D. Goodenough, J. Goliger, and D. Paul, Connexins, Connexons, and Intercellular Communication, Annual Review of Biochemistry, vol.65, issue.1, pp.475-502, 1996.
DOI : 10.1146/annurev.bi.65.070196.002355

W. Evans, D. Vuyst, E. Leybaert, and L. , The gap junction cellular internet: connexin hemichannels enter the signalling limelight, Biochemical Journal, vol.397, issue.1, pp.1-14, 2006.
DOI : 10.1042/BJ20060175

D. Goodenough and D. Paul, Beyond the gap: functions of unpaired connexon channels, Nature Reviews Molecular Cell Biology, vol.4, issue.4, pp.285-94, 2003.
DOI : 10.1038/nrm1072

G. Cottrell and J. Burt, Heterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons, Am J Physiol Cell Physiol, vol.281, pp.1559-67, 2001.

V. Valiunas, R. Weingart, and P. Brink, Formation of Heterotypic Gap Junction Channels by Connexins 40 and 43, Circulation Research, vol.86, issue.2, pp.42-51, 2000.
DOI : 10.1161/01.RES.86.2.e42

M. Rackauskas, V. Verselis, and F. Bukauskas, Permeability of homotypic and heterotypic gap junction channels formed of cardiac connexins mCx30.2, Cx40, Cx43, and Cx45, AJP: Heart and Circulatory Physiology, vol.293, issue.3, pp.1729-1765, 2007.
DOI : 10.1152/ajpheart.00234.2007

Y. Qu and G. Dahl, Function of the voltage gate of gap junction channels: Selective exclusion of molecules, Proceedings of the National Academy of Sciences, vol.99, issue.2, pp.697-702, 2002.
DOI : 10.1073/pnas.022324499

A. Harris, Connexin channel permeability to cytoplasmic molecules, Progress in Biophysics and Molecular Biology, vol.94, issue.1-2, pp.120-163, 2007.
DOI : 10.1016/j.pbiomolbio.2007.03.011

J. Herve, M. Derangeon, D. Sarrouilhe, B. Giepmans, and N. Bourmeyster, Gap junctional channels are parts of multiprotein complexes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1818, issue.8, pp.1844-65, 2012.
DOI : 10.1016/j.bbamem.2011.12.009

N. Bivi, V. Lezcano, M. Romanello, T. Bellido, and L. Plotkin, Connexin43 interacts with ??arrestin: A pre-requisite for osteoblast survival induced by parathyroid hormone, Journal of Cellular Biochemistry, vol.144, issue.10, pp.2920-2950, 2011.
DOI : 10.1002/jcb.23208

C. Niger, C. Hebert, and J. Stains, Interaction of connexin43 and protein kinase C-delta during FGF2 signaling, BMC Biochemistry, vol.11, issue.1, p.14, 2010.
DOI : 10.1186/1471-2091-11-14

N. Batra, S. Burra, A. Siller-jackson, S. Gu, X. Xia et al., Mechanical stress-activated integrin ??5??1 induces opening of connexin 43 hemichannels, Proceedings of the National Academy of Sciences, vol.109, issue.9, pp.3359-64, 2012.
DOI : 10.1073/pnas.1115967109

N. Batra, M. Riquelme, S. Burra, K. Rekha, S. Gu et al., Direct Regulation of Osteocytic Connexin 43 Hemichannels through AKT Kinase Activated by Mechanical Stimulation, Journal of Biological Chemistry, vol.289, issue.15, pp.10582-91, 2014.
DOI : 10.1074/jbc.M114.550608

L. Plotkin, S. Manolagas, and T. Bellido, Transduction of Cell Survival Signals by Connexin-43 Hemichannels, Journal of Biological Chemistry, vol.277, issue.10, pp.8648-57, 2002.
DOI : 10.1074/jbc.M108625200

C. Hebert and J. Stains, An intact connexin43 is required to enhance signaling and gene expression in osteoblast-like cells, Journal of Cellular Biochemistry, vol.6, issue.11, pp.2542-50, 2013.
DOI : 10.1002/jcb.24603

A. Reaume, P. De-sousa, S. Kulkarni, B. Langille, D. Zhu et al., Cardiac malformation in neonatal mice lacking connexin43, Science, vol.267, issue.5205, pp.1831-1835, 1995.
DOI : 10.1126/science.7892609

F. Lecanda, P. Warlow, S. Sheikh, F. Furlan, T. Steinberg et al., Connexin43 Deficiency Causes Delayed Ossification, Craniofacial Abnormalities, and Osteoblast Dysfunction, The Journal of Cell Biology, vol.114, issue.4, pp.931-975, 2000.
DOI : 10.1359/jbmr.1998.13.2.218

L. Chaible, D. Sanches, B. Cogliati, G. Mennecier, and M. Dagli, Delayed Osteoblastic Differentiation and Bone Development in Cx43 Knockout Mice, Toxicologic Pathology, vol.114, issue.7, pp.1046-55, 2011.
DOI : 10.1006/meth.2001.1262

M. Watkins, S. Grimston, J. Norris, B. Guillotin, A. Shaw et al., Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling, Molecular Biology of the Cell, vol.22, issue.8, pp.1240-51, 2011.
DOI : 10.1091/mbc.E10-07-0571

