S. Lowe, E. Cepero, and G. Evan, Intrinsic tumour suppression, Nature, vol.35, issue.7015, pp.307-315, 2004.
DOI : 10.1038/nature03098

J. Chipuk, J. Fisher, C. Dillon, R. Kriwacki, T. Kuwana et al., Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins, Proceedings of the National Academy of Sciences, vol.105, issue.51, pp.20327-20332, 2008.
DOI : 10.1073/pnas.0808036105

J. Martinou and R. Youle, Mitochondria in Apoptosis: Bcl-2 Family Members and Mitochondrial Dynamics, Developmental Cell, vol.21, issue.1, pp.92-101, 2011.
DOI : 10.1016/j.devcel.2011.06.017

S. Tait and D. Green, Cell survival in tough times: The mitochondrial recovery plan, Cell Cycle, vol.9, issue.21, pp.4254-4255, 2010.
DOI : 10.4161/cc.9.21.13962

J. Chipuk, T. Moldoveanu, F. Llambi, M. Parsons, and D. Green, The BCL-2 Family Reunion, Molecular Cell, vol.37, issue.3, pp.299-310, 2010.
DOI : 10.1016/j.molcel.2010.01.025

L. Lalier, P. Cartron, P. Juin, S. Nedelkina, S. Manon et al., Bax activation and mitochondrial insertion during apoptosis, Apoptosis, vol.19, issue.Pt 2, pp.887-896, 2007.
DOI : 10.1007/s10495-007-0749-1

URL : https://hal.archives-ouvertes.fr/hal-00131560

A. Shamas-din, H. Brahmbhatt, B. Leber, and D. Andrews, BH3-only proteins: Orchestrators of apoptosis, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1813, issue.4, pp.508-520, 2011.
DOI : 10.1016/j.bbamcr.2010.11.024

F. Gautier, Y. Guillemin, P. Cartron, T. Gallenne, N. Cauquil et al., Bax Activation by Engagement with, Then Release from, the BH3 Binding Site of Bcl-xL, Molecular and Cellular Biology, vol.31, issue.4, pp.832-844, 2011.
DOI : 10.1128/MCB.00161-10

B. Leber, J. Lin, and D. Andrews, Still embedded together binding to membranes regulates Bcl-2 protein interactions, Oncogene, vol.15, issue.38, pp.5221-5230, 2010.
DOI : 10.1038/onc.2010.283

P. Czabotar, D. Westphal, G. Dewson, S. Ma, C. Hockings et al., Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis, Cell, vol.152, issue.3, pp.519-531, 2013.
DOI : 10.1016/j.cell.2012.12.031

T. Moldoveanu, C. Grace, F. Llambi, A. Nourse, P. Fitzgerald et al., BID-induced structural changes in BAK promote apoptosis, Nature Structural & Molecular Biology, vol.81, issue.5, pp.589-597, 2013.
DOI : 10.1016/S0006-3495(00)76713-0

R. Peng, J. Tong, H. Li, B. Yue, F. Zou et al., Targeting Bax interaction sites reveals that only homo-oligomerization sites are essential for its activation, Cell Death and Differentiation, vol.276, issue.5, pp.744-754, 2013.
DOI : 10.1158/0008-5472.CAN-10-4475

T. Gallenne, F. Gautier, L. Oliver, E. Hervouet, B. Noël et al., Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members, The Journal of Cell Biology, vol.185, issue.2, pp.279-290, 2009.
DOI : 10.1084/jem.20051736

URL : https://hal.archives-ouvertes.fr/hal-00450677

D. Ren, H. Tu, H. Kim, G. Wang, G. Bean et al., BID, BIM, and PUMA Are Essential for Activation of the BAX- and BAK-Dependent Cell Death Program, Science, vol.330, issue.6009, pp.1390-1393, 2010.
DOI : 10.1126/science.1190217

J. Ding, B. Mooers, Z. Zhang, J. Kale, D. Falcone et al., After Embedding in Membranes Antiapoptotic Bcl-XL Protein Binds Both Bcl-2 Homology Region 3 and Helix 1 of Proapoptotic Bax Protein to Inhibit Apoptotic Mitochondrial Permeabilization, Journal of Biological Chemistry, vol.289, issue.17, pp.11873-11896, 2014.
DOI : 10.1074/jbc.M114.552562

N. Chonghaile, T. Letai, and A. , Mimicking the BH3 domain to kill cancer cells, Oncogene, vol.281, issue.1, pp.149-157, 2008.
DOI : 10.1074/jbc.274.17.11549

