E. Ashley, M. Dhorda, R. Fairhurst, C. Amaratunga, P. Lim et al., Malaria, New England Journal of Medicine, vol.371, issue.5, pp.411-434, 2014.
DOI : 10.1056/NEJMoa1314981

URL : https://hal.archives-ouvertes.fr/inserm-00854378

V. Duru, N. Khim, R. Leang, S. Kim, A. Domergue et al., Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations, BMC Medicine, vol.47, issue.3, p.305, 2015.
DOI : 10.1186/s12916-015-0539-5

Y. Lubell, A. Dondorp, P. Guerin, T. Drake, S. Meek et al., Artemisinin resistance ??? modelling the potential human and economic costs, Malaria Journal, vol.13, issue.1, p.452, 2014.
DOI : 10.1016/S0140-6736(12)60034-8

C. Fitch, Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs, Life Sciences, vol.74, issue.16, pp.1957-72, 2004.
DOI : 10.1016/j.lfs.2003.10.003

A. Robert, F. Benoit?vical, C. Claparols, and B. Meunier, The antimalarial drug artemisinin alkylates heme in infected mice, Proceedings of the National Academy of Sciences, vol.102, issue.38, pp.13676-80, 2005.
DOI : 10.1073/pnas.0500972102

J. Kessl, S. Meshnick, and B. Trumpower, Modeling the molecular basis of atovaquone resistance in parasites and pathogenic fungi, Trends in Parasitology, vol.23, issue.10, pp.494-501, 2007.
DOI : 10.1016/j.pt.2007.08.004

A. Gregson and C. Plowe, Mechanisms of Resistance of Malaria Parasites to Antifolates, Pharmacological Reviews, vol.57, issue.1, pp.117-162, 2005.
DOI : 10.1124/pr.57.1.4

L. Bruce?chwatt, Chemotherapy of malaria. Geneva: World Health Organization, p.245, 1986.

R. Maude, C. Nguon, A. Dondorp, L. White, and N. White, The diminishing returns of atovaquone-proguanil for elimination of Plasmodium falciparum malaria: modelling mass drug administration and treatment, Malaria Journal, vol.13, issue.1, p.380, 2014.
DOI : 10.1038/ng.2624

R. Durand, V. Prendki, J. Cailhol, V. Hubert, P. Ralaimazava et al., Malaria and Atovaquone-Proguanil Treatment Failure, Emerging Infectious Diseases, vol.14, issue.2, pp.320-322, 2008.
DOI : 10.3201/eid1402.070945

H. Noedl, Y. Se, K. Schaecher, B. Smith, D. Socheat et al., Evidence of Artemisinin-Resistant Malaria in Western Cambodia, New England Journal of Medicine, vol.359, issue.24, pp.2619-2639, 2008.
DOI : 10.1056/NEJMc0805011

H. Noedl, D. Socheat, and W. Satimai, Artemisinin-Resistant Malaria in Asia, New England Journal of Medicine, vol.361, issue.5, pp.540-541, 2009.
DOI : 10.1056/NEJMc0900231

A. Dondorp, F. Nosten, P. Yi, D. Das, A. Phyo et al., Malaria, New England Journal of Medicine, vol.361, issue.5, pp.455-67, 2009.
DOI : 10.1056/NEJMoa0808859

URL : https://hal.archives-ouvertes.fr/hal-01199794

A. Phyo, S. Nkhoma, K. Stepniewska, E. Ashley, S. Nair et al., Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study, The Lancet, vol.379, issue.9830, pp.1960-1966, 2012.
DOI : 10.1016/S0140-6736(12)60484-X

K. Na?bangchang, P. Muhamad, R. Ruaengweerayut, W. Chaijaroenkul, and J. Karbwang, Identification of resistance of Plasmodium falciparum to artesunate-mefloquine combination in an area along the Thai-Myanmar border: integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity, Malaria Journal, vol.12, issue.1, p.263, 2013.
DOI : 10.1086/507115