D. Chung, C. Castro, M. Watkins, J. Stains, M. Chung et al., Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43, Journal of Cell Science, vol.119, issue.20, pp.4187-98, 2006.
DOI : 10.1242/jcs.03162

R. Pacheco-costa, I. Hassan, R. Reginato, H. Davis, A. Bruzzaniti et al., High Bone Mass in Mice Lacking Cx37 Because of Defective Osteoclast Differentiation, Journal of Biological Chemistry, vol.289, issue.12, pp.8508-8528, 2014.
DOI : 10.1074/jbc.M113.529735

L. Plotkin and J. Stains, Connexins and pannexins in the skeleton: gap junctions, hemichannels and more, Cellular and Molecular Life Sciences, vol.193, issue.Pt 2, pp.2853-67, 2015.
DOI : 10.1007/s00018-015-1963-6

H. Shen, S. Grimston, R. Civitelli, and S. Thomopoulos, Deletion of Connexin43 in Osteoblasts/Osteocytes Leads to Impaired Muscle Formation in Mice, Journal of Bone and Mineral Research, vol.89, issue.Pt 1, pp.596-605, 2014.
DOI : 10.1002/jbmr.2389

L. Plotkin, V. Lezcano, J. Thostenson, R. Weinstein, S. Manolagas et al., Connexin 43 Is Required for the Anti-Apoptotic Effect of Bisphosphonates on Osteocytes and Osteoblasts In Vivo, Journal of Bone and Mineral Research, vol.22, issue.11, pp.1712-1733, 2008.
DOI : 10.1093/hmg/ddm329

Y. Zhang, E. Paul, V. Sathyendra, A. Davidson, S. Bronson et al., Enhanced Osteoclastic Resorption and Responsiveness to Mechanical Load in Gap Junction Deficient Bone, PLoS ONE, vol.102, issue.8, p.23516, 2011.
DOI : 10.1371/journal.pone.0023516.t001

N. Bivi, K. Condon, M. Allen, N. Farlow, G. Passeri et al., Cell autonomous requirement of connexin 43 for osteocyte survival: Consequences for endocortical resorption and periosteal bone formation, Journal of Bone and Mineral Research, vol.133, issue.2, pp.374-89, 2012.
DOI : 10.1002/jbmr.548

S. Lloyd, A. Loiselle, Y. Zhang, and H. Donahue, Evidence for the role of connexin 43-mediated intercellular communication in the process of intracortical bone resorption via osteocytic osteolysis, BMC Musculoskeletal Disorders, vol.24, issue.5, p.122, 2014.
DOI : 10.1371/journal.pone.0033179

L. Bonewald, The amazing osteocyte, Journal of Bone and Mineral Research, vol.58, issue.(suppl1), pp.229-267, 2011.
DOI : 10.1002/jbmr.320

H. Xu, S. Gu, M. Riquelme, S. Burra, D. Callaway et al., Connexin 43 Channels Are Essential for Normal Bone Structure and Osteocyte Viability, Journal of Bone and Mineral Research, vol.292, issue.2, pp.550-62, 2015.
DOI : 10.1002/jbmr.2374

A. Loiselle, E. Paul, G. Lewis, and H. Donahue, Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing, Journal of Orthopaedic Research, vol.10, issue.355 Suppl, pp.147-54, 2013.
DOI : 10.1002/jor.22178

D. Joiner, R. Tayim, J. Mcelderry, M. Morris, and S. Goldstein, Aged Male Rats Regenerate Cortical Bone with Reduced Osteocyte Density and Reduced Secretion of Nitric Oxide After Mechanical Stimulation, Calcified Tissue International, vol.30, issue.1, pp.484-94, 2014.
DOI : 10.1007/s00223-013-9832-5

R. Rossello, Z. Wang, E. Kizana, P. Krebsbach, and D. Kohn, Connexin 43 as a signaling platform for increasing the volume and spatial distribution of regenerated tissue, Proceedings of the National Academy of Sciences, vol.106, issue.32, pp.13219-13243, 2009.
DOI : 10.1073/pnas.0902622106

R. Rossello and H. D. , Cell communication and tissue engineering, Communicative & Integrative Biology, vol.3, issue.1, pp.53-59, 2010.
DOI : 10.4161/cib.3.1.9863

M. Grellier, L. Bordenave, and J. Amedee, Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering, Trends in Biotechnology, vol.27, issue.10, pp.562-71, 2009.
DOI : 10.1016/j.tibtech.2009.07.001

J. Guerrero, S. Catros, S. Derkaoui, C. Lalande, R. Siadous et al., Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis, Acta Biomaterialia, vol.9, issue.9, pp.8200-8213, 2013.
DOI : 10.1016/j.actbio.2013.05.025

F. Syed-picard, T. Jayaraman, R. Lam, E. Beniash, and C. Sfeir, Osteoinductivity of calcium phosphate mediated by connexin 43, Biomaterials, vol.34, issue.15, pp.3763-74, 2013.
DOI : 10.1016/j.biomaterials.2013.01.095

