Bagging survival tree procedure for variable selection and prediction in the presence of nonsusceptible patients

Abstract : AbstractBackgroundFor clinical genomic studies with high-dimensional datasets, tree-based ensemble methods offer a powerful solution for variable selection and prediction taking into account the complex interrelationships between explanatory variables. One of the key component of the tree-building process is the splitting criterion. For survival data, the classical splitting criterion is the Logrank statistic. However, the presence of a fraction of nonsusceptible patients in the studied population advocates for considering a criterion tailored to this peculiar situation.ResultsWe propose a bagging survival tree procedure for variable selection and prediction where the survival tree-building process relies on a splitting criterion that explicitly focuses on time-to-event survival distribution among susceptible patients.A simulation study shows that our method achieves good performance for the variable selection and prediction. Different criteria for evaluating the importance of the explanatory variables and the prediction performance are reported. Our procedure is illustrated on a genomic dataset with gene expression measurements from early breast cancer patients.ConclusionsIn the presence of nonsusceptible patients among the studied population, our procedure represents an efficient way to select event-related explanatory covariates with potential higher-order interaction and identify homogeneous groups of susceptible patients.
Type de document :
Article dans une revue
BMC Bioinformatics, BioMed Central, 2015, 17 (1), pp.230. 〈10.1186/s12859-016-1090-x〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-01327682
Contributeur : Bmc Bmc <>
Soumis le : mardi 7 juin 2016 - 08:03:17
Dernière modification le : samedi 18 février 2017 - 01:11:37

Fichier

12859_2016_Article_1090.pdf
Publication financée par une institution

Identifiants

Collections

Citation

Cyprien Mbogning, Philippe Broët. Bagging survival tree procedure for variable selection and prediction in the presence of nonsusceptible patients. BMC Bioinformatics, BioMed Central, 2015, 17 (1), pp.230. 〈10.1186/s12859-016-1090-x〉. 〈inserm-01327682〉

Partager

Métriques

Consultations de la notice

51

Téléchargements de fichiers

98