D. Saunders, P. Vanachayangkul, and C. Lon, Dihydroartemisinin???Piperaquine Failure in Cambodia, New England Journal of Medicine, vol.371, issue.5, pp.484-489, 2014.
DOI : 10.1056/NEJMc1403007

R. Leang, W. Taylor, D. Bouth, L. Song, J. Tarning et al., Evidence of Plasmodium falciparum Malaria Multidrug Resistance to Artemisinin and Piperaquine in Western Cambodia: Dihydroartemisinin-Piperaquine Open-Label Multicenter Clinical Assessment, Antimicrobial Agents and Chemotherapy, vol.59, issue.8, pp.4719-4745, 2015.
DOI : 10.1128/AAC.00835-15

M. Spring, J. Lin, J. Manning, P. Vanachayangkul, S. Somethy et al., Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study, The Lancet Infectious Diseases, vol.15, issue.6, pp.683-91, 2015.
DOI : 10.1016/S1473-3099(15)70049-6

. Wwarn, Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta?analysis of individual patient data, BMC Med, vol.13, p.212, 2015.

R. Packard, The Origins of Antimalarial-Drug Resistance, New England Journal of Medicine, vol.371, issue.5, pp.397-406, 2014.
DOI : 10.1056/NEJMp1403340

S. Gueye, C. Newby, G. Hwang, J. Phillips, A. Whittaker et al., The challenge of artemisinin resistance can only be met by eliminating Plasmodium falciparum malaria across the Greater Mekong subregion, Malaria Journal, vol.13, issue.1, p.286, 2014.
DOI : 10.1371/journal.pmed.1001642

U. Samarasekera, Countries race to contain resistance to key antimalarial, The Lancet, vol.374, issue.9686, pp.277-80, 2009.
DOI : 10.1016/S0140-6736(09)61349-0

T. Brown, C. Jacob, J. Silva, S. Takala?harrison, A. Djimde et al., Plasmodium falciparum field isolates from areas of repeated emergence of drug resistant malaria show no evidence of hypermutator phenotype, Infection, Genetics and Evolution, vol.30, pp.318-340, 2015.
DOI : 10.1016/j.meegid.2014.12.010

O. Miotto, R. Amato, E. Ashley, B. Macinnis, J. Almagro?garcia et al., Genetic architecture of artemisinin-resistant Plasmodium falciparum, Nature Genetics, vol.4, issue.3, pp.226-260, 2015.
DOI : 10.1111/j.1365-294X.2005.02553.x

N. Khim, C. Bouchier, M. Ekala, S. Incardona, P. Lim et al., Countrywide Survey Shows Very High Prevalence of Plasmodium falciparum Multilocus Resistance Genotypes in Cambodia, Antimicrobial Agents and Chemotherapy, vol.49, issue.8, pp.3147-52, 2005.
DOI : 10.1128/AAC.49.8.3147-3152.2005

URL : https://hal.archives-ouvertes.fr/pasteur-00590990

T. Anderson, S. Nair, S. Nkhoma, J. Williams, M. Imwong et al., High Heritability of Malaria Parasite Clearance Rate Indicates a Genetic Basis for Artemisinin Resistance in Western Cambodia, The Journal of Infectious Diseases, vol.201, issue.9, pp.1326-1356, 2010.
DOI : 10.1086/651562

B. Witkowski, J. Lelievre, M. Barragan, V. Laurent, X. Su et al., Increased Tolerance to Artemisinin in Plasmodium falciparum Is Mediated by a Quiescence Mechanism, Antimicrobial Agents and Chemotherapy, vol.54, issue.5, pp.1872-1879, 2010.
DOI : 10.1128/AAC.01636-09

M. Imwong, A. Dondorp, F. Nosten, P. Yi, M. Mungthin et al., Exploring the Contribution of Candidate Genes to Artemisinin Resistance in Plasmodium falciparum, Antimicrobial Agents and Chemotherapy, vol.54, issue.7, pp.2886-92, 2010.
DOI : 10.1128/AAC.00032-10

F. Ariey, B. Witkowski, C. Amaratunga, J. Beghain, A. Langlois et al., A molecular marker of artemisinin-resistant Plasmodium falciparum malaria, Nature, vol.10, issue.7481, pp.50-55, 2014.
DOI : 10.1038/nature12876

URL : https://hal.archives-ouvertes.fr/pasteur-00921203

S. Looareesuwan, P. Wilairatana, C. Viravan, S. Vanijanonta, P. Pitisuttithum et al., Open randomized trial of oral artemether alone and a sequen? tial combination with mefloquine for acute uncomplicated falciparum malaria, Am J Trop Med Hyg, vol.56, pp.613-620, 1997.