G. Ghatnekar, O. Quinn, M. Jourdan, L. Gurjarpadhye, A. Draughn et al., Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding, Regenerative Medicine, vol.4, issue.2, pp.205-228, 2009.
DOI : 10.2217/17460751.4.2.205

K. Moore, Z. Bryant, G. Ghatnekar, U. Singh, R. Gourdie et al., A synthetic connexin 43 mimetic peptide augments corneal wound healing, Experimental Eye Research, vol.115, pp.178-88, 2013.
DOI : 10.1016/j.exer.2013.07.001

W. Paznekas, S. Boyadjiev, R. Shapiro, O. Daniels, B. Wollnik et al., Connexin 43 (GJA1) Mutations Cause the Pleiotropic Phenotype of Oculodentodigital Dysplasia, The American Journal of Human Genetics, vol.72, issue.2, pp.408-426, 2003.
DOI : 10.1086/346090

D. De-la-parra and J. Zenteno, (Connexin 43) Mutation Causing Oculodentodigital Dysplasia Associated to Uncommon Features, Ophthalmic Genetics, vol.9, issue.1, pp.198-202, 2007.
DOI : 10.1001/archopht.123.10.1422

S. Joss, S. Ghazawy, S. Tomkins, M. Ahmed, J. Bradbury et al., Variable expression of neurological phenotype in autosomal recessive oculodentodigital dysplasia of two sibs and review of the literature, European Journal of Pediatrics, vol.75, issue.7, pp.341-346, 2008.
DOI : 10.1007/s00431-007-0468-1

A. Pizzuti, E. Flex, R. Mingarelli, C. Salpietro, L. Zelante et al., A homozygousGJA1 gene mutation causes a Hallermann-Streiff/ODDD spectrum phenotype, Human Mutation, vol.23, issue.3, p.286, 2004.
DOI : 10.1002/humu.9220

T. Loddenkemper, K. Grote, S. Evers, M. Oelerich, and F. Stogbauer, Neurological manifestations of the oculodentodigital dysplasia syndrome, Journal of Neurology, vol.249, issue.5, pp.584-95, 2002.
DOI : 10.1007/s004150200068

A. Van-es, W. Van-der-flier, F. Dmiraal-behloul, H. Olofsen, E. Bollen et al., Lobar Distribution of Changes in Gray Matter and White Matter in Memory Clinic Patients: Detected Using Magnetization Transfer Imaging, American Journal of Neuroradiology, vol.28, issue.10, pp.1938-1980, 2007.
DOI : 10.3174/ajnr.A0687

M. Vreeburg, D. Zwart-storm, E. Schouten, M. Nellen, R. Marcus-soekarman et al., Skin changes in oculo-dento-digital dysplasia are correlated with C-terminal truncations of connexin 43, American Journal of Medical Genetics Part A, vol.132, issue.4, pp.360-363, 2007.
DOI : 10.1002/ajmg.a.31558

M. Alao, D. Bonneau, M. Holder-espinasse, C. Goizet, S. Manouvrier-hanu et al., Oculo-dento-digital dysplasia: Lack of genotype???phenotype correlation for GJA1 mutations and usefulness of neuro-imaging, European Journal of Medical Genetics, vol.53, issue.1, pp.19-22, 2010.
DOI : 10.1016/j.ejmg.2009.08.007

URL : https://hal.archives-ouvertes.fr/hal-00628409

G. Brice, P. Ostergaard, S. Jeffery, K. Gordon, P. Mortimer et al., causing oculodentodigital syndrome and primary lymphoedema in a three generation family, Clinical Genetics, vol.1131, issue.4, pp.378-81, 2013.
DOI : 10.1111/cge.12158

M. Himi, T. Fujimaki, T. Yokoyama, K. Fujiki, T. Takizawa et al., A case of oculodentodigital dysplasia syndrome with novel GJA1 gene mutation, Japanese Journal of Ophthalmology, vol.17, issue.5, pp.541-546, 2009.
DOI : 10.1007/s10384-009-0711-6

L. Gabriel, R. Sachdeva, A. Marcotty, E. Rockwood, and E. Traboulsi, Oculodentodigital Dysplasia, Archives of Ophthalmology, vol.129, issue.6, pp.781-785, 2011.
DOI : 10.1001/archophthalmol.2011.113

N. Furuta, M. Ikeda, K. Hirayanagi, Y. Fujita, M. Amanuma et al., A Novel GJA1 Mutation in Oculodentodigital Dysplasia with Progressive Spastic Paraplegia and Sensory Deficits, Internal Medicine, vol.51, issue.1, pp.93-101, 2012.
DOI : 10.2169/internalmedicine.51.5770

A. Fenwick, R. Richardson, J. Butterworth, M. Barron, and M. Dixon, Cause Oculodentodigital syndrome, Journal of Dental Research, vol.87, issue.11, pp.1021-1027, 2008.
DOI : 10.1177/154405910808701108

P. Debeer, E. Van, C. Huysmans, E. Pijkels, S. De et al., Novel GJA1 mutations in patients with oculo-dento-digital dysplasia (ODDD), European Journal of Medical Genetics, vol.48, issue.4, pp.377-87, 2005.
DOI : 10.1016/j.ejmg.2005.05.003

K. Kjaer, L. Hansen, H. Eiberg, P. Leicht, J. Opitz et al., Novel Connexin 43 (GJA1) mutation causes oculo-dento-digital dysplasia with curly hair, American Journal of Medical Genetics, vol.193, issue.2, pp.152-159, 2004.
DOI : 10.1002/ajmg.a.20614

A. Itro, A. Marra, V. Urciuolo, P. Difalco, and A. Amodio, Oculodentodigital dysplasia. A case report, Minerva Stomatol, vol.54, pp.453-462, 2005.

