M. Hamon, D. Ribet, F. Stavru, and P. Cossart, Listeriolysin O: the Swiss army knife of Listeria, Trends in Microbiology, vol.20, issue.8, pp.360-368, 2012.
DOI : 10.1016/j.tim.2012.04.006

E. Hotze and R. Tweten, Membrane assembly of the cholesterol-dependent cytolysin pore complex, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1818, issue.4, pp.1028-1066, 2012.
DOI : 10.1016/j.bbamem.2011.07.036

G. Anderluh and J. Lakey, Disparate proteins use similar architectures to damage membranes, Trends in Biochemical Sciences, vol.33, issue.10, pp.482-90, 2008.
DOI : 10.1016/j.tibs.2008.07.004

D. Schuerch, E. Wilson-kubalek, and R. Tweten, Molecular basis of listeriolysin O pH dependence, Proceedings of the National Academy of Sciences, vol.102, issue.35, pp.12537-12579, 2005.
DOI : 10.1073/pnas.0500558102

A. Bavdek, R. Kostanj?ek, V. Antonini, J. Lakey, D. Serra et al., pH dependence of listeriolysin O aggregation and pore-forming ability. The FEBS journal, pp.126-167, 2012.

T. Nomura, I. Kawamura, C. Kohda, H. Baba, Y. Ito et al., Irreversible loss of membrane-binding activity of Listeria-derived cytolysins in non-acidic conditions: a distinct difference from allied cytolysins produced by other Gram-positive bacteria, Microbiology, vol.153, issue.7, pp.2250-8005843, 2007.
DOI : 10.1099/mic.0.2007/005843-0

D. Portnoy, P. Jacks, and D. Hinrichs, Role of hemolysin for the intracellular growth of Listeria monocytogenes, Journal of Experimental Medicine, vol.167, issue.4, pp.1459-71, 1988.
DOI : 10.1084/jem.167.4.1459

P. Cossart, M. Vicente, J. Mengaud, F. Baquero, J. Perez-diaz et al., Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation, Infection and Immunity, vol.57, issue.11, pp.3629-3665, 1989.

C. Birmingham, V. Canadien, N. Kaniuk, B. Steinberg, D. Higgins et al., Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles, Nature, vol.99, issue.7176, pp.350-354, 2008.
DOI : 10.1038/nature06479

L. Shaughnessy, A. Hoppe, K. Christensen, and J. Swanson, Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles, Cellular Microbiology, vol.366, issue.5, pp.781-92, 2006.
DOI : 10.1083/jcb.130.4.821

R. Henry, L. Shaughnessy, M. Loessner, C. Alberti-segui, D. Higgins et al., Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes, Cellular Microbiology, vol.257, issue.1, pp.107-126, 2006.
DOI : 10.1021/cr010142r

S. Köster, K. Van-pee, M. Hudel, M. Leustik, D. Rhinow et al., Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation, Nature Communications, vol.248, pp.3690-24751541, 2014.
DOI : 10.1038/ncomms4690

R. Gilbert, M. Mikelj, D. Serra, M. Froelich, C. Anderluh et al., Effects of MACPF/CDC proteins on lipid membranes, Cellular and Molecular Life Sciences, vol.46, issue.52, pp.2083-98, 2013.
DOI : 10.1007/s00018-012-1153-8

M. Podobnik, M. Marchioretto, M. Zanetti, A. Bavdek, M. Kisovec et al., Plasticity of lysteriolysin O pores and its regulation by pH and unique histidine, Scientific Reports, vol.5, p.25854672, 2015.

E. Mulvihill, K. Van-pee, S. Mari, D. Müller, and Y. , Directly Observing the Lipid-Dependent Self-Assembly and Pore-Forming Mechanism of the Cytolytic Toxin Listeriolysin O. Nano Letters, p.26302195

C. Leung, N. Dudkina, N. Lukoyanova, A. Hodel, I. Farabella et al., Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. eLife, p.25457051, 2014.

D. Czajkowsky, E. Hotze, Z. Shao, and R. Tweten, Vertical collapse of a cytolysin prepore moves its transmembrane ??-hairpins to the membrane, The EMBO Journal, vol.267, issue.16, pp.3206-3221, 2004.
DOI : 10.1016/S0079-6107(00)00014-6

S. Vadia, E. Arnett, A. Haghighat, E. Wilson-kubalek, R. Tweten et al., The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes, PLoS Pathogens, vol.13, issue.11, p.22072970, 2011.
DOI : 10.1371/journal.ppat.1002356.s017

T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito et al., A high-speed atomic force microscope for studying biological macromolecules, Proceedings of the National Academy of Sciences, vol.98, issue.22, pp.12468-72, 2001.
DOI : 10.1073/pnas.211400898

T. Ando, T. Uchihashi, and S. Scheuring, Filming Biomolecular Processes by High-Speed Atomic Force Microscopy, Chemical Reviews, vol.114, issue.6, pp.3120-88, 2014.
DOI : 10.1021/cr4003837

