P. Verdijk, E. H. Aarntzen, C. J. Punt, I. J. De-vries, and C. G. Figdor, Maximizing dendritic cell migration in cancer immunotherapy, Expert Opinion on Biological Therapy, vol.6, issue.7, pp.865-874, 2008.
DOI : 10.1182/blood-2007-04-083188

G. J. Adema, I. J. De-vries, C. J. Punt, and C. G. Figdor, Migration of dendritic cell based cancer vaccines: in vivo veritas?, Current Opinion in Immunology, vol.17, issue.2, pp.17-170, 2005.
DOI : 10.1016/j.coi.2005.01.004

B. M. Bosma, H. J. Metselaar, W. M. Tra, S. Mancham, E. J. Kuipers et al., Impairment of circulating myeloid dendritic cells in immunosuppressed liver transplant recipients, Clinical & Experimental Immunology, vol.57, issue.4 Part 1, pp.149-525, 2007.
DOI : 10.1111/j.1365-2249.2007.03449.x

M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium: Calcium signalling: dynamics, homeostasis and remodelling, Nature Reviews Molecular Cell Biology, vol.4, issue.7, pp.517-529, 2003.
DOI : 10.1038/nrm1155

M. F. Bachmann, M. Kopf, and B. J. Marsland, Chemokines: more than just road signs, Nature Reviews Immunology, vol.79, issue.2, pp.159-164, 2006.
DOI : 10.1038/nri1776

P. Pelegrin, Targeting interleukin-1 signaling in chronic inflammation: focus on P2X(7) receptor and Pannexin-1, Drug News Perspect, vol.21, pp.424-433, 2008.

A. Schwarz, E. Tutsch, B. Ludwig, E. C. Schwarz, A. Stallmach et al., Ca2+ Signaling in Identified T-lymphocytes from Human Intestinal Mucosa: RELATION TO HYPOREACTIVITY, PROLIFERATION, AND INFLAMMATORY BOWEL DISEASE, Journal of Biological Chemistry, vol.279, issue.7, pp.279-5641, 2004.
DOI : 10.1074/jbc.M309317200

S. Hsu, P. J. O-'connell, V. A. Klyachko, M. N. Badminton, A. W. Thomson et al., Fundamental Ca 2+ signaling mechanisms in mouse dendritic cells: CRAC is the major Ca 2+ entry pathway, J. Immunol, pp.166-6126, 2001.

E. Scandella, Y. Men, D. F. Legler, S. Gillessen, L. Prikler et al., CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2, Blood, vol.103, issue.5, pp.1595-1601, 2004.
DOI : 10.1182/blood-2003-05-1643

R. Felix, D. Crottes, A. Delalande, J. Fauconnier, Y. Lebranchu et al., The Orai-1 and STIM-1 Complex Controls Human Dendritic Cell Maturation, PLoS ONE, vol.181, issue.5, 2013.
DOI : 10.1371/journal.pone.0061595.g007

URL : https://hal.archives-ouvertes.fr/inserm-01318483

K. C. Bagley, S. F. Abdelwahab, R. G. Tuskan, and G. K. Lewis, Calcium Signaling through Phospholipase C Activates Dendritic Cells To Mature and Is Necessary for the Activation and Maturation of Dendritic Cells Induced by Diverse Agonists, Clinical and Vaccine Immunology, vol.11, issue.1, pp.11-77, 2004.
DOI : 10.1128/CDLI.11.1.77-82.2004

H. Berkefeld, B. Fakler, and U. Schulte, Ca2+-Activated K+ Channels: From Protein Complexes to Function, Physiological Reviews, vol.90, issue.4, pp.1437-1459, 2009.
DOI : 10.1152/physrev.00049.2009

Z. Shao, R. Gaurav, and D. K. , Intermediate-conductance calcium-activated potassium channel KCa3.1 and chloride channel??modulate chemokine ligand (CCL19/CCL21)-induced migration of dendritic cells, Translational Research, vol.166, issue.1, pp.166-89, 2015.
DOI : 10.1016/j.trsl.2014.11.010

T. M. Ishii, C. Silvia, B. Hirschberg, C. T. Bond, J. P. Adelman et al., A human intermediate conductance calcium-activated potassium channel, Proceedings of the National Academy of Sciences, vol.94, issue.21, pp.94-11651, 1997.
DOI : 10.1073/pnas.94.21.11651