K. Izumi, A. Lippa, A. Wilkens, H. Feret, D. Donald-mcginn et al., Congenital heart defects in oculodentodigital dysplasia: Report of two cases, American Journal of Medical Genetics Part A, vol.53, issue.12, pp.3150-3154, 2013.
DOI : 10.1002/ajmg.a.36159

A. Jamsheer, A. Sowinska-seidler, M. Socha, A. Stembalska, C. Kiraly-borri et al., Three novel GJA1 missense substitutions resulting in oculo-dento-digital dysplasia (ODDD) ??? Further extension of the mutational spectrum, Gene, vol.539, issue.1, pp.157-61, 2014.
DOI : 10.1016/j.gene.2014.01.066

A. Jamsheer, M. Wisniewska, A. Szpak, G. Bugaj, M. Krawczynski et al., A novelGJA1 missense mutation in a Polish child with oculodentodigital dysplasia, Journal of Applied Genetics, vol.24, issue.3, pp.297-306, 2009.
DOI : 10.1007/BF03195687

R. Kellermayer, M. Keller, P. Ratajczak, E. Richardson, F. Harangi et al., Bigenic connexin mutations in a patient with hidrotic ectodermal dysplasia, Eur J Dermatol, vol.15, pp.75-84, 2005.

S. Kelly, P. Ratajczak, M. Keller, S. Purcell, T. Griffin et al., A novel GJA 1 mutation in oculo-dento-digital dysplasia with curly hair and hyperkeratosis, Eur J Dermatol, vol.16, pp.241-246, 2006.

D. Laird, Syndromic and non-syndromic disease-linked Cx43 mutations, FEBS Letters, vol.386, issue.8, pp.1339-1387, 2014.
DOI : 10.1016/j.febslet.2013.12.022

W. Paznekas, B. Karczeski, S. Vermeer, R. Lowry, M. Delatycki et al., mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype, Human Mutation, vol.16, issue.Pt 3, pp.724-757, 2009.
DOI : 10.1002/humu.20958

J. Honkaniemi, J. Kalkkila, P. Koivisto, V. Kahara, T. Latvala et al., Letter to the editor: Novel GJA1 mutation in oculodentodigital dysplasia, Am J Med Genet A, vol.139, pp.48-57, 2005.

R. Richardson, D. Donnai, F. Meire, and M. Dixon, Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly, Journal of Medical Genetics, vol.41, issue.1, pp.60-67, 2004.
DOI : 10.1136/jmg.2003.012005

M. Van-steensel, L. Spruijt, D. Van, I. Bladergroen, M. Vermeer et al., A 2-bp deletion in the GJA1 gene is associated with oculo-dento-digital dysplasia with palmoplantar keratoderma, Am J Med Genet A, vol.132, pp.171-175, 2005.

J. Vasconcellos, M. Melo, R. Schimiti, N. Bressanim, F. Costa et al., A Novel Mutation in the GJA1 Gene in a Family With Oculodentodigital Dysplasia, Archives of Ophthalmology, vol.123, issue.10, pp.1422-1428, 2005.
DOI : 10.1001/archopht.123.10.1422

T. Wiest, O. Herrmann, F. Stogbauer, U. Grasshoff, H. Enders et al., Clinical and genetic variability of oculodentodigital dysplasia, Clinical Genetics, vol.119, issue.3, pp.71-73, 2006.
DOI : 10.1111/j.1399-0004.2006.00631.x

Y. Hu, I. Chen, A. De, V. Tiziani, D. Amaral et al., A Novel Autosomal Recessive GJA1 Missense Mutation Linked to Craniometaphyseal Dysplasia, PLoS ONE, vol.18, issue.8, p.73576, 2013.
DOI : 10.1371/journal.pone.0073576.s001

D. Van-norstrand, A. Asimaki, C. Rubinos, E. Dolmatova, M. Srinivas et al., Connexin43 Mutation Causes Heterogeneous Gap Junction Loss and Sudden Infant Death, Circulation, vol.125, issue.3, pp.474-81, 2012.
DOI : 10.1161/CIRCULATIONAHA.111.057224

R. Richardson, S. Joss, S. Tomkin, M. Ahmed, E. Sheridan et al., A nonsense mutation in the first transmembrane domain of connexin 43 underlies autosomal recessive oculodentodigital syndrome, Journal of Medical Genetics, vol.43, issue.7, p.37, 2006.
DOI : 10.1136/jmg.2005.037655

T. Huang, Q. Shao, K. Barr, J. Simek, G. Fishman et al., Myogenic bladder defects in mouse models of human oculodentodigital dysplasia, Biochemical Journal, vol.6, issue.3, pp.441-450, 2014.
DOI : 10.1152/ajpcell.00122.2007

