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Abstract

Background: For clinical genomic studies with high-dimensional datasets, tree-based ensemble methods offer a
powerful solution for variable selection and prediction taking into account the complex interrelationships between
explanatory variables. One of the key component of the tree-building process is the splitting criterion. For survival
data, the classical splitting criterion is the Logrank statistic. However, the presence of a fraction of nonsusceptible
patients in the studied population advocates for considering a criterion tailored to this peculiar situation.

Results: We propose a bagging survival tree procedure for variable selection and prediction where the survival
tree-building process relies on a splitting criterion that explicitly focuses on time-to-event survival distribution among
susceptible patients.
A simulation study shows that our method achieves good performance for the variable selection and prediction.
Different criteria for evaluating the importance of the explanatory variables and the prediction performance are
reported. Our procedure is illustrated on a genomic dataset with gene expression measurements from early breast
cancer patients.

Conclusions: In the presence of nonsusceptible patients among the studied population, our procedure represents
an efficient way to select event-related explanatory covariates with potential higher-order interaction and identify
homogeneous groups of susceptible patients.

Keywords: Bagging, Survival tree, High-dimensional data, Nonsusceptible individuals, Genomic

Background
Since the inception of large-scale genomic technologies,
there has been a growing interest in analyzing the prog-
nostic and predictive impact of high-dimensional genomic
markers. However, the extremely large number of poten-
tial interaction terms prevent from being specified in
advance and incorporated in classical survival models.
In this context, tree-based recursive partitioning meth-
ods such as CART (Classification And Regression Tree
[1]) provide well-suited and powerful alternatives. This
nonparametric methodology partitions recursively the
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predictor space into disjoint sub-regions (so-called termi-
nal nodes or leaves) that are near homogeneous according
to the outcome of interest. This framework is particularly
well-suited to detect relevant interactions and produce
prediction in high-dimensional settings.
Since the first extension of CART to censored data

(termed as survival trees) proposed by Gordon and
Olshen [2], many new methods have been proposed so
far (for a review see [3]). Broadly speaking, the key com-
ponents for a survival tree are: the splitting criterion,
the prediction measure, the pruning and tree selection
rules. The splitting survival-tree criteria rely either on
minimizing the within-node homogeneity or maximiz-
ing the between-node heterogeneity. They are based on
various quantities such as the distance between Kaplan-
Meier survival curves [2], likelihood-related functions
(e.g. [4]) or score statistics (e.g. [5]) such as weighted or
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unweighted Logrank test statistics. The final prediction
measure, within each terminal node, is typically based on
non-parametric estimations of either the cumulative haz-
ard function or the survival function. The pruning and
selection rules are applied to find the appropriate subtree
and avoid overfitting.
However, the well-known instability of tree-based struc-

tures has led to the development of so-called survival
ensemble methods such as bagging survival tree and ran-
dom survival forest [6, 7]. The main idea is that the
combination of several survival tree predictors has bet-
ter predicting power that each individual tree predictor.
The general strategy is to draw bootstrap samples from
the original observations and to grow the maximal tree
for each of these samples. This strategy also circumvents
the problem of pruning and selection since each tree is
grown full size. The final prediction is obtained by averag-
ing the predictions from each individual trees. In practice,
the bagging can be viewed as a special case of random
survival forests where all the covariates are considered as
relevant candidates at each node. Thesemethods also pro-
vide a way to define various variable importance measures
that can be used for variable selection.
Even though survival trees are non-parametric meth-

ods, their constructions rely heavily on the chosen
model-related splitting criteria that are based on either
parametric or semi-parametric modeling assumptions
(e.g. [4, 8]). Thus, for a particular problem, the choice of
the splitting criteria is crucial to the performance of the
tree regarding variable selection and prediction [9]. This
problem is particularly appealing in the context of survival
data with nonsusceptible individuals where the investiga-
tor is interested in identifying homogeneous subgroups
according to the time-to-event outcome among the indi-
viduals who are susceptible to experience the event of
interest. In clinical oncology, these nonsusceptible indi-
viduals (sometimes referred as long-term survivors or
cured patients) are those who have been successfully
cured from the disease by the primary treatment. For
infectious and immune diseases, these individuals are
those who are resistant to certain pathogens or tolerant
to specific antigens. In such mixed population, none of
the classically used splitting criteria explicitly focuses on
the time-to-event survival distribution among susceptible
individuals, which raises some open questions about their
performance.
In the literature, various survival models taking into

account for a fraction of nonsusceptible patients (also
called “improper survival distribution” models) have been
proposed. The oldest framework relies on two-component
mixture models which explicitly assumes that the pop-
ulation under study is a mixture of two subpopulations
of patients (susceptible/nonsusceptible) in a parametric
or semi-parametric modeling approach (for a review,

see [10]). A different framework proposed more recently
defines the cumulative hazard risk as a bounded increas-
ing positive function that can be interpreted from either
a mechanistic model (as first introduced by [11] in oncol-
ogy) or a latent activation scheme [12].
In this work, our aim is to unravel complex interactions

between genomic factors that act on the time-to-event
distribution among susceptible patients while adjusting
for the confounding effect associated to the existence of
a fraction of susceptible patients in the population under
study.
Thus, we propose a bagging survival tree procedure

for variable selection and prediction which is tailored to
this situation. The strategy relies on an improper sur-
vival modeling which considers a linear part for taking
into account for known confounders associated with the
nonsusceptible fraction and a tree structure for the event-
related explanatory variables. The building of the survival
trees rely on a model-based splitting criteria that explicitly
focuses on susceptible patients. The considered splitting
criterion is linked to a recently proposed model-based
discrimination index that quantifies the ability of a vari-
able to separate susceptible patients according to their
time-to-event outcome [13].
Next, the splitting criteria and the general procedure

are presented. We then compare the results obtained
with this procedure to those obtained with the classi-
cal Logrank statistic as the splitting criteria. We illustrate
the clinical interest of this procedure for selection and
prediction among patients with early-stage breast carci-
noma for whom gene expressionmeasurements have been
collected. We conclude with a discussion on the practi-
cal use of the procedure, its limitations and the potential
extensions.