S. Ménard, B. Haddou, T. Ramadani, A. Ariey, F. Iriart et al., by Extended Artemisinin Pressure, Emerging Infectious Diseases, vol.21, issue.10, pp.1733-1774, 2015.
DOI : 10.3201/eid2110.150682

D. Ménard, N. Khim, J. Beghain, A. Adegnika, M. Alam et al., A worldwide map of Plasmodium falciparum artemisinin resistance, N Engl J Med, p.2016

M. Hoshen, K. Na?bangchang, W. Stein, and H. Ginsburg, Mathematical modelling of the chemotherapy of Plasmodium falciparum malaria with artesunate: postulation of ???dormancy???, a partial cytostatic effect of the drug, and its implication for treatment regimens, Parasitology, vol.121, issue.3, pp.237-283, 2000.
DOI : 10.1017/S0031182099006332

B. Daignan?fornier and I. Sagot, Proliferation/quiescence: the controversial "aller-retour", Cell Division, vol.6, issue.1, p.10, 2011.
DOI : 10.1002/yea.320090503

URL : https://hal.archives-ouvertes.fr/hal-00592485

S. Babbitt, L. Altenhofen, S. Cobbold, E. Istvan, C. Fennell et al., Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state, Proceedings of the National Academy of Sciences, vol.109, issue.47, pp.3278-87, 2012.
DOI : 10.1073/pnas.1209823109

L. Dembele, J. Franetich, A. Lorthiois, A. Gego, A. Zeeman et al., Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures, Nature Medicine, vol.13, issue.3, pp.307-319, 2014.
DOI : 10.1007/s00125-005-1694-6

B. Witkowski, N. Khim, P. Chim, S. Kim, S. Ke et al., Reduced Artemisinin Susceptibility of Plasmodium falciparum Ring Stages in Western Cambodia, Antimicrobial Agents and Chemotherapy, vol.57, issue.2, pp.914-937, 2013.
DOI : 10.1128/AAC.01868-12

C. Peatey, M. Chavchich, N. Chen, K. Gresty, K. Gray et al., Parasites In Vitro, Journal of Infectious Diseases, vol.212, issue.3, pp.426-460, 2015.
DOI : 10.1093/infdis/jiv048

N. Klonis, M. Crespo?ortiz, I. Bottova, N. Abu?bakar, S. Kenny et al., Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion, Proceedings of the National Academy of Sciences, vol.108, issue.28, pp.11405-11415, 2011.
DOI : 10.1073/pnas.1104063108

C. Dogovski, S. Xie, G. Burgio, J. Bridgford, S. Mok et al., Targeting the Cell Stress Response of Plasmodium falciparum to Overcome Artemisinin Resistance, PLOS Biology, vol.13, issue.4, p.1002132, 2015.
DOI : 10.1371/journal.pbio.1002132.s014

J. Wang, C. Zhang, W. Chia, C. Loh, Z. Li et al., Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum, Nature Communications, vol.13, p.10111, 2015.
DOI : 10.1038/ncomms10111

A. Hott, C. D. Sparks, K. Morton, L. Castanares, G. Rutter et al., Artemisinin-Resistant Plasmodium falciparum Parasites Exhibit Altered Patterns of Development in Infected Erythrocytes, Antimicrobial Agents and Chemotherapy, vol.59, issue.6, pp.3156-67, 2015.
DOI : 10.1128/AAC.00197-15