N. Kalcheva, J. Qu, N. Sandeep, L. Garcia, J. Zhang et al., Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia, Proceedings of the National Academy of Sciences, vol.104, issue.51, pp.20512-20518, 2007.
DOI : 10.1073/pnas.0705472105

M. Stewart, X. Gong, K. Barr, D. Bai, G. Fishman et al., The severity of mammary gland developmental defects is linked to the overall functional status of Cx43 as revealed by genetically modified mice, Biochemical Journal, vol.6, issue.2, pp.401-414, 2013.
DOI : 10.1126/science.7892609

J. Shibayama, W. Paznekas, A. Seki, S. Taffet, E. Jabs et al., Functional Characterization of Connexin43 Mutations Found in Patients With Oculodentodigital Dysplasia, Circulation Research, vol.96, issue.10, pp.83-91, 2005.
DOI : 10.1161/01.RES.0000168369.79972.d2

J. Churko, S. Langlois, X. Pan, Q. Shao, and D. Laird, The potency of the fs260 connexin43 mutant to impair keratinocyte differentiation is distinct from other disease-linked connexin43 mutants, Biochemical Journal, vol.45, issue.3, pp.473-83, 2010.
DOI : 10.1111/1523-1747.ep12616154

X. Gong, Q. Shao, C. Lounsbury, D. Bai, and D. Laird, Functional Characterization of a GJA1 Frameshift Mutation Causing Oculodentodigital Dysplasia and Palmoplantar Keratoderma, Journal of Biological Chemistry, vol.281, issue.42, pp.31801-31812, 2006.
DOI : 10.1074/jbc.M605961200

R. Dobrowolski, A. Sommershof, and K. Willecke, Some Oculodentodigital Dysplasia-Associated Cx43 Mutations Cause Increased Hemichannel Activity in Addition to Deficient Gap Junction Channels, Journal of Membrane Biology, vol.148, issue.1-3, pp.9-17, 2007.
DOI : 10.1007/s00232-007-9055-7

X. Gong, Q. Shao, S. Langlois, D. Bai, and D. Laird, Differential Potency of Dominant Negative Connexin43 Mutants in Oculodentodigital Dysplasia, Journal of Biological Chemistry, vol.282, issue.26, pp.19190-202, 2007.
DOI : 10.1074/jbc.M609653200

T. Huang, Q. Shao, A. Macdonald, L. Xin, R. Lorentz et al., Autosomal recessive GJA1 (Cx43) gene mutations cause oculodentodigital dysplasia by distinct mechanisms, Journal of Cell Science, vol.126, issue.13, pp.2857-66, 2013.
DOI : 10.1242/jcs.123315

E. Mclachlan, J. Manias, X. Gong, C. Lounsbury, Q. Shao et al., Functional Characterization of Oculodentodigital Dysplasia-Associated Cx43 Mutants, Cell Communication & Adhesion, vol.13, issue.5-6, pp.279-92, 2005.
DOI : 10.1080/cac.10.4-6.445.450

W. Roscoe, G. Veitch, X. Gong, E. Pellegrino, D. Bai et al., Oculodentodigital Dysplasia-causing Connexin43 Mutants Are Non-functional and Exhibit Dominant Effects on Wild-type Connexin43, Journal of Biological Chemistry, vol.280, issue.12, pp.11458-66, 2005.
DOI : 10.1074/jbc.M409564200

R. Civitelli, Connexin43 Modulation of Osteoblast/Osteocyte Apoptosis: A Potential Therapeutic Target?, Journal of Bone and Mineral Research, vol.23, issue.11, pp.1709-1720, 2008.
DOI : 10.1210/en.2004-1414

R. Civitelli, E. Beyer, P. Warlow, A. Robertson, S. Geist et al., Connexin43 mediates direct intercellular communication in human osteoblastic cell networks., Journal of Clinical Investigation, vol.91, issue.5, pp.1888-96, 1993.
DOI : 10.1172/JCI116406

R. Dobrowolski, P. Sasse, J. Schrickel, M. Watkins, J. Kim et al., The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans, Human Molecular Genetics, vol.17, issue.4, pp.539-54, 2008.
DOI : 10.1093/hmg/ddm329

M. Koval, J. Harley, E. Hick, and T. Steinberg, -Golgi Compartment of Osteoblastic Cells, The Journal of Cell Biology, vol.103, issue.4, pp.847-57, 1997.
DOI : 10.1091/mbc.6.4.459

URL : https://hal.archives-ouvertes.fr/hal-00697582

R. Civitelli, Cell???cell communication in the osteoblast/osteocyte lineage, Archives of Biochemistry and Biophysics, vol.473, issue.2, pp.188-92, 2008.
DOI : 10.1016/j.abb.2008.04.005

J. Stains, M. Watkins, S. Grimston, C. Hebert, and R. Civitelli, Molecular Mechanisms of Osteoblast/Osteocyte Regulation by Connexin43, Calcified Tissue International, vol.47, issue.pt 8, pp.55-67, 2014.
DOI : 10.1007/s00223-013-9742-6