Methods
Notations and improper survival model
Let the continuous random variables T and C be the true
event and censoring times. Let X = min(T ,C) be the
observed time of follow-up, δ = 1(X=T) the indicator of
event and Y (t) = 1(X≥t) the at risk indicator at time
t. Here, we consider that for nonsusceptible individuals
T = ∞+. Thus, the survival function S(t) of T is said to
be improper with S(∞+) > 0. The hazard function (or the
instantaneous event rate) of T is noted: λ(t) = f (t)/S(t),
where f (t) is the density function of T . The corresponding
cumulative hazard function is noted�(t) = ∫ t0λ(s)dswith
a finite positive limit θ such as �(t = ∞+) = θ < ∞+.
Let Z = (Z1,Z2) be the (m1 + m2)-dimensional vector
of covariates where Z1 is the m1-dimensional sub-vector
of known confounding covariates linked to the nonsus-
ceptible state and Z2 is the m2-dimensional sub-vector
of explanatory covariates of interest (associated with the
time-to-event outcome).
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For each patient i (i = 1, . . . , n), the observed data con-
sists of (Xi, δi,Zi). We assume noninformative censoring
for T and C [14]. For modeling the time-to-event sur-
vival distribution, we propose to consider the following
tree-structured improper survival model:

S(t|Zi) = exp
[
−�

(
t|Z1i,W�(Z2)

il

)]
where the bounded cumulative hazard function
�
(
t|Z1i,W�(Z2)

il

)
depends on Z1 and Z2 through a linear

and a tree component, respectively. In this latter case, the
dummy covariate W�(Z2)

il is such as W�(Z2)
il = 1 if the ith

observation belongs to the lth leave (or terminal node) of
the tree �(Z2) and zero otherwise.
Here, the cumulative hazard function is mod-

eled such as: �
(
t|Z1i,W�(Z2)

il

)
= θeαTZ1i

{
1 − exp[

−H
(
t;W�(Z2)

il

)]}
where H(t) is an unspecified con-

tinuous positive function increasing from zero to infinity
which formulates the shape of the time-to-event survival
distribution for each terminal node. Thus, the cumulative
hazard function �

(
t|Z1i,W�(Z2)

il

)
is bounded, increases

with t and reaches its maximum for θeαTZ1i where α is an
unknown vector of parameters associated to Z1 and θ is a
positive parameter.
At any split, if we assume proportionality between the

two child nodes with Z∗ a binary variable for node mem-
bership, the previous model can be written in terms of the
hazard function such as:

λ(t|Zi) = θeαZ1ih(t)eγZ
∗
i e−H(t)eγZ

∗
i (1)

where h(t) = ∂H(t)
∂t and γ is an unknown parameter

associated with variable Z∗.

Splitting criterion
The classical use of Logrank related statistics in survival
trees relies on the fact that these statistics are considered
as between-node heterogeneity criteria.
In the context of a mixed population (nonsuscepti-

ble/susceptible), we have proposed [13] a pseudo-R2 cri-
terion that can be interpreted in terms of percentage
of separability obtained by a variable according to time-
to-event outcomes of susceptible patients. This criterion
represents a good candidate for the splitting process.
In the following, we give the formula of the splitting

criterion through its relationship with the partial log-
likelihood score.
Let (Xi, δi,Zi; i = 1, . . . ,m; m ≤ n) be the set of

observed data within node τ . We consider splitting the
parent node τ of size m into two child nodes τL and τR.
Let Z∗

i be a binary variable such as Z∗
i = 1 if the ith

observation belongs to node τL and zero otherwise, and γ

the unknown parameter associated with Z∗. The partial
likelihood based on (1) is as follows:

L(γ ,α) =
m∏
i=1

⎡⎣ eαZ1i eγZ∗
i e−H(Xi)eγZ

∗
i∑m

j=1 Yj(Xi)eαZ1j eγZ
∗
j e−H(Xi)e

γZ∗
j

⎤⎦δi

.

The score vector deduced from the partial log-
likelihood for the improper survival model (1) under the
hypothesis of γ = 0 is such as:

U =
{

∂ log L
∂γ

|γ=0

}
=

m∑
i=1

δiw(Xi)

(
Z∗
i −

∑m
l=1 Yl(Xi)eαZ1lZ∗

l∑m
l=1 Yl(Xi)eαZ1l

)

with ω (Xi) = 1 − H(Xi). Here, H(t) =
−log (1 − �0(t)/θ), where �0(t) is a baseline cumulative
hazard function bounded by θ under the hypothesis of
γ = 0. It is worth noting that when θ tends to infinity
(the nonsusceptible fraction tends to zero) then ω (Xi)
tends to one. In this latter case, the proposed score corre-
sponds to the classical adjusted Logrank statistic which is
appropriate for proper survival model.
The corresponding robust variance estimator [15] is

such as:

V =
m∑
i=1

⎧⎪⎨⎪⎩
δiω (Xi)

(
Z∗
i −

∑m
l=1 Yl(Xi)eαZ1l Z∗

l∑m
l=1 Yl(Xi)eαZ1l

)
−∑m

l=1
δlω(Xl)∑m

r=1 Yr(Xl)eαZ1r

(
Z∗
i −

∑m
r=1 Yr(Xl)eαZ1r Z∗

r∑m
r=1 Yr(Xl)eαZ1r

)
⎫⎪⎬⎪⎭

2

.

The practical expression of U and V are obtained by
replacing �0, θ , and α by their respective estimators �̂0,
θ̂ , and α̂. Here, �̂0 is the left-continuous version of the
Breslow’s estimator [16, 17]. The estimated quantity θ̂ is
equal to �̂0(tmax) where tmax is the last observed failure
time and α̂ is the maximum partial likelihood estimator of
α under the null hypothesis (γ = 0).
The quantity S = U2

V /K where K is the total num-
ber of distinct event times is a pseudo-R2 measure [13].
This criterion is unit-less, ranges from zero to one and
increases with the effect of the splitting variable. It is also
not affected by the censoring, the sample size and the non-
susceptible fraction. To a factor K , this criterion can also
be interpreted as the robust score statistic obtained from
the partial log-likelihood under the improper survival
model [15].

