G. A. Silverman, P. I. Bird, R. W. Carrell, F. C. Church, P. B. Coughlin et al., The Serpins Are an Expanding Superfamily of Structurally Similar but Functionally Diverse Proteins: EVOLUTION, MECHANISM OF INHIBITION, NOVEL FUNCTIONS, AND A REVISED NOMENCLATURE, Journal of Biological Chemistry, vol.276, issue.36, pp.33293-33296, 2001.
DOI : 10.1074/jbc.R100016200

G. A. Hastings, T. A. Coleman, C. C. Haudenschild, S. Stefansson, E. P. Smith et al., Neuroserpin, a Brain-associated Inhibitor of Tissue Plasminogen Activator Is Localized Primarily in Neurons: IMPLICATIONS FOR THE REGULATION OF MOTOR LEARNING AND NEURONAL SURVIVAL, Journal of Biological Chemistry, vol.272, issue.52, pp.33062-33067, 1997.
DOI : 10.1074/jbc.272.52.33062

S. R. Krueger, G. P. Ghisu, P. Cinelli, T. P. Gschwend, T. Osterwalder et al., Expression of neuroserpin, an inhibitor of tissue plasminogen activator, in the developing and adult nervous system of the mouse, J. Neurosci, vol.17, pp.8984-8996, 1997.

T. Osterwalder, P. Cinelli, A. Baici, A. Pennella, S. R. Krueger et al., The Axonally Secreted Serine Proteinase Inhibitor, Neuroserpin, Inhibits Plasminogen Activators and Plasmin but Not Thrombin, Journal of Biological Chemistry, vol.273, issue.4, pp.2312-2321, 1998.
DOI : 10.1074/jbc.273.4.2312

T. Osterwalder, J. Contartese, E. T. Stoeckli, T. B. Kuhn, and P. Sonderegger, Neuroserpin, an axonally secreted serine protease inhibitor, EMBO J, vol.15, pp.2944-2953, 1996.

P. Wannier-morino, G. Rager, P. Sonderegger, and D. Grabs, Expression of neuroserpin in the visual cortex of the mouse during the developmental critical period, European Journal of Neuroscience, vol.18, issue.9, pp.1853-1860, 2003.
DOI : 10.1046/j.1460-9568.2003.02628.x

S. Fabbro, K. Schaller, and N. W. Seeds, Amyloid-beta levels are significantly reduced and spatial memory defects are rescued in a novel neuroserpin-deficient Alzheimer???s disease transgenic mouse model, Journal of Neurochemistry, vol.115, issue.5, 2011.
DOI : 10.1111/j.1471-4159.2011.07359.x

B. D. Roussel, A. J. Kruppa, E. Miranda, D. C. Crowther, D. A. Lomas et al., Endoplasmic reticulum dysfunction in neurological disease, The Lancet Neurology, vol.12, issue.1, pp.105-118, 2013.
DOI : 10.1016/S1474-4422(12)70238-7

URL : https://hal.archives-ouvertes.fr/inserm-01296824

N. Lebeurrier, G. Liot, J. P. Lopez-atalaya, C. Orset, M. Fernandez-monreal et al., The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo, Molecular and Cellular Neuroscience, vol.30, issue.4, pp.552-558, 2005.
DOI : 10.1016/j.mcn.2005.09.005

M. Yepes, M. Sandkvist, M. K. Wong, T. A. Coleman, E. Smith et al., Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis, Blood, vol.96, pp.569-576, 2000.

M. Yepes, M. Sandkvist, T. A. Coleman, E. Moore, J. Y. Wu et al., Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent, Journal of Clinical Investigation, vol.109, issue.12, pp.1571-1578, 2002.
DOI : 10.1172/JCI0214308

A. Makarova, I. Mikhailenko, T. H. Bugge, K. List, D. A. Lawrence et al., The Low Density Lipoprotein Receptor-related Protein Modulates Protease Activity in the Brain by Mediating the Cellular Internalization of Both Neuroserpin and Neuroserpin-Tissue-type Plasminogen Activator Complexes, Journal of Biological Chemistry, vol.278, issue.50, pp.50250-50258, 2003.
DOI : 10.1074/jbc.M309150200

R. Madani, S. Kozlov, A. Akhmedov, P. Cinelli, J. Kinter et al., Impaired explorative behavior and neophobia in genetically modified mice lacking or overexpressing the extracellular serine protease inhibitor neuroserpin, Molecular and Cellular Neuroscience, vol.23, issue.3, pp.473-494, 2003.
DOI : 10.1016/S1044-7431(03)00077-0

R. L. Davis, P. D. Holohan, A. E. Shrimpton, A. H. Tatum, J. Daucher et al., Familial encephalopathy with neuroserpin inclusion bodies, Am. J. Pathol, vol.155, 1901.

