I. Nordgaard, B. S. Hansen, and P. B. Mortensen, Importance of colonic support for 422 energy absorption as small-bowel failure proceeds, Am. J. Clin. Nutr, vol.64, pp.222-231, 1996.

P. Crenn, Net digestive absorption and adaptive hyperphagia in adult short bowel patients, Gut, vol.53, issue.9, pp.1279-1286, 2004.
DOI : 10.1136/gut.2003.030601

P. B. Jeppesen, Elevated plasma glucagon-like peptide 1 and 2 concentrations, p.427

J. M. Nightingale, Gastrointestinal hormones in short bowel syndrome. Peptide YY may be the 'colonic brake' to gastric emptying., Gut, vol.39, issue.2, pp.267-272, 1996.
DOI : 10.1136/gut.39.2.267

B. Messing, Intestinal absorption of free oral hyperalimentation in the very short bowel syndrome, Gastroenterology, vol.100, issue.6, pp.1502-1508, 1991.
DOI : 10.1016/0016-5085(91)90645-2

F. Joly, Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome, Biochimie, vol.92, issue.7, pp.753-761, 2010.
DOI : 10.1016/j.biochi.2010.02.015

C. Mayeur, Faecal D/L Lactate Ratio Is a Metabolic Signature of Microbiota Imbalance in Patients with Short Bowel Syndrome, PLoS ONE, vol.73, issue.2, p.54335, 2013.
DOI : 10.1371/journal.pone.0054335.s003

URL : https://hal.archives-ouvertes.fr/hal-01190658

C. Mayeur, Extensive Intestinal Resection Triggers Behavioral Adaptation, p.438

I. Kelberman, B. C. Cheetham, J. Rosenthal, and G. M. Levine, Effect of fiber and its 441 fermentation on colonic adaptation after cecal resection in the rat, JPEN J. Parenter, p.442

P. B. Jeppesen, Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon, Gastroenterology, vol.120, issue.4, pp.806-445, 2001.
DOI : 10.1053/gast.2001.22555

M. C. Koopmann, Colonic GLP-2 is not sufficient to promote jejunal adaptation 447 in a PN-dependent rat model of human short bowel syndrome, JPEN J. Parenter, p.448

G. Martin, P. Beck, and D. Sigalet, Gut hormones, and short bowel syndrome: The enigmatic role of glucagon-like peptide-2 in the regulation of intestinal adaptation, World Journal of Gastroenterology, vol.12, issue.26, pp.4117-4129, 2006.
DOI : 10.3748/wjg.v12.i26.4117

P. B. Jeppesen, Impaired meal stimulated glucagon-like peptide 2 response in 453

E. Ferreiro, Peptides and food intake, Front. Endocrinol, vol.5, p.58, 2014.

J. Hsieh, Glucagon-Like Peptide-2 Increases Intestinal Lipid Absorption and Chylomicron Production via CD36, Gastroenterology, vol.137, issue.3, pp.997-1005, 2009.
DOI : 10.1053/j.gastro.2009.05.051

C. I. Cheeseman, Upregulation of SGLT-1 transport activity in rat jejunum induced by 459 GLP-2 infusion in vivo, Am. J. Physiol, vol.273, pp.1965-1971, 1997.

L. L. Baggio and D. J. Drucker, Biology of Incretins: GLP-1 and GIP, Gastroenterology, vol.132, issue.6, pp.132-2131, 2007.
DOI : 10.1053/j.gastro.2007.03.054

D. J. Drucker and B. Yusta, Physiology and Pharmacology of the Enteroendocrine Hormone Glucagon-Like Peptide-2, Annual Review of Physiology, vol.76, issue.1, pp.561-583, 2014.
DOI : 10.1146/annurev-physiol-021113-170317

P. W. Maljaars, H. P. Peters, D. J. Mela, and A. A. Masclee, Ileal brake: A sensible food target for appetite control. A review, Physiology & Behavior, vol.95, issue.3, pp.271-281, 2008.
DOI : 10.1016/j.physbeh.2008.07.018

B. Messing, Long-term survival and parenteral nutrition dependence in adult patients with the short bowel syndrome, Gastroenterology, vol.117, issue.5, pp.1043-1050, 1999.
DOI : 10.1016/S0016-5085(99)70388-4

D. E. Cummings, A Preprandial Rise in Plasma Ghrelin Levels Suggests a Role in Meal Initiation in Humans, Diabetes, vol.50, issue.8, pp.1714-1719, 2001.
DOI : 10.2337/diabetes.50.8.1714

D. E. Cummings, R. S. Frayo, C. Marmonier, R. Aubert, and D. Chapelot, Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues, AJP: Endocrinology and Metabolism, vol.287, issue.2, pp.297-304, 2004.
DOI : 10.1152/ajpendo.00582.2003

A. A. Klaauw and I. S. Farooqi, The hunger genes: pathways to obesity, Cell, vol.474, pp.161-119, 2015.

H. Y. Chen, Orexigenic Action of Peripheral Ghrelin Is Mediated by Neuropeptide Y and Agouti-Related Protein, Endocrinology, vol.145, issue.6, pp.2607-2612, 2004.
DOI : 10.1210/en.2003-1596

C. W. Compher, B. P. Kinosian, and D. C. Metz, Ghrelin does not predict adaptive 478 hyperphagia in patients with short bowel syndrome, JPEN J. Parenter. Enteral Nutr, vol.479, pp.33-428, 2009.