Bagging procedure and prediction estimate
We consider a learning set L, consisting of n indepen-
dent observations: L = {(Xi, δi,Zi), i = 1, . . . , n}. Let L∗

b
(b = 1, . . . ,B) denotes the bth bootstrap sample of the
training set L obtained by drawing with replacement n
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elements of L. According to random sampling of observa-
tions with replacement, an average of 36.8 % are not part
ofL∗

b. LetOOBb = L\L∗
b be the set of these elements. The

observations in OOBb are not used to construct the pre-
dictor Pb; they constitute for this predictor the so-called
Out Of Bag (OOB) sample.
The bagging procedure is as follows:

1. Repeat for b = 1, . . . ,B

• Take a bootstrap replicate L∗
b of the training set

L
• Build a survival tree such as:

∗ For each split candidate variable Z∗ (based
on the information from Z2) compute the
corresponding splitting criterion S(Z∗)
presented above.

∗ Do the same procedure for all the split
candidate variables.

∗ Find the best split S∗ which is the one
having the maximum value over all the
candidates. Then, a new node is built and
the observations are splitted accordingly.

∗ Iterate the process until each node reaches
a pre-defined minimum node size or be
homogeneous.

∗ Construct the final tree denoted T b (Wb)
whereW (b)

l (l = 1, . . . , L(b)) is a vector of
indicator variables representing the L(b)
leaves of the tree such thatW (b)

il = 1 if the
ith observation belongs to the lth terminal
node of T b, and 0, otherwise.

• Calculate the cumulative hazard function (CHF)
estimator for each terminal leave of each
bootstrap tree T b.

∗ The Breslow-type estimator of the baseline
cumulative hazard [16, 17] in a terminal
node l of the tree T b is computed as

�̂b
l (t) = �̂

(
t|W (b)

l = 1
)

=
n∑

i;ti≤t
1{W (b)

il =1
}
⎛⎜⎝ δi∑n

j=1 1{W (b)
jl =1

}Y l
j (ti) eα̂Z1j

⎞⎟⎠
where α̂ is the partial log-likelihood
estimator obtained using all the learning
data from the tree T b .

∗ The Nelson-Aalen estimator of the baseline
cumulative hazard [18, 19] in a terminal
node l of the tree T b is computed as:

�̂b
l (t) = �̂

(
t|W (b)

l = 1
)

=
n∑

i;ti≤t
1{W (b)

il =1
}
⎛⎜⎝ δi∑n

j=1 1{W (b)
jl =1

}Y l
j (ti)

⎞⎟⎠
2. Compute the CHF prediction estimator:

The CHF prediction estimator for a new patient j
with covariate Zj is computed as follows. The
patient’s covariates Z2j are dropped down each tree.
Then, the prediction is obtained as the weighted
average of the estimated CHF over the learning
datasets with the same membership terminal node
assignment than the new case:

�̂ (t|Zj) = 1
B

B∑
b=1

L(b)∑
l=1

1{W (b)
jl =1

}eα̂Z1j �̂b
l (t)

where L(b) is the number of leaves nodes of the tree
T b

Measures of prediction accuracy
Various measures have been proposed so far for assess-
ing the estimated survival predictions (e.g. [20, 21]). One
of the most popular in censored data analysis is the inte-
grated Brier score [22] which is now widely used in sur-
vival tree-based methods. The Brier score is interpreted
as the mean square error between the estimated survival
function and the data weighted by the inverse probabil-
ity of censoring. Its square root can be interpreted as the
expected distance between the predicted risk and the true
event status. The Brier score is a pointwise measure which
is given at time t by:

BS(t) = 1
N

N∑
i=1

[
Ŝ (t|Zi)

2 Ĝ−1(Xi)1(Xi≤t,δi=1)

+
[
1 − Ŝ (t|Zi)

]2
Ĝ−1(t)1(Xi>t)

]
where Ĝ(t) is the nonparametric Kaplan-Meier estimate
of the censoring distribution which represents the weights
in the expected Brier score.
The integrated Brier score over time is given by:

IBS = 1
max(Xi)

∫ max(Xi)

0
BS (t) dt.

Here, we take advantage of the bagging strategy that
provides OOB CHF estimator (2) for computing the Out
Of Bag IBS denoted by IBS∗. This latter quantity is
obtained such as:

IBS∗ = 1
max(Xi)

∫ max(Xi)

0
BS∗ (t) dt,
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where

BS∗ (t) = 1
N

N∑
i=1

[
Ŝ∗ (t|Zi)

2 Ĝ−1(Xi)1(Xi≤t,δi=1)

+
[
1 − Ŝ∗ (t|Zi)

]2
Ĝ−1(t)1(Xi>t)

]
with Ŝ∗ (t|Zi) = exp

(
−�̂∗ (t|Zi)

)
being the OOB pre-

dicted survival function for individual i at a given time
t. This internal validation procedure avoids the time-
consuming cross-validation. Lower values of IBS∗ indicate
better predictive performances.
For computing the IBS∗, theOOB prediction of the CHF

is computed such as: Let 1i,b equal one if the patient i is an
OOB observation for the bth bootstrap tree T b, and zero
otherwise. The OOB cumulative hazard function estima-
tor for i is obtained by averaging only over bootstrap tree
samples in which individual i is excluded.

�̂∗ (t|Zi) =
∑B

b=1 1i,b
∑L(b)

l=1 1{W (b)
il =1

}eα̂Z1i �̂b
l (t)∑B

b=1 1i,b
(2)

Importance score
The choice of a measure of importance for a variable can
rely on either the prediction capacity or the discriminative
ability of the variable through the tree structure. Here, we
consider the following importance scores.