Q. Ton and M. Iovine, Determining how defects in connexin43 cause skeletal disease, genesis, vol.6, issue.2, pp.75-82, 2013.
DOI : 10.1002/dvg.22349

L. Plotkin and T. Bellido, Beyond gap junctions: Connexin43 and bone cell signaling, Bone, vol.52, issue.1, pp.157-66, 2013.
DOI : 10.1016/j.bone.2012.09.030

A. Loiselle, J. Jiang, and H. Donahue, Gap junction and hemichannel functions in osteocytes, Bone, vol.54, issue.2, pp.205-217, 2013.
DOI : 10.1016/j.bone.2012.08.132

C. Castro, J. Stains, S. Sheikh, V. Szejnfeld, K. Willecke et al., Development of Mice with Osteoblast-Specific Connexin43 Gene Deletion, Cell Communication & Adhesion, vol.4, issue.4-6, pp.445-50, 2003.
DOI : 10.1016/8756-3282(96)00047-6

S. Grimston, M. Brodt, M. Silva, and R. Civitelli, Attenuated Response to In Vivo Mechanical Loading in Mice With Conditional Osteoblast Ablation of the Connexin43 Gene (Gja1), Journal of Bone and Mineral Research, vol.281, issue.6, pp.879-86, 2008.
DOI : 10.1359/jbmr.080222

S. Grimston, D. Goldberg, M. Watkins, M. Brodt, M. Silva et al., Connexin43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis, Journal of Bone and Mineral Research, vol.87, issue.(Suppl 1), pp.2151-60, 2011.
DOI : 10.1002/jbmr.425

R. Gago-fuentes, P. Carpintero-fernandez, M. Goldring, P. Brink, M. Mayan et al., Biochemical evidence for gap junctions and Cx43 expression in immortalized human chondrocyte cell line: a potential model in the study of cell communication in human chondrocytes, Osteoarthritis and Cartilage, vol.22, issue.4, pp.586-90, 2014.
DOI : 10.1016/j.joca.2014.02.002

M. Mayan, R. Gago-fuentes, P. Carpintero-fernandez, P. Fernandez-puente, P. Filgueira-fernandez et al., Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis, Annals of the Rheumatic Diseases, vol.62, issue.(Pt 1), pp.275-84, 2015.
DOI : 10.1136/annrheumdis-2013-204244

D. Pelaez, C. Huang, and H. Cheung, Isolation of Pluripotent Neural Crest-Derived Stem Cells from Adult Human Tissues by Connexin-43 Enrichment, Stem Cells and Development, vol.22, issue.21, pp.2906-2920, 2013.
DOI : 10.1089/scd.2013.0090

W. Zhang, C. Green, and N. Stott, Bone morphogenetic protein-2 modulation of chondrogenic differentiation in vitro involves gap junction-mediated intercellular communication, Journal of Cellular Physiology, vol.11, issue.2, pp.233-276, 2002.
DOI : 10.1002/jcp.10168

J. Zhang, H. Zhang, M. Zhang, Z. Qiu, Y. Wu et al., Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanicallystimulated temporomandibular joint cartilage. Osteoarthritis Cartilage, pp.822-852, 2014.

M. Mayan, P. Carpintero-fernandez, R. Gago-fuentes, O. Martinez-de-ilarduya, H. Wang et al., Human Articular Chondrocytes Express Multiple Gap Junction Proteins, The American Journal of Pathology, vol.182, issue.4, pp.1337-1383, 2013.
DOI : 10.1016/j.ajpath.2012.12.018

S. Lloyd, A. Loiselle, Y. Zhang, and H. Donahue, Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling, Bone, vol.57, issue.1, pp.76-83, 2013.
DOI : 10.1016/j.bone.2013.07.022

D. Genetos, Z. Zhou, Z. Li, and H. Donahue, Age-related changes in gap junctional intercellular communication in osteoblastic cells, Journal of Orthopaedic Research, vol.282, issue.12, pp.1979-84, 2012.
DOI : 10.1002/jor.22172

A. Flenniken, L. Osborne, N. Anderson, N. Ciliberti, C. Fleming et al., A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia, Development, vol.132, issue.19, pp.4375-86, 2005.
DOI : 10.1242/dev.02011

T. Zappitelli, F. Chen, L. Moreno, R. Zirngibl, M. Grynpas et al., The G60S connexin 43 mutation activates the osteoblast lineage and results in a resorption-stimulating bone matrix and abrogation of old-age-related bone loss, Journal of Bone and Mineral Research, vol.89, issue.22, pp.2400-2413, 2013.
DOI : 10.1002/jbmr.1965

J. Jiang, A. Siller-jackson, and S. Burra, Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress, Frontiers in Bioscience, vol.12, issue.1, pp.1450-62, 2007.
DOI : 10.2741/2159

M. Watkins, J. Norris, S. Grimston, X. Zhang, R. Phipps et al., Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice, Bone, vol.51, issue.4, pp.787-94, 2012.
DOI : 10.1016/j.bone.2012.06.018

S. Grimston, M. Watkins, M. Brodt, M. Silva, and R. Civitelli, Enhanced Periosteal and Endocortical Responses to Axial Tibial Compression Loading in Conditional Connexin43 Deficient Mice, PLoS ONE, vol.7, issue.9, p.44222, 2012.
DOI : 10.1371/journal.pone.0044222.s005