R. L. Davis, A. E. Shrimpton, P. D. Holohan, C. Bradshaw, D. Feiglin et al., Familial dementia caused by polymerization of mutant neuroserpin, Nature, vol.3, issue.6751, pp.376-379, 1999.
DOI : 10.1038/43894

R. L. Davis, A. E. Shrimpton, R. W. Carrell, D. A. Lomas, L. Gerhard et al., Association between conformational mutations in neuroserpin and onset and severity of dementia, The Lancet, vol.359, issue.9325, pp.2242-2247, 2002.
DOI : 10.1016/S0140-6736(02)09293-0

B. D. Roussel, J. A. Irving, U. I. Ekeowa, D. Belorgey, I. Haq et al., Unravelling the twists and turns of the serpinopathies, FEBS Journal, vol.363, issue.Suppl 1, pp.3859-3867, 2011.
DOI : 10.1111/j.1742-4658.2011.08201.x

E. Miranda, I. Macleod, M. J. Davies, J. Perez, K. Romisch et al., The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB, Human Molecular Genetics, vol.17, issue.11, pp.1527-1539, 2008.
DOI : 10.1093/hmg/ddn041

M. J. Davies, E. Miranda, B. D. Roussel, R. J. Kaufman, S. J. Marciniak et al., Neuroserpin Polymers Activate NF-??B by a Calcium Signaling Pathway That Is Independent of the Unfolded Protein Response, Journal of Biological Chemistry, vol.284, issue.27, pp.18202-18209, 2009.
DOI : 10.1074/jbc.M109.010744

H. Kroeger, E. Miranda, I. Macleod, J. Perez, D. C. Crowther et al., Endoplasmic Reticulum-associated Degradation (ERAD) and Autophagy Cooperate to Degrade Polymerogenic Mutant Serpins, Journal of Biological Chemistry, vol.284, issue.34, pp.22793-22802, 2009.
DOI : 10.1074/jbc.M109.027102

J. C. Christianson, T. A. Shaler, R. E. Tyler, and R. R. Kopito, OS-9 and GRP94 deliver mutant ??1-antitrypsin to the Hrd1?SEL1L ubiquitin ligase complex for ERAD, Nature Cell Biology, vol.269, issue.3, pp.272-282, 2008.
DOI : 10.1074/jbc.274.9.5861

Z. Ying, H. Wang, H. Fan, and G. Wang, The Endoplasmic Reticulum (ER)-associated Degradation System Regulates Aggregation and Degradation of Mutant Neuroserpin, Journal of Biological Chemistry, vol.286, issue.23, pp.20835-20844, 2011.
DOI : 10.1074/jbc.M110.200808

Z. Kostova, Y. C. Tsai, and A. M. Weissman, Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation, Seminars in Cell & Developmental Biology, vol.18, issue.6, pp.770-779, 2007.
DOI : 10.1016/j.semcdb.2007.09.002

U. Lenk, H. Yu, J. Walter, M. S. Gelman, E. Hartmann et al., A role for mammalian Ubc6 homologues in ER-associated protein degradation, J. Cell Sci, vol.115, pp.3007-3014, 2002.

B. Chen, J. Mariano, Y. C. Tsai, A. H. Chan, M. Cohen et al., The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site, Proc. Natl Acad. Sci. USA, pp.341-346, 2006.
DOI : 10.1073/pnas.0506618103

X. Wang, R. A. Herr, M. Rabelink, R. C. Hoeben, E. J. Wiertz et al., Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates, The Journal of Cell Biology, vol.71, issue.5, pp.655-668, 2009.
DOI : 10.1083/jcb.200410065

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl Acad. Sci. USA, pp.15545-15550, 2005.
DOI : 10.1073/pnas.0506580102

Y. Jo, P. V. Sguigna, and R. A. Debose-boyd, Membrane-associated Ubiquitin Ligase Complex Containing gp78 Mediates Sterol-accelerated Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase, Journal of Biological Chemistry, vol.286, issue.17, pp.15022-15031, 2011.
DOI : 10.1074/jbc.M110.211326

I. Ron and M. Horowitz, Intracellular cholesterol modifies the ERAD of glucocerebrosidase in Gaucher disease patients???, Molecular Genetics and Metabolism, vol.93, issue.4, pp.426-436, 2008.
DOI : 10.1016/j.ymgme.2007.10.132

N. Pierrot, D. Tyteca, L. D-'auria, I. Dewachter, P. Gailly et al., Amyloid precursor protein controls cholesterol turnover needed for neuronal activity, EMBO Molecular Medicine, vol.23, issue.4, pp.608-625, 2013.
DOI : 10.1002/emmm.201202215

M. S. Brown and J. L. Goldstein, The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor, Cell, vol.89, issue.3, pp.331-340, 1997.
DOI : 10.1016/S0092-8674(00)80213-5