Index importance score (IIS)
For each bootstrap tree T b indexed by b = 1, . . . ,B, let
νb be a given node for the tree T b. For each component
j of the vector Z2 and for each tree T b, the Importance
Score of Z2j is computed as the sum of the values of the
splitting criterion at each split relying on this variable (Sνb )
times the number of events in the split (
νb). This latter
quantity corresponds to the value of the robust Logrank
score under the improper survival model.

ωb
j =

∑
νb∈T b, νbis based onZ2j


νb × Sνb .

These scores are summed across the set of trees, and
normalized to take values between 0 and 100, with sum of
all scores equal to 100:

IISj = 1
κ

B∑
b=1

ωb
j

where κ = 1
100
∑

b, j ω
b
j .

Depth and index importance score (DIIS)
The second criteria is inspired from the Depth Impor-
tance measure that has been introduced by Chen et al.
[23]. This measure is similar to the Index Importance
Score but also considers the location of the splitting.

If dt denotes the depth of the split of node νb in the tree
T b, we define

ω∗b
j =

∑
νb∈T b, νbis based onZ2j

2−dt × 
νb × Sνb .

These scores are summed across the set of trees and
normalized to sum to 100:

DIISj = 1
κ ′

B∑
b=1

ω∗b
j

where κ ′ = 1
100
∑

b, j ω
∗b
j .

Permutation prediction importance score (PPIS)
The permutation importance is conceptually the most
popular measure of importance for ensemble methods
which relies on prediction accuracy. It is assessed by com-
paring the prediction accuracy of a tree before and after
random permutation of the predictor variable of interest.
For each tree T b, b = 1, . . . ,B of the forest, consider the
associated Out Of Bag sample OOBb. Let denote IBS∗

b the
OOB Integrated Brier Score based on the sample OOBb
and using the single tree T b as predictor. The IBS∗

b cor-
responds to a restriction of IBS∗ on the sample OOBb (of
cardinality equal to |OOBb|) using the predictor T b:

IBS∗
b = 1

max(Xi, i ∈ OOBb)

∫ max(Xi, i∈OOBb)

0
BS∗

b (t) dt

with

BS∗
b (t) = 1

|OOBb|
∑

i∈OOBb

[̂
S∗
b (t|Zi)

2 Ĝ−1(Xi)1(Xi≤t,δi=1)

+
[
1 − Ŝ∗

b (t|Zi)
]2
Ĝ−1(t)1(Xi>t)

]
.

Then, for each component j = 1, . . . ,m2 of the vec-
tor Z2 = (Z21 , . . . ,Z2m2) of predictors, the values z2ij
are randomly permuted within the OOBb samples, and
the prediction accuracy IBS∗j

b is computed once again.
The Permutation Importance is the average of increase in
prediction error over the B bootstrap samples:

PPIS(Z2j) = 1
B

B∑
b=1

(
IBS∗j

b − IBS∗
b

)
.

Large values of PPIS indicate a strong predictive abil-
ity whereas values close to zero indicate a poor predictive
ability. In the following, we will denote PPIS-NA and PPIS-
BRE the scores obtained using the Nelson-Aalen and the
Breslow estimators, respectively.

Basket of important variables
For selecting a subset (hereinafter referred as a basket)
of the most important variables, the main problem is to
choose a threshold value for the previous scores. Several
performance-based approaches have been proposed in the
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literature to deal with the variable selection in Random
Forests comparing either OOB or cross-validated errors
of a set of nested models. Most of these procedures share
the same methodological scheme and differ only in minor
aspects (for a few see [24–26]). However, for survival data
there is no consensus about which measure of prediction
error is the most appropriate. Thus, each measure leads
to a particular estimation of the prediction error that ulti-
mately leads to select different subset of variables. Rather
than using performance-based approaches, we propose
hereafter to consider a strategy based on a testing pro-
cedure using a topological index which allows to select a
basket of important variables.
In the following and without loss of generality, we sup-

pose that the index score of interest is the IIS.
We then consider a permutation test at a global level α

for testing the hypothesis

H0j : IISj = 0 v.s H1j : IISj �= 0; j = 1, . . . , m2.

The procedure consists in iterating between the follow-
ing steps:

• Step 1: Use the learning set L to build the bagging
predictor as describe in “Bagging procedure and
prediction estimate” Section. Compute for each
competing variable Z2j the index score of importance
IISj as describe in “Importance score” Section.

• Step 2: Let σ : {1, . . . , n} → {1, . . . , n} be a random
permutation of the set {1, . . . , n}; let
Lσ = {(Xσ(i), δσ(i),Z1σ(i),Z2i), i = 1, . . . , n} be a
partial permutation of L. Use the learning set Lσ to
build another bagging predictor using the same
procedure as in the first step and compute again for
each competing variable Z2j the index score of
importance IIS0j .• Step 3: Repeat Step 2 a number Q of times.

• Step 4: Compute the P-values for each competing
variable Z2j as follows:

pj = 1
Q

Q∑
q=1

1{IIS0jq≥IISj}

• Step 5: Using a Bonferroni procedure for multiple
comparisons, the selected variables are those fulfilling
the conditions pj ≤ α/m2; j = 1, . . . ,m2.

This procedure is conceptually similar to the one pro-
posed by [27] to correct the bias of the so-called Gini
importance in a Random-Forest framework. Neverthe-
less, in our framework, we have to take into account the
covariables Z1 associated to the nonsusceptible individ-
uals. For this purpose, the permutation scheme used in
Step 2 ensures that the existing relationship between the

time-to-event observations and the covariates Z1 is not
distorted under the null hypothesis.