S. Saralamba, W. Pan?ngum, R. Maude, S. Lee, J. Tarning et al., Intrahost modeling of artemisinin resistance in Plasmodium falciparum, Proceedings of the National Academy of Sciences, vol.108, issue.1, pp.397-402, 2011.
DOI : 10.1073/pnas.1006113108

F. Teuscher, M. Gatton, N. Chen, J. Peters, D. Kyle et al., : Duration, Recovery Rates, and Implications in Treatment Failure, The Journal of Infectious Diseases, vol.202, issue.9, pp.1362-1370, 2010.
DOI : 10.1086/656476

N. Chen, A. Lacrue, F. Teuscher, N. Waters, M. Gatton et al., Fatty Acid Synthesis and Pyruvate Metabolism Pathways Remain Active in Dihydroartemisinin-Induced Dormant Ring Stages of Plasmodium falciparum, Antimicrobial Agents and Chemotherapy, vol.58, issue.8, pp.4773-81, 2014.
DOI : 10.1128/AAC.02647-14

J. Straimer, N. Gnadig, B. Witkowski, C. Amaratunga, V. Duru et al., K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates, Science, vol.347, issue.6220, pp.428-459, 2015.
DOI : 10.1126/science.1260867

A. Mohon, M. Alam, A. Bayih, A. Folefoc, D. Shahinas et al., Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009???2013), Malaria Journal, vol.13, issue.1, p.431, 2014.
DOI : 10.1186/1475-2875-8-31

F. Huang, S. Takala?harrison, C. Jacob, H. Liu, X. Sun et al., Following Artemisinin Treatment, Journal of Infectious Diseases, vol.212, issue.10, pp.1629-1664, 2015.
DOI : 10.1093/infdis/jiv249

S. Takala?harrison, C. Jacob, C. Arze, M. Cummings, J. Silva et al., Independent Emergence of Artemisinin Resistance Mutations Among Plasmodium falciparum in Southeast Asia, Journal of Infectious Diseases, vol.211, issue.5, pp.670-679, 2015.
DOI : 10.1093/infdis/jiu491

M. Nyunt, T. Hlaing, H. Oo, L. Tin?oo, H. Phway et al., Molecular Assessment of Artemisinin Resistance Markers, Polymorphisms in the K13 Propeller, and a Multidrug-Resistance Gene in the Eastern and Western Border Areas of Myanmar, Clinical Infectious Diseases, vol.60, issue.8, pp.1208-1223, 2015.
DOI : 10.1093/cid/ciu1160

C. Amaratunga, B. Witkowski, D. Dek, V. Try, N. Khim et al., Plasmodium falciparum Founder Populations in Western Cambodia Have Reduced Artemisinin Sensitivity In Vitro, Antimicrobial Agents and Chemotherapy, vol.58, issue.8, pp.4935-4942, 2014.
DOI : 10.1128/AAC.03055-14

C. Amaratunga, B. Witkowski, N. Khim, D. Menard, and R. Fairhurst, Artemisinin resistance in Plasmodium falciparum, The Lancet Infectious Diseases, vol.14, issue.6, pp.449-50, 2014.
DOI : 10.1016/S1473-3099(14)70777-7

C. Sibley, Understanding artemisinin resistance, Science, vol.347, issue.6220, pp.373-377, 2015.
DOI : 10.1126/science.aaa4102

E. Kamau, S. Campino, L. Amenga?etego, E. Drury, D. Ishengoma et al., K13?propeller polymorphisms in Plasmodium falciparum para? sites from sub?Saharan Africa, J Infect Dis, vol.211, pp.1352-1357, 2015.

S. Taylor, C. Parobek, D. Deconti, K. Kayentao, S. Coulibaly et al., Absence of Putative Artemisinin Resistance Mutations Among Plasmodium falciparum in Sub-Saharan Africa: A Molecular Epidemiologic Study, Journal of Infectious Diseases, vol.211, issue.5, pp.680-688, 2014.
DOI : 10.1093/infdis/jiu467

O. Maiga?ascofare and M. J. , in Africa?: Table 1., Journal of Infectious Diseases, vol.213, issue.1, pp.165-171, 2016.
DOI : 10.1093/infdis/jiv414

M. Hawkes, A. Conroy, R. Opoka, S. Namasopo, K. Zhong et al., Slow clearance of Plasmodium falciparum in severe pediatric Malaria, Uganda, Emerg Infect Dis, vol.21, pp.2011-20131237, 2015.