J. Bertin-ciftci, B. Barré, L. Pen, J. Maillet, L. Couriaud et al., pRb/E2F-1-mediated caspase-dependent induction of Noxa amplifies the apoptotic effects of the Bcl-2/Bcl-xL inhibitor ABT-737, Cell Death and Differentiation, vol.92, issue.5, pp.755-764, 2013.
DOI : 10.1016/j.molcel.2010.03.018

A. Levine and M. Oren, The first 30 years of p53: growing ever more complex, Nature Reviews Cancer, vol.67, issue.10, pp.749-758, 2009.
DOI : 10.1038/nrc2723

K. Ryan, A. Phillips, and K. Vousden, Regulation and function of the p53 tumor suppressor protein, Current Opinion in Cell Biology, vol.13, issue.3, pp.332-337, 2001.
DOI : 10.1016/S0955-0674(00)00216-7

A. Comel, G. Sorrentino, V. Capaci, D. Sal, and G. , The cytoplasmic side of p53's oncosuppressive activities, FEBS Letters, vol.97, issue.16, pp.2600-2609, 2014.
DOI : 10.1016/j.febslet.2014.04.015

X. Deng, F. Gao, T. Flagg, J. Anderson, and W. May, Bcl2's Flexible Loop Domain Regulates p53 Binding and Survival, Molecular and Cellular Biology, vol.26, issue.12, pp.4421-4434, 2006.
DOI : 10.1128/MCB.01647-05

D. Green and G. Kroemer, Cytoplasmic functions of the tumour suppressor p53, Nature, vol.4, issue.7242, pp.1127-1130, 2009.
DOI : 10.1038/nature07986

F. Hagn, C. Klein, O. Demmer, N. Marchenko, A. Vaseva et al., BclxL Changes Conformation upon Binding to Wild-type but Not Mutant p53 DNA Binding Domain, Journal of Biological Chemistry, vol.285, issue.5, pp.3439-3450, 2010.
DOI : 10.1074/jbc.M109.065391

J. Han, L. Goldstein, W. Hou, B. Gastman, and H. Rabinowich, Regulation of Mitochondrial Apoptotic Events by p53-mediated Disruption of Complexes between Antiapoptotic Bcl-2 Members and Bim, Journal of Biological Chemistry, vol.285, issue.29, pp.22473-22483, 2010.
DOI : 10.1074/jbc.M109.081042

A. Vaseva and U. Moll, The mitochondrial p53 pathway, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1787, issue.5, pp.414-420, 2009.
DOI : 10.1016/j.bbabio.2008.10.005

J. Chipuk, T. Kuwana, L. Bouchier-hayes, N. Droin, D. Newmeyer et al., Direct Activation of Bax by p53 Mediates Mitochondrial Membrane Permeabilization and Apoptosis, Science, vol.303, issue.5660, pp.1010-1014, 2004.
DOI : 10.1126/science.1092734

J. I. Leu, P. Dumont, M. Hafey, M. Murphy, and D. George, Mitochondrial p53 activates Bak and causes disruption of a Bak???Mcl1 complex, Nature Cell Biology, vol.273, issue.5, pp.443-450, 2004.
DOI : 10.1038/ncb1123

B. Sot, S. Freund, and A. Fersht, Comparative Biophysical Characterization of p53 with the Pro-apoptotic BAK and the Anti-apoptotic BCL-xL, Journal of Biological Chemistry, vol.282, issue.40, pp.29193-29200, 2007.
DOI : 10.1074/jbc.M705544200

N. Ferrandiz, J. Martin-perez, R. Blanco, D. Donertas, A. Weber et al., HCT116 cells deficient in p21Waf1 are hypersensitive to tyrosine kinase inhibitors and adriamycin through a mechanism unrelated to p21 and dependent on p53, DNA Repair, vol.8, issue.3, pp.390-399, 2009.
DOI : 10.1016/j.dnarep.2008.12.001

E. Oda, R. Ohki, H. Murasawa, J. Nemoto, T. Shibue et al., Noxa, a BH3-Only Member of the Bcl-2 Family and Candidate Mediator of p53-Induced Apoptosis, Science, vol.288, issue.5468, pp.1053-1058, 2000.
DOI : 10.1126/science.288.5468.1053

J. Song, K. Kandasamy, M. Zemskova, Y. Lin, and A. Kraft, The BH3 Mimetic ABT-737 Induces Cancer Cell Senescence, Cancer Research, vol.71, issue.2, pp.506-515, 2011.
DOI : 10.1158/0008-5472.CAN-10-1977