Results and discussion
Simulation scheme
In order to evaluate the performance of the bagging
survival strategy relying either on the classical adjusted
Logrank splitting criterion (denoted LR) or the proposed
pseudo-R2 criterion (denoted R2), we performed a simu-
lation study as follows.
The data were generated from an improper survival tree

using the following model:

S(t|Z1 ; Z2) = S (t|G1 ; G2, . . . ,G5)

= exp[−�(t|G1 ; G2, . . . ,G5)]

= exp
{
−θeαG1

[
1 − exp

(
−λ0te g(γ ,G2,...,G5)

)]}
, (3)

where

g(γ ,G2, . . . ,G5) = γ11G2=0,G3=0 + γ21G2=0,G3=1 + γ31G2
= 1,G4=0 + γ41G2=1,G4=1,G5=0 + γ51G2
= 1,G4 = 1,G5 = 1

with eα = 1.25, λ0 = 1, γ1 = 0.6, γ2 = 1.8, γ3 = 0.45,
γ4 = 0.35, γ5 = 2. The Bernoulli variables G1, . . . ,G5
related to the time-to-event variableT are generated using
the following scheme:
Gi ∼ B(νi), for i = 1, . . . , 5 with ν1 = 0.5; ν2 = 0.6;

ν3 = 0.5; ν4 = 0.3; ν5 = 0.65.
Predictor G1 is associated with the nonsusceptible frac-

tion while predictors G2, . . . ,G5 are associated to the
survival distribution of the susceptible fraction through a
five risk group survival tree. The underlying improper sur-
vival tree is displayed in Fig. 1. The censoring distribution
was exponential with parameter chosen to give 10 and
25 % of censoring within the susceptible population. The
parameter θ is such as exp(−θ) corresponds to the pro-
portion of nonsusceptible individuals for the reference
group (G1 = 0).
We considered eight different scenarios with, for each,

three different values for the number of noise or non-
informative covariables (10, 100 and 500), that are inde-
pendent Bernoulli variables with π = 0.5. Thus, a total of
24 different simulation sets were generated. The first four
scenarios are based on model (3), with N = 250 individu-
als, a proportion of nonsusceptible patients of 25 and 50 %,
and the rate of censoring observations within the suscep-
tible population of 10 and 25 %. The last four scenarios are
also based onmodel (3), but withN = 500 individuals and
the same setting as the previous ones.
The simulation scheme is summarized in Table 1 where

“censoring” represents the proportion of censoring among
susceptible individuals and “plateau” the proportion of
nonsusceptible individuals in the population.
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Fig. 1 Simulated improper survival tree: The leaves are represented by circles and the number beneath each leaf node represents the log-hazard
ratio of the underlying risk set

For all scenarios, LR and R2 are adjusted criteria for
the known confounding factor G1 linked to the non-
susceptible state. We also evaluate the prediction accu-
racy using either the Nelson-Aalen (denoted NA) or
the Breslow (denoted BRE) estimators. For prediction
Table 1 Simulation scenarios for the evaluation of the
importance scores and the prediction accuracy

Scenario N plateau censoring Noise covariables

1 (a) 10

1 (b) 250 25 % 10 % 100

1 (c) 500

2 (a) 10

2 (b) 250 25 % 25 % 100

2 (c) 500

3 (a) 10

3 (b) 250 50 % 10 % 100

3 (c) 500

4 (a) 10

4 (b) 250 50 % 25 % 100

4 (c) 500

5 (a) 10

5 (b) 500 25 % 10 % 100

5 (c) 500

6 (a) 10

6 (b) 500 25 % 25 % 100

6 (c) 500

7 (a) 10

7 (b) 500 50 % 10 % 100

7 (c) 500

8 (a) 10

8 (b) 500 50 % 25 % 100

8 (c) 500

accuracy, we present the results obtained from the inte-
grated Brier score (IBS). For the variable selection, we
present the results obtained with IIS, DIIS and PPIS
criteria.
For each scenario, we have generated 50 data sets.

The bagging procedure with 400 trees was then applied
to each data set with the two proposed splitting cri-
teria. We then obtained 50 estimates of the Out Of
Bag Integrated Brier Score for each method and each
scenario.
We considered an additional scenario designed to

mimic a data set that would reflect a situation, such as the
one presented in our example, where variables are func-
tionally related through groups (e.g. biological pathway).
In practice, we generated correlated variables divided in
five blocks of various sizes (ranging from 10 to 30 %) with
correlations ranging between −0.2 to 0.3. We considered
a situation with 500 individuals, a proportion of nonsus-
ceptible patients of 25 %, a rate of censoring observations
within the susceptible population of 10 and 25 % and
two different values for the number of non-informative
covariables (100 and 500).

Simulation results
Figure 2 shows for one scenario and the 50 generated
datasets, the Kaplan-Meier curves obtained for the differ-
ent leaves.

Prediction results
The Box-plots of the 50 values of OOB-IBS are presented
in Figs. 3–4 corresponding to scenarios 1–4 and 5–8
respectively.
In the first scenario (first column from left to right of

Fig. 3), the OOB-IBS are consistently and slightly lower
than their counterparts of scenario 2 (second column
from left to right of Fig. 3). This was expected because
of the increase in censoring proportion among the sus-
ceptible population from 10 % in scenario 1 to 25 % in
scenario 2.
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Fig. 2 Kaplan-Meier curves of the 50 generated datasets for the
different leaves

The OOB-IBS obtained using our proposed “pseudo-
R2” splitting criterion are better (lower median value
with a smaller variability) than those obtained with the
stratified Logrank criterion. The “Pseudo-R2” consistently
outperforms the Logrank in term of prediction accu-
racy for the first two scenarios. For these scenarios, the
results obtained with BRE and NA estimators are compa-
rable. The impact of the additional noise variables on the
prediction accuracy seems insignificant.
The same remarks can be made for scenarios 3 and 4

using the last two columns from left to right of Fig. 3.
The only additional information here is an increase of
the global magnitude of the OOB-IBS from the first two
columns of Fig. 3 to the last two columns. This is mainly
due to the decrease of the proportion of susceptible popu-
lation from 75 % in scenarios 1–2 to 50 % in scenarios 3-4,
leading to a decrease of the number of events observed.
These scenarios are more challenging than the previous
ones.
The results of scenarios 5–8 (Fig. 4) are slightly better

than those of scenarios 1–4. This is mainly due to the
increase in the number of individuals from 250 to 500.
In the additional scenario with correlated variables

(Fig. 5), the results are comparable to those of scenarios 5
and 6. The “Pseudo-R2” criterion still has an edge on the
Logrank criterion in term of prediction accuracy.