M. Ghorbal, M. Gorman, C. Macpherson, R. Martins, A. Scherf et al., Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system, Nature Biotechnology, vol.32, issue.8, pp.819-840, 2014.
DOI : 10.1016/S1473-3099(13)70252-4

R. Fairhurst, Understanding artemisinin-resistant malaria, Current Opinion in Infectious Diseases, vol.28, issue.5, pp.417-442, 2015.
DOI : 10.1097/QCO.0000000000000199

J. Popovici, S. Kao, L. Eal, S. Bin, S. Kim et al., Reduced Polymorphism in the Kelch Propeller Domain in Plasmodium vivax Isolates from Cambodia, Antimicrobial Agents and Chemotherapy, vol.59, issue.1, pp.730-733, 2015.
DOI : 10.1128/AAC.03908-14

J. Adams, R. Kelso, and L. Cooley, The kelch repeat superfamily of proteins: propellers of cell function, Trends in Cell Biology, vol.10, issue.1, pp.17-24, 2000.
DOI : 10.1016/S0962-8924(99)01673-6

D. Protein and . Bank, Crystal structure analysis of Kelch protein from Plasmodium falciparum

E. Winzeler and M. Manary, Drug resistance genomics of the antimalarial drug artemisinin, Genome Biology, vol.12, issue.11, p.544, 2014.
DOI : 10.1186/s13059-014-0544-6

A. Mbengue, S. Bhattacharjee, T. Pandharkar, H. Liu, G. Estiu et al., A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria, Nature, vol.103, issue.7549, pp.683-690, 2015.
DOI : 10.1038/nature14412

B. Padmanabhan, K. Tong, T. Ohta, Y. Nakamura, M. Scharlock et al., Structural Basis for Defects of Keap1 Activity Provoked by Its Point Mutations in Lung Cancer, Molecular Cell, vol.21, issue.5, pp.689-700, 2006.
DOI : 10.1016/j.molcel.2006.01.013

L. Boyden, M. Choi, K. Choate, C. Nelson?williams, A. Farhi et al., Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities, Nature, vol.25, issue.7383, pp.98-102, 2012.
DOI : 10.1038/nature10814

M. Morita, H. Sanai, A. Hiramoto, A. Sato, O. Hiraoka et al., Plasmodium falciparum endoplasmic reticulum?resident calcium binding protein is a possible target of synthetic antimalarial endoperoxides, N?89 and N?251, J Proteome Res, vol.11, pp.5704-5715, 2012.

S. Mok, E. Ashley, P. Ferreira, L. Zhu, Z. Lin et al., Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance, Science, vol.347, issue.6220, pp.431-436, 2015.
DOI : 10.1126/science.1260403

Y. Liu, C. Lok, B. Ko, T. Shum, M. Wong et al., Subcellular Localization of a Fluorescent Artemisinin Derivative to Endoplasmic Reticulum, Organic Letters, vol.12, issue.7, pp.1420-1423, 2010.
DOI : 10.1021/ol902890j

S. Gosline, M. Nascimento, L. Mccall, D. Zilberstein, D. Thomas et al., Intracellular Eukaryotic Parasites Have a Distinct Unfolded Protein Response, PLoS ONE, vol.4, issue.4, p.19118, 2011.
DOI : 10.1371/journal.pone.0019118.s006

URL : http://doi.org/10.1371/journal.pone.0019118

E. Kansanen, H. Jyrkkänen, and A. Levonen, Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids, Free Radical Biology and Medicine, vol.52, issue.6, pp.973-82, 2012.
DOI : 10.1016/j.freeradbiomed.2011.11.038