E. S. Istvan and J. Deisenhofer, Structural Mechanism for Statin Inhibition of HMG-CoA Reductase, Science, vol.292, issue.5519, pp.1160-1164, 2001.
DOI : 10.1126/science.1059344

S. E. Thomas, E. Malzer, A. Ordonez, L. E. Dalton, E. F. Van-'t-wout et al., p53 and Translation Attenuation Regulate Distinct Cell Cycle Checkpoints during Endoplasmic Reticulum (ER) Stress, Journal of Biological Chemistry, vol.288, issue.11, pp.7606-7617, 2013.
DOI : 10.1074/jbc.M112.424655

H. Wang, Q. Li, Y. Shen, A. Sun, X. Zhu et al., The ubiquitin ligase Hrd1 promotes degradation of the Z variant alpha 1-antitrypsin and increases its solubility, Molecular and Cellular Biochemistry, vol.360, issue.26, pp.137-145, 2011.
DOI : 10.1007/s11010-010-0600-9

Y. Shen, P. Ballar, and S. Fang, Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of ??-1-antitrypsin, Biochemical and Biophysical Research Communications, vol.349, issue.4, pp.1285-1293, 2006.
DOI : 10.1016/j.bbrc.2006.08.173

M. Kikkert, R. Doolman, M. Dai, R. Avner, G. Hassink et al., Human HRD1 Is an E3 Ubiquitin Ligase Involved in Degradation of Proteins from the Endoplasmic Reticulum, Journal of Biological Chemistry, vol.279, issue.5, pp.3525-3534, 2004.
DOI : 10.1074/jbc.M307453200

S. Fang, M. Ferrone, C. Yang, J. P. Jensen, S. Tiwari et al., The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum, Proc. Natl Acad. Sci. USA, pp.14422-14427, 2001.
DOI : 10.1073/pnas.251401598

J. Cao, J. Wang, W. Qi, H. H. Miao, L. Ge et al., Ufd1 Is a Cofactor of gp78 and Plays a Key Role in Cholesterol Metabolism by Regulating the Stability of HMG-CoA Reductase, Cell Metabolism, vol.6, issue.2, pp.115-128, 2007.
DOI : 10.1016/j.cmet.2007.07.002

B. L. Song, N. Sever, and R. A. Debose-boyd, Gp78, a Membrane-Anchored Ubiquitin Ligase, Associates with Insig-1 and Couples Sterol-Regulated Ubiquitination to Degradation of HMG CoA Reductase, Molecular Cell, vol.19, issue.6, pp.829-840, 2005.
DOI : 10.1016/j.molcel.2005.08.009

R. G. Gardner, A. G. Shearer, and R. Y. Hampton, In Vivo Action of the HRD Ubiquitin Ligase Complex: Mechanisms of Endoplasmic Reticulum Quality Control and Sterol Regulation, Molecular and Cellular Biology, vol.21, issue.13, pp.4276-4291, 2001.
DOI : 10.1128/MCB.21.13.4276-4291.2001

R. M. Garza, B. K. Sato, and R. Y. Hampton, In Vitro Analysis of Hrd1p-mediated Retrotranslocation of Its Multispanning Membrane Substrate 3-Hydroxy-3-methylglutaryl (HMG)-CoA Reductase, Journal of Biological Chemistry, vol.284, issue.22, pp.14710-14722, 2009.
DOI : 10.1074/jbc.M809607200

E. Miranda, K. Romisch, and D. A. Lomas, Mutants of Neuroserpin That Cause Dementia Accumulate as Polymers within the Endoplasmic Reticulum, Journal of Biological Chemistry, vol.279, issue.27, pp.28283-28291, 2004.
DOI : 10.1074/jbc.M313166200

D. Belorgey, J. A. Irving, U. I. Ekeowa, J. Freeke, B. D. Roussel et al., Characterisation of serpin polymers in vitro and in vivo, Methods, vol.53, issue.3, pp.255-266, 2011.
DOI : 10.1016/j.ymeth.2010.11.008

B. D. Roussel, R. Macrez, A. Jullienne, V. Agin, E. Maubert et al., Age and albumin D site-binding protein control tissue plasminogen activator levels: neurotoxic impact, Brain, vol.132, issue.8, pp.2219-2230, 2009.
DOI : 10.1093/brain/awp162

URL : https://hal.archives-ouvertes.fr/inserm-01296806

P. Du, W. A. Kibbe, and S. M. Lin, lumi: a pipeline for processing Illumina microarray, Bioinformatics, vol.24, issue.13, pp.1547-1548, 2008.
DOI : 10.1093/bioinformatics/btn224

G. K. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, p.3, 2004.
DOI : 10.2202/1544-6115.1027

M. Amemiya-kudo, H. Shimano, A. H. Hasty, N. Yahagi, T. Yoshikawa et al., Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes, J. Lipid Res, vol.43, pp.1220-1235, 2002.