Importance scores results
For each scenario and each proposed splitting criterion,
we have computed four importance scores indexes: IIS,
DIIS, PPIS-NA, PPIS-BRE. The behaviors of the four
indexes are displayed in Figs. 6, 7, 8 and 9 using the
mean over 50 replicates. Each figure displays the results

obtained with the different number of additional noise
variables: the blue color with the mark “◦” represents
the case of 10 additional noise variables; the red color
with the mark “
” is set for 100 additional noise vari-
ables; the green color with marks “+” is set for the case
of 500 additional noise variables. For the sake of read-
ability of the figures, the first 4 dots for each color graph
represent the scores associated with explanatory variables
G2,G3,G4,G5, respectively, whereas the remaining dots
are for noise variables ranking in decreasing order (for
clarity, we only plot the first 20 ordered variables).
Figure 6 shows that in the simple Scenarios 1a and 2a

with only 10 noise variables (blue color within Fig. 6),
the pseudo-R2 splitting criterion attempts a clear dis-
crimination between explanatory variables and noise vari-
ables, regardless of the considered importance scores. The
same remark can not be made for the Logrank split-
ting criterion where the PPIS index discriminates only
one variable while the IIS and DIIS indexes attempted to
discriminate three explanatory variables from the noise
ones.
In the more challenging scenarios 1b and 2b with 100

noise variables (red color within Fig. 6), the PPIS behaves
poorly with the Logrank splitting criterion while the
pseudo-R2 splitting criterion behaves well in discriminat-
ing the explanatory variables from the 100 noise vari-
ables. Nevertheless, the performances are quite similarly
between the two splitting criterion with regard to IIS and
DIIS.
In the most challenging scenarios 1c and 2c with 500

noise variables (green color within Fig. 6) we observe a
little deterioration of performances, mainly for the PPIS
index. The Logrank splitting criterion behaves poorly for
all the indexes, while the IIS and DIIS for the pseudo-
R2 splitting criterion still attempts a discrimination at low
level compare to the previous ones.
The results of scenarios 3–4 are displayed in Fig. 7,

where almost the half of the population is nonsuscep-
tible. Combining this amount of plateau with censoring
observations results in very few events observed in the
scrutinized population. Compare to the previous sce-
narios, the results are quite similar for the pseudo-R2
splitting criterion with indexes IIS and DIIS. Neverthe-
less, the figure suggests a decrease in performances for
indexes PPIS-NA and PPIS-BRE. Overall the Logrank
splitting criterion performs very poorly regardless of the
indexes.
The results of scenarios 5–6 are displayed in Fig. 8.

These scenarios give more power for identify explanatory
variables than the previous scenarios 1–4, since there is
an increase in the population size by a factor of 2. As
expected, the results are slightly better than all the results
of scenarios 1–4. The pseudo-R2 splitting criterion allows
a clear discrimination between the noise variables and the
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Fig. 3 Box-plot of the Out Of Bag Integrated Brier Score on simulated data set for scenarios 1–4: first column represents scenarios 1a–1c; second
column represents scenarios 2a-2c; third column represents scenarios 3a–3c and fourth column represents scenarios 4a–4c

explanatory ones despite a very little degradation for PPIS
indexes when the censoring rate increases and the number
of noise variables is very high.
The results of scenarios 7–8 are displayed in Fig. 9.

These results are quite similar to those of scenarios 5–6
for the pseudo-R2 criterion, mainly for the IIS and DIIS
indexes despite the increase of the fraction of nonsuscep-
tible individuals. Also, the PPIS performs poorly with a
high number of noise variables.
The results of the additional scenario mimicking a data

set that would reflect a situation such as the one presented
in our example are displayed in Fig. 10. The pseudo-R2
splitting criterion attempts a clear discrimination between
associated variables and noise variables for all the pro-
posed criteria. The Logrank splitting criterion still has a
poor performance for the PPIS indexes.

We investigated other scenarios with different values for
the parameters related to the explanatory variables that
lead to the same trends (results not shown). We also ana-
lyzed a scenario (results not shown) with a very small
plateau value (5 %). As expected, our procedure outper-
forms the adjusted Logrank splitting method in terms of
prediction accuracy but these gains are smaller than those
obtained for higher “plateau” value. This is not surpris-
ing since the adjusted Logrank criteria can be seen as
the limiting case of our criteria in which all the patients
are susceptible. Thus, large power gains are anticipated
in a situation where a non-negligible fraction of non-
susceptible patients is expected. However, if the plateau
value is very small but identical for all individuals, then
the classical unadjusted Logrank criteria should be more
efficient.
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Fig. 4 Box-plot of the Out Of Bag Integrated Brier Score on simulated data set for scenarios 5–8: first column represents scenarios 5a–5c; second
column represents scenarios 6a–6c; third column represents scenarios 7a–7c and fourth column represents scenarios 8a–8c

Analysis of breast cancer data
Description of the data
We used bio-clinical data extracted from two genomic
datasets (GSE2034, GSE2990) publicly available on the
GEO (Gene Expression Omnibus) website (http://www.
ncbi.nlm.nih.gov/geo/). The GSE2034 dataset corre-
sponds to the expression microarray study conducted by
Wang et al. [28] and the GSE2990 dataset to the one con-
ducted by Sotiriou et al. [29]. Both studies investigate the
prognostic effect of gene expression changes on the out-
come of patients with primary breast cancer. For gene
expression analyses, Affymetrix Human Genome U133A
Array were used in both studies and estrogen-receptor
(ER) status (positive/negative) was available. The clinical
outcome considered was the distant metastasis-free sur-
vival. Distant metastasis-free survival was defined as the
interval from the date of inclusion to the first occurrence
of metastasis or last follow-up.