M. Blaustein, D. Perez?munizaga, M. Sanchez, C. Urrutia, A. Grande et al., Modulation of the Akt Pathway Reveals a Novel Link with PERK/eIF2??, which Is Relevant during Hypoxia, PLoS ONE, vol.12, issue.7, p.69668, 2013.
DOI : 10.1371/journal.pone.0069668.s005

M. Zhang, C. Fennell, L. Ranford?cartwright, R. Sakthivel, P. Gueirard et al., eukaryotic initiation factor-2?? kinase IK2 controls the latency of sporozoites in the mosquito salivary glands, The Journal of Experimental Medicine, vol.21, issue.7, pp.1465-74, 2010.
DOI : 10.1371/journal.pone.0001570

J. Salcedo?sora, E. Caamano?gutierrez, S. Ward, and G. Biagini, The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development, Trends in Parasitology, vol.30, issue.4, pp.170-175, 2014.
DOI : 10.1016/j.pt.2014.02.001

C. Botte, Y. Yamaryo?botte, T. Rupasinghe, K. Mullin, J. Macrae et al., Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites, Proceedings of the National Academy of Sciences, vol.110, issue.18, pp.7506-7517, 2013.
DOI : 10.1073/pnas.1301251110

URL : https://hal.archives-ouvertes.fr/hal-00839109

S. Bhattacharjee, R. Stahelin, K. Speicher, D. Speicher, and K. Haldar, Endoplasmic Reticulum PI(3)P Lipid Binding Targets Malaria Proteins to the Host Cell, Cell, vol.148, issue.1-2, pp.201-213, 2012.
DOI : 10.1016/j.cell.2011.10.051

L. Tawk, G. Chicanne, J. Dubremetz, V. Richard, B. Payrastre et al., Phosphatidylinositol 3-Phosphate, an Essential Lipid in Plasmodium, Localizes to the Food Vacuole Membrane and the Apicoplast, Eukaryotic Cell, vol.9, issue.10, pp.1519-1549, 2010.
DOI : 10.1128/EC.00124-10

T. Kobayashi, S. Sato, S. Takamiya, K. Komaki?yasuda, K. Yano et al., Mitochondria and apicoplast of Plasmodium falciparum: Behaviour on subcellular fractionation and the implication, Mitochondrion, vol.7, issue.1-2, pp.125-157, 2007.
DOI : 10.1016/j.mito.2006.11.021

M. Shears, C. Botte, and G. Mcfadden, Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts, Molecular and Biochemical Parasitology, vol.199, issue.1-2, pp.34-50, 2015.
DOI : 10.1016/j.molbiopara.2015.03.004

S. Ralph, G. Van-dooren, R. Waller, M. Crawford, M. Fraunholz et al., Metabolic maps and functions of the Plasmodium falciparum apicoplast, Nature Reviews Microbiology, vol.16, issue.3, pp.203-219, 2004.
DOI : 10.1093/nar/gkg081

S. Laurent, B. Miller, B. Burton, T. Amaratunga, C. Men et al., Artemisinin-resistant Plasmodium falciparum clinical isolates can infect diverse mosquito vectors of Southeast Asia and Africa, Nature Communications, vol.48, p.8614, 2015.
DOI : 10.1038/ncomms9614

C. Wongsrichanalai, A. Pickard, W. Wernsdorfer, and S. Meshnick, Epidemiology of drug-resistant malaria, The Lancet Infectious Diseases, vol.2, issue.4, pp.209-227, 2002.
DOI : 10.1016/S1473-3099(02)00239-6

B. Witkowski, A. Berry, and F. Benoit?vical, Resistance to antimalarial compounds: Methods and applications, Drug Resistance Updates, vol.12, issue.1-2, pp.42-50, 2009.
DOI : 10.1016/j.drup.2009.01.001

C. Sanchez, D. A. Stein, W. Lanzer, and M. , Transporters as mediators of drug resistance in Plasmodium falciparum, International Journal for Parasitology, vol.40, issue.10, pp.1109-1127, 2010.
DOI : 10.1016/j.ijpara.2010.04.001

J. Koenderink, R. Kavishe, S. Rijpma, and F. Russel, The ABCs of multidrug resistance in malaria, Trends in Parasitology, vol.26, issue.9, pp.440-446, 2010.
DOI : 10.1016/j.pt.2010.05.002

Z. Ibraheem, A. Majid, R. Noor, S. Sedik, H. Basir et al., Role of different Pfcrt and Pfmdr?1 mutations in conferring resistance to antimalaria drugs in Plasmodium falciparum, Malar Res Treat, vol.2014, p.950424, 2014.