K. Essin, M. Gollasch, S. Rolle, P. Weissgerber, M. Sausbier et al., BK channels in innate immune functions of neutrophils and macrophages, BK channels in innate immune functions of neutrophils and macrophages, pp.1326-1331, 2009.
DOI : 10.1182/blood-2008-07-166660

G. Cruse, S. M. Duffy, C. E. Brightling, and P. Bradding, Functional KCa3.1 K+ channels are required for human lung mast cell migration, Thorax, vol.61, issue.10, pp.880-885, 2006.
DOI : 10.1136/thx.2006.060319

S. M. Duffy, G. Cruse, C. E. Brightling, and P. Bradding, Adenosine closes the K + channel KCa3.1 in human lung mast cells and inhibits their migration via the adenosine A2A receptor, Eur. J. Immunol, pp.37-1653, 2007.

Z. Shao, T. O. Makinde, and D. K. , Agrawal, Calcium-activated potassium channel KCa3.1 in lung dendritic cell migration, Am. J. Respir. Cell Mol. Biol, pp.45-962, 2011.

A. Schwab, V. Nechyporuk-zloy, B. Gassner, C. Schulz, W. Kessler et al., Dynamic redistribution of calcium sensitive potassium channels (hKCa3.1) in migrating cells, Journal of Cellular Physiology, vol.187, issue.2, pp.686-696, 2011.
DOI : 10.1002/jcp.22776

M. B. Faries, I. Bedrosian, S. Xu, G. Koski, J. G. Roros et al., Calcium signaling inhibits interleukin-12 production and activates CD83+ dendritic cells that induce Th2 cell development, Blood, vol.98, issue.8, pp.2489-2497, 2001.
DOI : 10.1182/blood.V98.8.2489

Y. Uemura, T. Y. Liu, Y. Narita, M. Suzuki, S. Ohshima et al., Identification of functional type 1 ryanodine receptors in human dendritic cells, Biochemical and Biophysical Research Communications, vol.362, issue.2, pp.362-510, 2007.
DOI : 10.1016/j.bbrc.2007.08.024

P. J. O-'connell, V. A. Klyachko, and G. P. Ahern, Identification of functional type 1 ryanodine receptors in mouse dendritic cells, FEBS Letters, vol.93, issue.1-3, pp.67-70, 2002.
DOI : 10.1016/S0014-5793(01)03321-X

G. Barbet, M. Demion, I. C. Moura, N. Serafini, T. Léger et al., The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells, Nature Immunology, vol.176, issue.10, pp.1148-1156, 2008.
DOI : 10.1182/blood-2006-02-003665

S. Roger, M. Potier, C. Vandier, J. Guennec, and P. Besson, Description and role in proliferation of iberiotoxin-sensitive currents in different human mammary epithelial normal and cancerous cells, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1667, issue.2, pp.1667-190, 2004.
DOI : 10.1016/j.bbamem.2004.10.002

H. Wulff, M. J. Miller, W. Hansel, S. Grissmer, M. D. Cahalan et al., Design of a potent and selective inhibitor of the intermediate-conductance Ca 2+ -activated K + channel, IKCa1: a potential immunosuppressant, Proc. Natl. Acad. Sci. U. S. A, pp.97-8151, 2000.

A. Mueller and P. G. Strange, Mechanisms of internalization and recycling of the chemokine receptor, CCR5, European Journal of Biochemistry, vol.10, issue.2, pp.243-252, 2004.
DOI : 10.1038/35087035

G. Cruse, S. R. Singh, S. M. Duffy, C. Doe, R. Saunders et al., Functional KCa3.1 K+ channels are required for human fibrocyte migration, Journal of Allergy and Clinical Immunology, vol.128, issue.6, pp.128-1303, 2011.
DOI : 10.1016/j.jaci.2011.07.047

Z. Kuras, Y. Yun, A. A. Chimote, L. Neumeier, and L. Conforti, KCa3.1 and TRPM7 Channels at the Uropod Regulate Migration of Activated Human T Cells, PLoS ONE, vol.7, issue.8, 2012.
DOI : 10.1371/journal.pone.0043859.s006

A. A. Chimote, P. Hajdu, V. Kucher, N. Boiko, Z. Kuras et al., Selective Inhibition of KCa3.1 Channels Mediates Adenosine Regulation of the Motility of Human T Cells, The Journal of Immunology, vol.191, issue.12, pp.191-6273, 2013.
DOI : 10.4049/jimmunol.1300702

S. Varani, G. Frascaroli, M. Homman-loudiyi, S. Feld, M. P. Landini et al., Söderberg-Nauclér, Human cytomegalovirus inhibits the migration of immature dendritic cells by down-regulating cell-surface CCR1 and CCR5, J. Leukoc. Biol, pp.77-219, 2005.