For these two early breast cancer series, surgical resec-
tion can be considered as effective at eliminating the
tumor burden for a non-negligible proportion of patients
whereas, for the others, it leads to a lower tumor burden
and thereby prolonged survival without distant relapse.
Thus, a nonsusceptible fraction exists, and having a large
number of patients followed up more than a decade after
the primary treatment allows for an interpretable time
sequence for tumor relapse.
For this work, we decided to investigate the impact

of estrogen-related genes in predicting metastasis among
patients with ER-positive tumors.
The gene expression datasets of the two series were

analyzed after a joint quantile normalization. Here, we
focused on estrogen-related genes that were defined as
those demonstrating, on the whole dataset, a significant
gene expression changes between ER-positive and ER-
negative for a familywise error rate of 1 % (Bonferroni

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Fig. 5 Box-plot of the Out Of Bag Integrated Brier Score on simulated data set for the additional scenario with correlated variables divided in five
correlated blocks of various sizes

procedure). This selection led to the selection of 1,265
genes. We then selected patients with ER-positive tumors
with a total of 294 patients (209 from GSE2034 and 85
from GSE2990) and investigated the effect of estrogen-
related genes on the occurrence of distant metastasis.
In order to take into account the difference in the pro-

portion of nonsusceptible patients between the two series,
we included this variable as a confounding variable.

Results
Figure 11 displays the Kaplan-Meier estimate of the
metastasis-free survival for the two series. The five year
metastasis-free survival was 68.4 % ([CI95 % : 62.3−75.0])
and 84.8 % ([CI95 % : 77.2 − 93.1]) for the GSE2034 and
GSE2990, respectively. It shows that the survival curve
eventually reaches a plateau at seven years of 61.3 %
([CI95 % : 55.0 − 68.3]) for GSE2034 and 75.7 % ([CI95 % :
66.4 − 86.3]) for GSE2990.
We applied our proposed bagging survival procedure

(with LR and R2 criterion) with 400 trees on the joint
dataset presented just above. As can be seen from Fig. 12,
the two splitting criteria lead to two different set of vari-
ables with very few overlap. As expected from the simula-
tion results, for each splitting criteria, IIS, DIIS and PPIS
give quite similar results.
The basket of important variables (based on the IIS

importance score) obtained using the procedure selec-
tion presented previously leads to select 16 variables for

both the pseudo-R2 and the adjusted Logrank criteria (see
Fig. 13).
When looking to the first ten genes, no gene was

selected in common between the adjusted Logrank and
the pseudo-R2 criterion. The first five top-genes selected
with the pseudo-R2 criterion are: CBX7, NUTF2, AGO2,
RPS4X and TTK.
The CBX7 (Polycomb protein chromobox homolog 7)

gene is involved in several biologic processes and recent
works indicate a critical role in cancer progression. A rela-
tionship between the down-regulation of CBX7 expres-
sion and the tumor aggressiveness and poor prognosis has
been reported in different cancer. Preliminary studies also
indicate a potential role in the modulation of response to
therapy [30].
The NUTF2/NTF2 (nuclear transport factor 2) gene

encodes a small binding protein. The main function of
NTF2 is to facilitate transport of certain proteins into
the nucleus. It is also involved in regulating multiple
processes, including cell cycle and apoptosis.
The AGO2 (Argonaute 2) gene is a central component of

RNA-induced silencing complex which plays critical roles
in cancer process through proliferation, metastasis and
angiogenesis. AGO2 has been found over-expressed in
various carcinomas and associated with tumor cell growth
and poor prognosis [31].
The RPS4X (X-linked ribosomal protein S4) gene is

involved in cellular translation and proliferation. Low



Mbogning and Broët BMC Bioinformatics  (2016) 17:230 Page 12 of 21

Fig. 6 Variable importance results for scenarios 1–2: the first two rows from the top to the bottom represent scenario 1 while the last two represent
scenario 2; ◦ represents 10 noise variables, 
 100 noise variables and + 500 noise variables; “LR” represents the adjusted Logrank splitting criterion
and “R2” the Pseudo-R2 splitting criterion
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Fig. 7 Variable importance results for scenarios 3–4: the first two rows from the top to the bottom represent scenario 3 while the last two represent
scenario 4; ◦ represents 10 noise variables, 
 100 noise variables and + 500 noise variables; “LR” represents the adjusted Logrank splitting criterion
and “R2” the Pseudo-R2 splitting criterion
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Fig. 8 Variable importance results for scenarios 5–6: the first two rows from the top to the bottom represent scenario 5 while the last two represent
scenario 6; ◦ represents 10 noise variables, 
 100 noise variables and + 500 noise variables; “LR” represents the adjusted Logrank splitting criterion
and “R2” the Pseudo-R2 splitting criterion
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Fig. 9 Variable importance results for scenarios 7–8: the first two rows from the top to the bottom represent scenario 7 while the last two represent
scenario 8; ◦ represents 10 noise variables, 
 100 noise variables and + 500 noise variables; “LR” represents the adjusted Logrank splitting criterion
and “R2” the Pseudo-R2 splitting criterion
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represents the adjusted Logrank splitting criterion and “R2” the Pseudo-R2 splitting criterion
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Fig. 11 Kaplan-Meier Survival for the breast cancer data