I. Casuso, J. Khao, M. Chami, P. Paul-gilloteaux, M. Husain et al., Characterization of the motion of membrane proteins using high-speed atomic force microscopy, Nature Nanotechnology, vol.133, issue.8, pp.525-534, 2012.
DOI : 10.1073/pnas.0511026103

URL : https://hal.archives-ouvertes.fr/inserm-01363192

N. Chiaruttini, L. Redondo-morata, A. Colom, F. Humbert, M. Lenz et al., Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation, Cell, vol.163, issue.4, pp.866-79, 2015.
DOI : 10.1016/j.cell.2015.10.017

URL : https://hal.archives-ouvertes.fr/hal-01238262

M. Mingeot-leclercq, M. Deleu, R. Brasseur, and Y. Dufrêne, Atomic force microscopy of supported lipid bilayers, Nature Protocols, vol.3, issue.10, pp.1654-1663, 2008.
DOI : 10.1038/nprot.2008.149

M. Husain, T. Boudier, P. Paul-gilloteaux, I. Casuso, and S. Scheuring, Software for drift compensation, particle tracking and particle analysis of high-speed atomic force microscopy image series, Journal of Molecular Recognition, vol.70, issue.11, pp.292-300, 2012.
DOI : 10.1002/jmr.2187

URL : https://hal.archives-ouvertes.fr/inserm-01363229

R. Gilbert, Inactivation and Activity of Cholesterol-Dependent Cytolysins: What Structural Studies Tell Us, Structure, vol.13, issue.8, pp.1097-106, 1993.
DOI : 10.1016/j.str.2005.04.019

M. Marchioretto, M. Podobnik, D. Serra, M. Anderluh, and G. , What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins, Biophysical Chemistry, vol.182, p.23876488, 2013.
DOI : 10.1016/j.bpc.2013.06.015

R. Gilbert, D. Serra, M. Froelich, C. Wallace, M. Anderluh et al., Membrane pore formation at protein???lipid interfaces, Trends in Biochemical Sciences, vol.39, issue.11, pp.510-516, 2014.
DOI : 10.1016/j.tibs.2014.09.002

T. Jacobs, A. Darji, N. Frahm, M. Rohde, J. Wehland et al., Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes, Molecular Microbiology, vol.61, issue.6, p.9680200, 1998.
DOI : 10.1016/S0092-8674(00)80251-2

N. Gekara, T. Jacobs, T. Chakraborty, and S. Weiss, The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization, Cellular Microbiology, vol.61, issue.9, pp.1345-56, 2005.
DOI : 10.1111/j.1462-5822.2005.00561.x

G. Feigenson, Phase behavior of lipid mixtures, Nature Chemical Biology, vol.83, issue.11, pp.560-563, 2006.
DOI : 10.1146/annurev.bi.48.070179.000403

R. Tweten, E. Hotze, and K. Wade, The Unique Molecular Choreography of Giant Pore Formation by the Cholesterol-Dependent Cytolysins of Gram-Positive Bacteria, Annual Review of Microbiology, vol.69, issue.1, pp.323-363, 2015.
DOI : 10.1146/annurev-micro-091014-104233

G. Smith, H. Marquis, S. Jones, N. Johnston, D. Portnoy et al., The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread, Infect Immun. Epub, vol.63, issue.111101, pp.4231-4238, 1995.

I. Munguira, L. Ignacio, C. Hirohide, T. Felix, R. Atsushi et al., Glasslike Membrane Protein Diffusion in a Crowded Membrane, ACS Nano, vol.10, issue.2, pp.2584-2590, 2016.
DOI : 10.1021/acsnano.5b07595

D. Colibus, L. Sonnen, A. Morris, K. Siebert, C. Abrusci et al., Structures of Lysenin Reveal a Shared Evolutionary Origin for Pore-Forming Proteins And Its Mode of Sphingomyelin Recognition, Structure, vol.20, issue.9, pp.1498-507, 2012.
DOI : 10.1016/j.str.2012.06.011

A. Yamaji-hasegawa, A. Makino, T. Baba, Y. Senoh, H. Kimura-suda et al., Oligomerization and Pore Formation of a Sphingomyelin-specific Toxin, Lysenin, Journal of Biological Chemistry, vol.278, issue.25, pp.22762-70, 2003.
DOI : 10.1074/jbc.M213209200

N. Yilmaz, T. Yamada, P. Greimel, T. Uchihashi, T. Ando et al., Real-Time Visualization of Assembling of a Sphingomyelin-Specific Toxin on Planar Lipid Membranes, Biophysical Journal, vol.105, issue.6, pp.1397-405, 2013.
DOI : 10.1016/j.bpj.2013.07.052

D. Portnoy, T. Chakraborty, W. Goebel, and P. Cossart, Molecular determinants of Listeria monocytogenes pathogenesis, Infect Immun. Epub, vol.60, issue.4, pp.1263-1270, 1992.