B. J. Marsland, P. Bättig, M. Bauer, C. Ruedl, U. Lässing et al., CCL19 and CCL21 Induce a Potent Proinflammatory Differentiation Program in Licensed Dendritic Cells, Immunity, vol.22, issue.4, pp.493-505, 2005.
DOI : 10.1016/j.immuni.2005.02.010

N. Sanchez-sanchez, L. Riol-blanco, and J. L. Rodríguez-fernández, The Multiple Personalities of the Chemokine Receptor CCR7 in Dendritic Cells, The Journal of Immunology, vol.176, issue.9, pp.5153-5159, 2006.
DOI : 10.4049/jimmunol.176.9.5153

M. Potier, V. Joulin, S. Roger, P. Besson, M. L. Jourdan et al., Identification of SK3 channel as a new mediator of breast cancer cell migration, Molecular Cancer Therapeutics, vol.5, issue.11, pp.2946-2953, 2006.
DOI : 10.1158/1535-7163.MCT-06-0194

URL : https://hal.archives-ouvertes.fr/inserm-00116248

A. Schwab, A. Wulf, C. Schulz, W. Kessler, V. Nechyporuk-zloy et al., Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells, Journal of Cellular Physiology, vol.133, issue.Suppl, pp.206-86, 2006.
DOI : 10.1002/jcp.20434

]. P. Pinton, C. Giorgi, R. Siviero, E. Zecchini, and R. Rizzuto, Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis, Oncogene, vol.276, issue.50, pp.6407-6418, 2008.
DOI : 10.1073/pnas.93.11.5325

S. Orrenius, V. Gogvadze, and B. Zhivotovsky, Calcium and mitochondria in the regulation of cell death, Biochemical and Biophysical Research Communications, vol.460, issue.1, pp.460-72, 2015.
DOI : 10.1016/j.bbrc.2015.01.137

V. Nechyporuk-zloy, P. Dieterich, H. Oberleithner, C. Stock, and A. Schwab, Dynamics of single potassium channel proteins in the plasma membrane of migrating cells, AJP: Cell Physiology, vol.294, issue.4, pp.1096-1102, 2008.
DOI : 10.1152/ajpcell.00252.2007

F. Herr, R. Lemoine, F. Gouilleux, D. Meley, I. Kazma et al., IL-2 Phosphorylates STAT5 To Drive IFN-?? Production and Activation of Human Dendritic Cells, The Journal of Immunology, vol.192, issue.12, pp.192-5660, 2014.
DOI : 10.4049/jimmunol.1300422

C. Aussel, R. Marhaba, C. Pelassy, and J. P. Breittmayer, concentrations block the calcium release-activated channel, and impair CD69 and CD25 expression in CD3- or thapsigargin-activated Jurkat cells, Biochemical Journal, vol.313, issue.3, pp.313-909, 1996.
DOI : 10.1042/bj3130909

E. Zsiros, K. Kis-toth, P. Hajdu, R. Gaspar, J. Bielanska et al., Developmental Switch of the Expression of Ion Channels in Human Dendritic Cells, The Journal of Immunology, vol.183, issue.7, pp.183-4483, 2009.
DOI : 10.4049/jimmunol.0803003

L. Frasca, G. Fedele, S. Deaglio, C. Capuano, R. Palazzo et al., CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells, Blood, vol.107, issue.6, pp.2392-2399, 2006.
DOI : 10.1182/blood-2005-07-2913

H. C. Lee, Enzymatic Functions and Structures of CD38 and Homologs, Chem. Immunol, vol.75, pp.39-59, 2000.
DOI : 10.1159/000058774

G. Ferlazzo, A. Wesa, W. Z. Wei, and A. Galy, Dendritic cells generated either from CD34+ progenitor cells or from monocytes differ in their ability to activate antigen-specific CD8+ T cells, J. Immunol, pp.163-3597, 1999.