RPS4X expression has been shown to be associated with
poor prognosis in bladder, ovarian and colon cancer.
Level of RPS4X is also a good indicator for resistance to
platinum-based therapy and a prognostic marker for ovar-
ian cancer. More recently, RPS4X has been identified as a
partner of the overexpressedmultifunctional protein YB-1
in several breast cancer cells. Depletion of RPS4X results
in consistent resistance to cisplatin in such cell lines [32].
TTK (threonine tyrosine kinase, also known as Mps1)

gene is essential for alignment of chromosomes to the
metaphase plate and genomic integrity during cell. TTK
gene has been identified as one of the top 25 genes
overexpressed in tumors with chromosomal instability
and aneuploidy [33]. TTK is overexpressed in a vari-
ous solid cancers, and elevated levels of TTK correlate
with high histological grade in tumors and poor patient
outcome.
In our analysis, we observed the marginal deleterious

effects on distant relapse free survival of high expres-
sion of TTK, AGO2, NUTF2 and low expression of CBX7
and RPS4X. The Fig. 14 shows a clear negative prog-
nostic effect of low levels of gene expression for CBX7
and RPS4X genes among patients with ER positive breast
tumors. This finding is in accordance with published
results than have exclusively focused either on CBX7 or
RPS4X genes. The fact that these two markers are not
selected when using the Logrank as splitting criteria is
not surprising since we can observe a marginal non-
proportional time-varying effect of RPS4X. This trend
is probably linked to the time-dependent changes in the
composition of the population since the fraction of sus-
ceptible patients is progressively exhausted as time goes
on.

In order to evaluate the variability of the results, we per-
formed the same bagging procedure 50 times with 400
trees for each run. We then obtained 50 estimates of the
Out Of Bag IBS for eachmethod. Figure 15 shows the evo-
lution of the OOB-IBS with the number of trees used in
one random selected run of the bagging procedure for the
four different procedures. It shows that 150 trees is clearly
enough to stabilize the bagging predictor for all the crite-
ria. As shown in this Figure, the procedure relying on the
pseudo-R2 splitting criterion consistently outperforms the
adjusted Logrank splitting method in terms of prediction
accuracy. This result is further confirmed in Fig. 16, where
the Box-plots of the 50 OOB-IBS are presented for all the
procedures.
We also examined the Importance scores and 50 esti-

mates of the importance scores for each procedures were
computed. The mean of the 50 values is presented in
Fig. 12 for the top 30 variables.

Discussion
The discovery and predictive use of event-related mark-
ers have to face two main challenges that are the search
over markers acting in complex networks of interactions
and the potential presence of nonsusceptible patients in
the studied population. In this work, we proposed a new
bagging survival procedure devoted to this task. The strat-
egy relies on an improper survival modelisation which
considers a linear part for taking into account for known
confounders associated with the nonsusceptible fraction
and a tree structure for the event-related explanatory
variables. The proposed tree-structured modeling dif-
fers from the tree-augmented Cox proportional hazards
model proposed by Sun et al. [34] in that it is explicitly
tailored for mixture population. Moreover, our procedure
relies on the use of a splitting criteria which can be inter-
preted as a time-to-event discrimination index suited to
mixed population.
The results of our simulation study show the good

behavior of our bagging procedure based on the pseudo-
R2 criterion as compared to the one relying on the
classical Logrank statistic. For prediction, even though
differences between the procedures are small, better pre-
dictions were obtained with the proposed procedure. If a
difference between the fractions of nonsusceptible indi-
viduals is expected then the estimators that use the Bres-
low estimate should be preferred over those using the
Nelson-Aalen estimate.
For variable selection, even in the presence of a high

number of nuisance variables, our procedure is able
to select the explanatory variables. The performance is
obviously better when the number of events which can
occur among susceptible patients is increasing. Based
on our simulation study, we recommend the IIS or the
DDIS criteria. These criteria rely on the discriminative
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Fig. 12 Importance variable score for the breast cancer data

performance of each splitting variable with or without
the information related to the depth of the split. By con-
trast, the PPIS criterion which relies on prediction error
is highly dependent on the censoring rate and the number
of noise variables. Moreover, it is well-known that there is
no consensus on which prediction error criterion should
be used for survival data.
The search for markers that predict distant relapse

in hormone receptor-positive treated patients is still an
intensive area of study. In the analysis of the two series
of early-stage breast cancer presented in this article, the
proposed procedure is particularly appealing since the

majority of the patients are amenable to cure and then
will never recur from the disease. The fraction of nonsus-
ceptible patients being clearly different between these two
studies, we consider the study as a confounder variable.
We obtain a selection of top-genes which is different from
those obtained with the classical Logrank statistic. The
five top genes selected with our procedure are related to
cancer and most of them have only been recently reported
to be associated with prognosis. In breast cancer, we know
that various pathways related to the tumor process are
activated and that there is no unique selection of prog-
nostic factors. However, since our main aim is to select
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Fig. 13 Basket selection based on IIS for the breast cancer data

the more powerful set of predictors and obtain the high-
est prediction, our procedure should be preferred. This
model-based selection which takes into account the high-
order interactions and focuses on susceptible patients
shed light on new markers that could serve as potential
drug targets for new therapies.

In this work, we assumed that the hazard functions for
the susceptible individuals between two child nodes are
conditionally proportional given the node but the pro-
portionality for any two nodes from different parents is
not required. Postulating a proportional hazards structure
within the whole tree could be an option which requires
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Pseudo-R2 splitting method

further development and evaluation. Here, we also con-
sidered the case with known confounding variables which
is frequently encountered in biomedical research. For a
different purpose, we could however consider extending
the procedure to unknown confounding variables. Fur-
ther works are however needed to cope with the potential
degree of non-identifiability between failure time distri-
bution of susceptible individuals and the proportion of
nonsuceptibles individuals.
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Cancer data

Conclusion
In the presence of a mixed population with nonsuscep-
tible patients, our results show that our bagging survival
procedure with the proposed splitting criterion has good
performance for prediction and variable selection. For
measuring variable importance, we recommend the use of
either the proposed Index Importance Score or the Depth
and Index Importance Score.
The proposed tree-building process, which relies on

a model-based splitting criteria, can be considered as
a convenient hybrid solution that combines multiplica-
tive intensity model and tree-structured modeling. We
believe that the proposed survival bagging procedure is
very appealing for many clinical genomic studies in which
a fraction of nonsusceptible individuals is commonly
encountered. This procedure has been implemented in a
R package called iBST (improper Bagging Survival Tree)
and will be available soon on the CRAN repository.

Endnotes
Not applicable.
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