R. Summers, M. Nash, and R. Martin, Know your enemy: understanding the role of PfCRT in drug resistance could lead to new antimalarial tactics, Cellular and Molecular Life Sciences, vol.101, issue.3, pp.1967-95, 2012.
DOI : 10.1007/s00018-011-0906-0

C. Setthaudom, P. Tan?ariya, N. Sitthichot, R. Khositnithikul, N. Suwandit?-takul et al., Role of Plasmodium falciparum Chloroquine Resistance Transporter and Multidrug Resistance 1 Genes on In Vitro Chloroquine Resistance in Isolates of Plasmodium falciparum from Thailand, American Journal of Tropical Medicine and Hygiene, vol.85, issue.4, pp.606-617, 2011.
DOI : 10.4269/ajtmh.2011.11-0108

R. Price, A. Uhlemann, A. Brockman, R. Mcgready, E. Ashley et al., Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number, The Lancet, vol.364, issue.9432, pp.438-485, 2004.
DOI : 10.1016/S0140-6736(04)16767-6

D. Ubben and E. Poll, MMV in partnership: the Eurartesim?? experience, Malaria Journal, vol.12, issue.1, p.211, 2013.
DOI : 10.1128/AAC.01879-12

H. Ke, I. Lewis, J. Morrisey, K. Mclean, S. Ganesan et al., Genetic Investigation of Tricarboxylic Acid Metabolism during the Plasmodium falciparum Life Cycle, Cell Reports, vol.11, issue.1, pp.164-74, 2015.
DOI : 10.1016/j.celrep.2015.03.011

E. Kansanen, S. Kuosmanen, H. Leinonen, and A. Levonen, The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer, Redox Biology, vol.1, issue.1, pp.45-54, 2013.
DOI : 10.1016/j.redox.2012.10.001

K. Nakaso, H. Yano, Y. Fukuhara, T. Takeshima, K. Wada?isoe et al., PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells, FEBS Letters, vol.31, issue.2-3, pp.181-185, 2003.
DOI : 10.1016/S0014-5793(03)00517-9

J. Raven and A. Koromilas, PERK and PKR: Old kinases learn new tricks, Cell Cycle, vol.7, issue.9, pp.1146-50, 2008.
DOI : 10.4161/cc.7.9.5811

C. Fennell, S. Babbitt, I. Russo, J. Wilkes, L. Ranford?cartwright et al., PfeIK1, a eukaryotic initiation factor 2?? kinase of the human malaria parasite Plasmodium falciparum, regulates stress-response to amino-acid starvation, Malaria Journal, vol.8, issue.1, p.99, 2009.
DOI : 10.1186/1475-2875-8-99

M. Zhang, S. Mishra, R. Sakthivel, M. Rojas, R. Ranjan et al., PK4, a eukaryotic initiation factor 2??(eIF2??) kinase, is essential for the development of the erythrocytic cycle of Plasmodium, Proceedings of the National Academy of Sciences, vol.109, issue.10, pp.3956-61, 2012.
DOI : 10.1073/pnas.1121567109

S. Chaubey, M. Grover, and U. Tatu, Endoplasmic Reticulum Stress Triggers Gametocytogenesis in the Malaria Parasite, Journal of Biological Chemistry, vol.289, issue.24, pp.16662-74, 2014.
DOI : 10.1074/jbc.M114.551549

C. Doerig, J. Endicott, and D. Chakrabarti, Cyclin-dependent kinase homologues of Plasmodium falciparum, International Journal for Parasitology, vol.32, issue.13, pp.1575-85, 2002.
DOI : 10.1016/S0020-7519(02)00186-8