M. L. Heuzé, P. Vargas, M. Chabaud, M. Le-berre, Y. Liu et al., Migration of dendritic cells: physical principles, molecular mechanisms, and functional implications, Immunological Reviews, vol.22, issue.592-601, pp.256-240, 2013.
DOI : 10.1111/imr.12108

M. Inayama, Y. Suzuki, S. Yamada, T. Kurita, H. Yamamura et al., Orai1???Orai2 complex is involved in store-operated calcium entry in chondrocyte cell lines, Cell Calcium, vol.57, issue.5-6, pp.337-347, 2015.
DOI : 10.1016/j.ceca.2015.02.005

K. Meguro, H. Iida, H. Takano, T. Morita, M. Sata et al., Function and role of voltage-gated sodium channel NaV1.7 expressed in aortic smooth muscle cells, AJP: Heart and Circulatory Physiology, vol.296, issue.1, pp.296-211, 2009.
DOI : 10.1152/ajpheart.00960.2008

C. M. Fanger, H. Rauer, A. L. Neben, M. J. Miller, H. Rauer et al., Calcium-activated Potassium Channels Sustain Calcium Signaling in T Lymphocytes. SELECTIVE BLOCKERS AND MANIPULATED CHANNEL EXPRESSION LEVELS, Journal of Biological Chemistry, vol.276, issue.15, pp.276-12249, 2001.
DOI : 10.1074/jbc.M011342200

Y. Gao, P. J. Hanley, S. Rinné, M. Zuzarte, and J. Daut, Calcium-activated K(+) channel (K(Ca) 3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages, Cell Calcium, pp.48-67, 2010.

K. Kis-toth, P. Hajdu, I. Bacskai, O. Szilagyi, F. Papp et al., Voltage-Gated Sodium Channel Nav1.7 Maintains the Membrane Potential and Regulates the Activation and Chemokine-Induced Migration of a Monocyte-Derived Dendritic Cell Subset, The Journal of Immunology, vol.187, issue.3, pp.1273-1280, 2011.
DOI : 10.4049/jimmunol.1003345

M. D. Cahalan and K. G. Chandy, The functional network of ion channels in T lymphocytes, Immunological Reviews, vol.7, issue.1, pp.59-87, 2009.
DOI : 10.1111/j.1600-065X.2009.00816.x

A. Chantôme, M. Potier-cartereau, L. Clarysse, G. Fromont, S. Marionneau-lambot et al., Pivotal role of the lipid Raft SK3-Orai1 complex in human cancer cell migration and bone metastases, Cancer Res, pp.73-4852, 2013.

P. Morales, L. Garneau, H. Klein, M. Lavoie, L. Parent et al., Contribution of the KCa3.1 channel???calmodulin interactions to the regulation of the KCa3.1 gating process, The Journal of General Physiology, vol.296, issue.1, pp.142-179, 2013.
DOI : 10.1073/pnas.1220253110

J. Takai, A. Santu, H. Zheng, S. D. Koh, M. Ohta et al., Laminar shear stress upregulates endothelial Ca 2+ -activated K + channels KCa2.3 and KCa3.1 via a Ca 2+ /calmodulin-dependent protein kinase kinase/Akt/p300 cascade, Am. J. Physiol. Heart Circ. Physiol, pp.305-484, 2013.

C. Huang, C. A. Pollock, and X. Chen, 3.1??in diabetic nephropathy, Clinical Science, vol.267, issue.7, pp.127-423, 1979.
DOI : 10.1517/13543780802708011

URL : https://hal.archives-ouvertes.fr/hal-01497915

L. Chachi, A. Shikotra, S. M. Duffy, O. Tliba, C. Brightling et al., Functional KCa3.1 Channels Regulate Steroid Insensitivity in Bronchial Smooth Muscle Cells, The Journal of Immunology, vol.191, issue.5, pp.191-2624, 2013.
DOI : 10.4049/jimmunol.1300104

K. L. Turner, A. Honasoge, S. M. Robert, M. M. Mcferrin, and H. Sontheimer, channel KCa3.1 in malignant glioma, Glia, vol.46, issue.1498, pp.971-981, 2014.
DOI : 10.1002/glia.22655

L. K. Hansen, The role of T cell potassium channels, KV1.3 and KCa3.1, in the inflammatory cascade in ulcerative colitis, Dan. Med. J, pp.61-4946, 2014.