A. Vaseva, N. Marchenko, and U. Moll, The transcription-independent mitochondrial p53 program is a major contributor to Nutlin-induced apoptosis in tumor cells, Cell Cycle, vol.8, issue.11, pp.1711-1719, 2009.
DOI : 10.4161/cc.8.11.8596

N. Bah, L. Maillet, J. Ryan, S. Dubreil, F. Gautier et al., Bcl-xL controls a switch between cell death modes during mitotic arrest, Cell Death and Disease, vol.21, issue.6, p.1291, 2014.
DOI : 10.1016/j.ejmech.2012.02.036

Y. Arima, M. Nitta, S. Kuninaka, D. Zhang, T. Fujiwara et al., Transcriptional Blockade Induces p53-dependent Apoptosis Associated with Translocation of p53 to Mitochondria, Journal of Biological Chemistry, vol.280, issue.19, pp.19166-19176, 2005.
DOI : 10.1074/jbc.M410691200

A. Follis, F. Llambi, L. Ou, K. Baran, D. Green et al., The DNA-binding domain mediates both nuclear and cytosolic functions of p53, Nature Structural & Molecular Biology, vol.31, issue.6, pp.535-543, 2014.
DOI : 10.1038/nsmb.2829

E. Pietsch, E. Perchiniak, A. Canutescu, G. Wang, R. Dunbrack et al., Oligomerization of BAK by p53 Utilizes Conserved Residues of the p53 DNA Binding Domain, Journal of Biological Chemistry, vol.283, issue.30, pp.21294-21304, 2008.
DOI : 10.1074/jbc.M710539200

A. Nieminen, V. Eskelinen, H. Haikala, T. Tervonen, Y. Yan et al., Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis, Proceedings of the National Academy of Sciences, vol.110, issue.20, pp.1839-1848, 2013.
DOI : 10.1073/pnas.1208530110

T. Petty, S. Emamzadah, L. Costantino, I. Petkova, E. Stavridi et al., An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity, The EMBO Journal, vol.281, issue.11, pp.2167-2176, 2011.
DOI : 10.1038/emboj.2011.127

Y. Haupt, S. Rowan, E. Shaulian, A. Kazaz, K. Vousden et al., p53 mediated apoptosis in HeLa cells: transcription dependent and independent mechanisms, Leukemia, vol.11, pp.337-339, 1997.

J. Chipuk, U. Maurer, D. Green, and M. Schuler, Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription, Cancer Cell, vol.4, issue.5, pp.371-381, 2003.
DOI : 10.1016/S1535-6108(03)00272-1

A. Follis, F. Llambi, P. Merritt, J. Chipuk, D. Green et al., Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis, Molecular Cell, vol.59, issue.4, pp.677-684, 2015.
DOI : 10.1016/j.molcel.2015.06.029

J. Montero, K. Sarosiek, J. Deangelo, O. Maertens, J. Ryan et al., Drug-Induced Death Signaling Strategy Rapidly Predicts Cancer Response to Chemotherapy, Cell, vol.160, issue.5, pp.977-989, 2015.
DOI : 10.1016/j.cell.2015.01.042

S. Montessuit, S. Somasekharan, O. Terrones, S. Lucken-ardjomande, S. Herzig et al., Membrane Remodeling Induced by the Dynamin-Related Protein Drp1 Stimulates Bax Oligomerization, Cell, vol.142, issue.6, pp.889-901, 2010.
DOI : 10.1016/j.cell.2010.08.017

K. Sarosiek, C. X. Bachman, J. Sims, J. Montero, J. Patel et al., BID Preferentially Activates BAK while BIM Preferentially Activates BAX, Affecting Chemotherapy Response, Molecular Cell, vol.51, issue.6, pp.751-765, 2013.
DOI : 10.1016/j.molcel.2013.08.048

Y. Hsu and R. Youle, Nonionic Detergents Induce Dimerization among Members of the Bcl-2 Family, Journal of Biological Chemistry, vol.272, issue.21, pp.13829-13834, 1997.
DOI : 10.1074/jbc.272.21.13829

B. Antonsson, S. Montessuit, S. Lauper, R. Eskes, and J. Martinou, Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria, Biochemical Journal, vol.345, issue.2, pp.271-278, 2000.
DOI : 10.1042/bj3450271

M. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Research, vol.29, issue.9, p.45, 2001.
DOI : 10.1093/nar/29.9.e45