S. Lloyd, G. Lewis, Y. Zhang, E. Paul, and H. Donahue, Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading, Journal of Bone and Mineral Research, vol.88, issue.4, pp.2359-72, 2012.
DOI : 10.1002/jbmr.1687

Y. Panchin, I. Kelmanson, M. Matz, K. Lukyanov, N. Usman et al., A ubiquitous family of putative gap junction molecules, Current Biology, vol.10, issue.13, pp.473-477, 2000.
DOI : 10.1016/S0960-9822(00)00576-5

S. Penuela, R. Bhalla, X. Gong, K. Cowan, S. Celetti et al., Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins, Journal of Cell Science, vol.120, issue.21, pp.3772-83, 2007.
DOI : 10.1242/jcs.009514

F. Chekeni, M. Elliott, J. Sandilos, S. Walk, J. Kinchen et al., Pannexin 1 channels mediate ???find-me??? signal release and membrane permeability during apoptosis, Nature, vol.168, issue.7317, pp.863-870, 2010.
DOI : 10.1038/nature09413

D. Boassa, C. Ambrosi, F. Qiu, G. Dahl, G. Gaietta et al., Pannexin1 Channels Contain a Glycosylation Site That Targets the Hexamer to the Plasma Membrane, Journal of Biological Chemistry, vol.282, issue.43, pp.31733-31776, 2007.
DOI : 10.1074/jbc.M702422200

S. Penuela, R. Gehi, and D. Laird, The biochemistry and function of pannexin channels, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.1, pp.15-22, 2013.
DOI : 10.1016/j.bbamem.2012.01.017

L. Bao, S. Locovei, and G. Dahl, Pannexin membrane channels are mechanosensitive conduits for ATP, FEBS Letters, vol.102, issue.1-3, pp.65-73, 2004.
DOI : 10.1016/j.febslet.2004.07.009

M. Ishikawa, T. Iwamoto, T. Nakamura, A. Doyle, S. Fukumoto et al., channel, hemichannel, and gap junction to promote osteoblast differentiation, The Journal of Cell Biology, vol.1719, issue.7, pp.1257-74, 2011.
DOI : 10.1083/jcb.201101050.dv

S. Buvinic, G. Almarza, M. Bustamante, M. Casas, J. Lopez et al., ATP Released by Electrical Stimuli Elicits Calcium Transients and Gene Expression in Skeletal Muscle, Journal of Biological Chemistry, vol.284, issue.50, pp.34490-505, 2009.
DOI : 10.1074/jbc.M109.057315

B. Gulbransen, M. Bashashati, S. Hirota, X. Gui, J. Roberts et al., Activation of neuronal P2X7 receptor???pannexin-1 mediates death of enteric neurons during colitis, Nature Medicine, vol.279, issue.4, pp.600-604, 2012.
DOI : 10.1152/ajpgi.00067.2006

S. Locovei, J. Wang, and G. Dahl, Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium, FEBS Letters, vol.293, issue.1, pp.239-283, 2006.
DOI : 10.1016/j.febslet.2005.12.004

Z. Yan, A. Khadra, A. Sherman, and S. Stojilkovic, Calcium-dependent block of P2X7 receptor channel function is allosteric, The Journal of General Physiology, vol.198, issue.4, pp.437-52, 2011.
DOI : 10.1523/JNEUROSCI.2390-10.2010

B. Macvicar and R. Thompson, Non-junction functions of pannexin-1 channels, Trends in Neurosciences, vol.33, issue.2, pp.93-102, 2010.
DOI : 10.1016/j.tins.2009.11.007

R. Thompson, M. Jackson, M. Olah, R. Rungta, D. Hines et al., Activation of Pannexin-1 Hemichannels Augments Aberrant Bursting in the Hippocampus, Science, vol.322, issue.5907, pp.1555-1564, 2008.
DOI : 10.1126/science.1165209

R. Thompson, N. Zhou, and B. Macvicar, Ischemia Opens Neuronal Gap Junction Hemichannels, Science, vol.312, issue.5775, pp.924-931, 2006.
DOI : 10.1126/science.1126241

S. Penuela, L. Gyenis, A. Ablack, J. Churko, A. Berger et al., Loss of Pannexin 1 Attenuates Melanoma Progression by Reversion to a Melanocytic Phenotype, Journal of Biological Chemistry, vol.287, issue.34, pp.29184-93, 2012.
DOI : 10.1074/jbc.M112.377176

C. Seror, M. Melki, F. Subra, S. Raza, M. Bras et al., Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection, The Journal of Experimental Medicine, vol.50, issue.9, pp.1823-1857, 2011.
DOI : 10.1128/CVI.00166-07

S. Celetti, K. Cowan, S. Penuela, Q. Shao, J. Churko et al., Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation, Journal of Cell Science, vol.123, issue.8, pp.1363-72, 2010.
DOI : 10.1242/jcs.056093

S. Bond, A. Lau, S. Penuela, A. Sampaio, T. Underhill et al., Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes, Journal of Bone and Mineral Research, vol.39, issue.2, pp.2911-2933, 2011.
DOI : 10.1002/jbmr.509