K. L. Healey, Morphological and functional changes in the colon after massive small bowel resection, Journal of Pediatric Surgery, vol.45, issue.8, pp.1581-1590, 2010.
DOI : 10.1016/j.jpedsurg.2010.02.040

K. Ljungmann, Time-dependent intestinal adaptation and GLP-2 alterations 483 after small bowel resection in rats, Am. J. Physiol. Gastrointest. Liver Physiol, vol.281, pp.484-779, 2001.

G. R. Martin, Nutrient-stimulated GLP-2 release and crypt cell proliferation in 486 experimental short bowel syndrome, Am. J. Physiol. Gastrointest. Liver Physiol, vol.288, pp.487-431, 2005.

F. Joly, Morphological adaptation with preserved proliferation/transporter 489 content in the colon of patients with short bowel syndrome, Am. J. Physiol, p.490

N. M. Neary, M. R. Druce, C. J. Small, and S. R. Bloom, Acylated ghrelin stimulates food 492 intake in the fed and fasted states but desacylated ghrelin has no effect, Gut, vol.55, pp.135-493, 2006.

B. L. Mason, Q. Wang, and J. M. Zigman, The Central Nervous System Sites Mediating the Orexigenic Actions of Ghrelin, Annual Review of Physiology, vol.76, issue.1, pp.519-533, 2014.
DOI : 10.1146/annurev-physiol-021113-170310

T. D. Müller, Ghrelin, Molecular Metabolism, vol.4, issue.6, pp.437-460, 2015.
DOI : 10.1016/j.molmet.2015.03.005

P. J. Verhulst, S. Janssen, J. Tack, and I. Depoortere, Role of the AMP-activated protein 498 kinase (AMPK) signaling pathway in the orexigenic effects of endogenous ghrelin, p.499

M. A. Cowley, The distribution and mechanism of action of ghrelin in the CNS 501 demonstrates a novel hypothalamic circuit regulating energy homeostasis, Neuron, vol.502, pp.37-649, 2003.

A. A. Klaauw and I. S. Farooqi, The hunger genes: pathways to obesity, Cell, vol.504, pp.161-119, 2015.

A. Molina, Serum leptin concentrations in patients with short-bowel syndrome, Clinical Nutrition, vol.19, issue.5, p.506
DOI : 10.1054/clnu.2000.0110

J. L. Goldstein, Surviving starvation: essential role of the ghrelin-growth 508

S. O. Fetissov, Alterations of arcuate nucleus neuropeptidergic development in 510 contactin-deficient mice: comparison with anorexia and food-deprived mice, Eur. J, p.511

A. Wichmann, Microbial Modulation of Energy Availability in the Colon Regulates Intestinal Transit, Cell Host & Microbe, vol.14, issue.5, pp.582-590, 2013.
DOI : 10.1016/j.chom.2013.09.012

D. Kunkel, Efficacy of the glucagon-like peptide-1 agonist exenatide in the 515 treatment of short bowel syndrome, Neurogastroenterol. Motil. Off. J. Eur, p.516

P. B. Jeppesen, Short bowel patients treated for two years with glucagon-like 518

M. Okuno, Peptide YY enhances NaCl and water absorption in the rat colon in vivo, Experientia, vol.335, issue.1, pp.47-50, 1992.
DOI : 10.1007/BF01923605

N. J. Wewer-albrechtsen, R. E. Kuhre, S. Toräng, and J. J. Holst, The intestinal distribution pattern of appetite- and glucose regulatory peptides in mice, rats and pigs, BMC Research Notes, vol.91, issue.1, p.60, 2016.
DOI : 10.1186/s13104-016-1872-2

H. Lardy, Changes Induced in Colonocytes by Extensive Intestinal Resection in Rats, Digestive Diseases and Sciences, vol.64, issue.2, pp.326-332, 2006.
DOI : 10.1007/s10620-006-3133-z

G. Tolhurst, Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2, Diabetes, vol.61, issue.2, pp.364-371, 2012.
DOI : 10.2337/db11-1019

J. Zhou, Dietary resistant starch upregulates total GLP-1 and PYY in a sustained 531 day-long manner through fermentation in rodents, Am. J. Physiol. Endocrinol. Metab, vol.532, issue.295, pp.1160-1166, 2008.

N. M. Delzenne, P. D. Cani, C. Daubioul, and A. M. Neyrinck, Impact of inulin and oligofructose on gastrointestinal peptides, British Journal of Nutrition, vol.128, issue.S1, pp.157-161, 2005.
DOI : 10.1016/S0899-9007(00)00464-0

T. Wu, Effects of rectal administration of taurocholic acid on glucagon-like 536

T. Onaga, R. Zabielski, and S. Kato, Multiple regulation of peptide YY secretion in the digestive tract, Peptides, vol.23, issue.2, pp.279-290, 2002.
DOI : 10.1016/S0196-9781(01)00609-X

A. Y. Dossa, Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling, American Journal of Physiology - Gastrointestinal and Liver Physiology, vol.310, issue.2, pp.81-92, 2016.
DOI : 10.1152/ajpgi.00065.2015

L. Métabolisme-to, LG and JBC received Ph.D. fellowships from the French Ministry of 549

. La-recherche-médicale, Thanks to Société Française de Nutrition for travel award to LG for 552 DDW, p.553

I. For, I. , and I. With, PN) and sham-operated (Sham) rats 7 days after surgery. Data are represented as mean ± 613 SEM of n=6 for sham, p.614

*. and *. P<0, 001 vs sham-operated rats based on non-parametric Kruskal-Wallis test, p.615

#. P<0, C. , and E. , 05, ## P<0.01 and ### P<0.001 vs jejuno-ileal SBS patients based for A, p.629