcomb, J. J. Regan, P. Piers, T. Heo et al., Depression in the hippocampus Microtubule-associated protein tau is essential for long-term depression in the hippocampus, Philos Trans R Soc Lond B Biol Sci, vol.369, p.1633, 2014.

H. Lui, J. Zhang, S. Makinson, J. Paz, B. Barres et al., Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation, Cell, vol.165, issue.4, pp.921-956, 2016.
DOI : 10.1016/j.cell.2016.04.001

K. Hensley and P. Kursula, Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer???s Disease: Comparison and Contrast with Microtubule-Associated Protein Tau, Journal of Alzheimer's Disease, vol.53, issue.1, pp.1-14, 2016.
DOI : 10.3233/JAD-160076

M. Nedergaard, B. Ransom, and S. Goldman, New roles for astrocytes: Redefining the functional architecture of the brain, Trends in Neurosciences, vol.26, issue.10, pp.523-553, 2003.
DOI : 10.1016/j.tins.2003.08.008

M. Sofroniew, Molecular dissection of reactive astrogliosis and glial scar formation, Trends in Neurosciences, vol.32, issue.12, pp.638-685, 2009.
DOI : 10.1016/j.tins.2009.08.002

G. Seifert, K. Schilling, and C. Steinhäuser, Astrocyte dysfunction in neurological disorders: a molecular perspective, Nature Reviews Neuroscience, vol.23, issue.3, pp.194-206, 2006.
DOI : 10.1038/nrn1870

M. Sofroniew and H. Vinters, Astrocytes: biology and pathology, Acta Neuropathologica, vol.38, issue.Pt 1, pp.7-35, 2010.
DOI : 10.1007/s00401-009-0619-8

M. Kulijewicz-nawrot, E. Syková, A. Chvátal, A. Verkhratsky, and J. Rodríguez, Astrocytes and Glutamate Homoeostasis in Alzheimer's Disease: A Decrease in Glutamine Synthetase, But Not in Glutamate Transporter-1, in the Prefrontal Cortex, ASN Neuro, vol.15, issue.5, pp.273-82, 2013.
DOI : 10.1093/brain/123.3.572

H. Nilsen, L. , R. C. Ittner, L. Götz, J. Sonnewald et al., Glutamate Metabolism is Impaired in Transgenic Mice with Tau Hyperphosphorylation, Journal of Cerebral Blood Flow & Metabolism, vol.31, issue.5, pp.684-91, 2013.
DOI : 10.1038/jcbfm.2012.212

N. Sergeant, B. Sablonnière, S. Schraen-maschke, A. Ghestem, C. Maurage et al., Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1, Human Molecular Genetics, vol.10, issue.19, pp.2143-55, 2001.
DOI : 10.1093/hmg/10.19.2143

M. Derisbourg, C. Leghay, G. Chiappetta, F. Fernandez-gomez, C. Laurent et al., Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms, Scientific Reports, vol.38, issue.21, p.9659, 2015.
DOI : 10.1093/nar/gkp964

S. Flament, A. Delacourte, B. Hemon, and A. Defossez, Characterization of two pathological Tau protein variants in Alzheimer brain cortices, Journal of the Neurological Sciences, vol.92, issue.2-3, pp.133-174, 1989.
DOI : 10.1016/0022-510X(89)90131-7

Y. Liu, L. Fallon, Z. Liu, and P. Lansbury, The UCH-L1 Gene Encodes Two Opposing Enzymatic Activities that Affect ??-Synuclein Degradation and Parkinson's Disease Susceptibility, Cell, vol.111, issue.2, pp.209-227, 2002.
DOI : 10.1016/S0092-8674(02)01012-7

C. Du, R. Tan, and X. Hou, Fyn Kinases Play a Critical Role in Neuronal Apoptosis Induced by Oxygen and Glucose Deprivation or Amyloid-?? Peptide Treatment, CNS Neuroscience & Therapeutics, vol.247, issue.Suppl 1, pp.754-61, 2012.
DOI : 10.1111/j.1755-5949.2012.00357.x

Y. Hata, C. Slaughter, and T. Südhof, Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin, Nature, vol.366, issue.6453, pp.347-51, 1993.
DOI : 10.1038/366347a0

A. Andrieux, P. Salin, M. Vernet, P. Kujala, J. Baratier et al., The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders, Genes & Development, vol.16, issue.18, pp.2350-64, 2002.
DOI : 10.1101/gad.223302

Y. Wang, M. Sun, Q. Hou, and V. Parpura, Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus, Glia, vol.56, issue.Pt 2, pp.529-567, 2013.
DOI : 10.1002/glia.22453