T. Iwamoto, T. Nakamura, A. Doyle, M. Ishikawa, V. De et al., Pannexin 3 regulates intracellular ATP/cAMP levels and promotes chondrocyte differentiation, Journal of Biological Chemistry, vol.285, issue.24, pp.18948-58, 2010.
DOI : 10.1074/jbc.M110.127027

S. Penuela, S. Celetti, R. Bhalla, Q. Shao, and D. Laird, Diverse Subcellular Distribution Profiles of Pannexin1 and Pannexin3, Cell Communication & Adhesion, vol.12, issue.1-2, pp.133-175, 2008.
DOI : 10.1016/j.neuroscience.2007.01.061

M. Barbe, H. Monyer, and R. Bruzzone, Cell-Cell Communication Beyond Connexins: The Pannexin Channels, Physiology, vol.21, issue.2, pp.103-117, 2006.
DOI : 10.1152/physiol.00048.2005

Z. Xiao, C. Camalier, K. Nagashima, K. Chan, D. Lucas et al., Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts, Journal of Cellular Physiology, vol.24, issue.2, pp.325-360, 2007.
DOI : 10.1002/jcp.20826

C. James, C. Appleton, V. Ulici, T. Underhill, and F. Beier, Microarray Analyses of Gene Expression during Chondrocyte Differentiation Identifies Novel Regulators of Hypertrophy, Molecular Biology of the Cell, vol.16, issue.11, pp.5316-5349, 2005.
DOI : 10.1091/mbc.E05-01-0084

L. A. Cea, M. A. Riquelme, B. A. Cisterna, C. Puebla, J. L. Vega et al., Connexin- and Pannexin-Based Channels in Normal Skeletal Muscles and Their Possible Role in Muscle Atrophy, The Journal of Membrane Biology, vol.142, issue.Suppl 1, pp.10-1007, 2012.
DOI : 10.1007/s00232-012-9485-8

P. Bargiotas, A. Krenz, S. Hormuzdi, D. Ridder, A. Herb et al., Pannexins in ischemia-induced neurodegeneration, Proceedings of the National Academy of Sciences, vol.108, issue.51, pp.20772-20779, 2011.
DOI : 10.1073/pnas.1018262108

P. M. Moon, S. Penuela, K. Barr, S. Khan, C. L. Pin et al., Global and cartilage-specific deletion of Panx3 prevents the development of surgically induced osteoarthritis, J. Molec. Medicine, 2015.

E. Badley, Arthritis in Canada: what do we know and what should we know?, J Rheumatol, vol.72, pp.39-41, 2005.

M. Goldring and S. Goldring, Osteoarthritis, Journal of Cellular Physiology, vol.26, issue.3, pp.626-660, 2007.
DOI : 10.1002/jcp.21258

H. Roach, T. Aigner, S. Soder, J. Haag, and H. Welkerling, Pathobiology of Osteoarthritis: Pathomechanisms and Potential Therapeutic Targets, Current Drug Targets, vol.8, issue.2, pp.271-82, 2007.
DOI : 10.2174/138945007779940160

R. Dreier, Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders, Arthritis Research & Therapy, vol.12, issue.5, p.216, 2010.
DOI : 10.1186/ar3117

A. Pitsillides and F. Beier, Cartilage biology in osteoarthritis???lessons from developmental biology, Nature Reviews Rheumatology, vol.237, issue.11, pp.654-63, 2011.
DOI : 10.1038/nrrheum.2011.129

A. Marino, D. Waddell, O. Kolomytkin, W. Meek, R. Wolf et al., Increased Intercellular Communication through Gap Junctions May Contribute to Progression of Osteoarthritis, Clinical Orthopaedics and Related Research, vol.422, pp.224-256, 2004.
DOI : 10.1097/01.blo.0000129346.29945.3b

D. Casagrande, J. Stains, and A. Murthi, Identification of shoulder osteoarthritis biomarkers: comparison between shoulders with and without osteoarthritis, Journal of Shoulder and Elbow Surgery, vol.24, issue.3, pp.382-90, 2015.
DOI : 10.1016/j.jse.2014.11.039

S. Tsuchida, Y. Arai, T. Kishida, K. Takahashi, K. Honjo et al., Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis, Journal of Orthopaedic Research, vol.7, issue.4, pp.525-555, 2013.
DOI : 10.1002/jor.22263

R. Gago-fuentes, P. Fernandez-puente, D. Megias, P. Carpintero-fernandez, J. Mateos et al., Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis, Molecular & Cellular Proteomics, vol.14, issue.7, pp.1831-1876, 2015.
DOI : 10.1074/mcp.M115.050211

C. Appleton, V. Pitelka, J. Henry, and F. Beier, Global analyses of gene expression in early experimental osteoarthritis, Arthritis & Rheumatism, vol.44, issue.427, pp.1854-68, 2007.
DOI : 10.1002/art.22711

A. Lohman and B. Isakson, Differentiating connexin hemichannels and pannexin channels in cellular ATP release, FEBS Letters, vol.133, issue.8, pp.1379-88, 2014.
DOI : 10.1016/j.febslet.2014.02.004