V. Nakka, A. Gusain, and R. Raghubir, Endoplasmic Reticulum Stress Plays Critical Role in Brain Damage After Cerebral Ischemia/Reperfusion in Rats, Neurotoxicity Research, vol.22, issue.9478, pp.189-202, 2010.
DOI : 10.1007/s12640-009-9110-5

M. Kaneko, H. Koike, R. Saito, Y. Kitamura, Y. Okuma et al., Loss of HRD1-Mediated Protein Degradation Causes Amyloid Precursor Protein Accumulation and Amyloid-?? Generation, Journal of Neuroscience, vol.30, issue.11, pp.3924-3956, 2010.
DOI : 10.1523/JNEUROSCI.2422-09.2010

J. Lee, S. Won, J. Suh, S. Son, G. Moon et al., Induction of the unfolded protein response and cell death pathway in Alzheimer's disease, but not in aged Tg2576 mice, Experimental and Molecular Medicine, vol.155, issue.Pt 1, pp.386-94, 2010.
DOI : 10.3858/emm.2010.42.5.040

Y. Honjo, H. Ito, T. Horibe, R. Takahashi, and K. Kawakami, Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease, Brain Research, vol.1349, pp.90-96, 2010.
DOI : 10.1016/j.brainres.2010.06.016

E. Quaglio, E. Restelli, A. Garofoli, S. Dossena, D. Luigi et al., Expression of Mutant or Cytosolic PrP in Transgenic Mice and Cells Is Not Associated with Endoplasmic Reticulum Stress or Proteasome Dysfunction, PLoS ONE, vol.2, issue.4, p.19339, 2011.
DOI : 10.1371/journal.pone.0019339.s001

L. Bouman, A. Schlierf, A. Lutz, J. Shan, A. Deinlein et al., Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress, Cell Death and Differentiation, vol.21, issue.5, pp.769-82, 2008.
DOI : 10.1038/cdd.2010.142

URL : https://hal.archives-ouvertes.fr/hal-00595932

R. Schneider, Ubiquitination of a New Form of a-Synuclein by Parkin from Human Brain: Implications for Parkinson's Disease, Science, vol.28, pp.28-99, 2001.

R. 1. Nakka, V. Gusain, A. Raghubir, and R. , Endoplasmic Reticulum Stress Plays Critical Role in Brain Damage After Cerebral Ischemia/Reperfusion in Rats, Neurotoxicity Research, vol.22, issue.9478, pp.189-202, 2010.
DOI : 10.1007/s12640-009-9110-5

M. Kaneko, H. Koike, R. Saito, Y. Kitamura, Y. Okuma et al., Loss of HRD1-Mediated Protein Degradation Causes Amyloid Precursor Protein Accumulation and Amyloid-?? Generation, Journal of Neuroscience, vol.30, issue.11, pp.3924-3956, 2010.
DOI : 10.1523/JNEUROSCI.2422-09.2010

J. Lee, S. Won, J. Suh, S. Son, G. Moon et al., Induction of the unfolded protein response and cell death pathway in Alzheimer's disease, but not in aged Tg2576 mice, Experimental and Molecular Medicine, vol.155, issue.Pt 1, pp.386-94, 2010.
DOI : 10.3858/emm.2010.42.5.040

Y. Honjo, H. Ito, T. Horibe, R. Takahashi, and K. Kawakami, Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease, Brain Research, vol.1349, pp.90-96, 2010.
DOI : 10.1016/j.brainres.2010.06.016

E. Quaglio, E. Restelli, A. Garofoli, S. Dossena, D. Luigi et al., Expression of Mutant or Cytosolic PrP in Transgenic Mice and Cells Is Not Associated with Endoplasmic Reticulum Stress or Proteasome Dysfunction, PLoS ONE, vol.2, issue.4, p.19339, 2011.
DOI : 10.1371/journal.pone.0019339.s001

P. Leegwater, G. Vermeulen, A. Konst, S. Naidu, J. Mulders et al., Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter Mutations causing childhood ataxia with central nervous system hypomyelination reduce eukaryotic initiation factor 2B complex formation and activity, Nat Genet. Mol Cell Biol, vol.29, issue.246, pp.383-391, 2001.

H. Harding, M. Calfon, F. Urano, I. Novoa, R. D. Southwood et al., Transcriptional and Translational Control in the Mammalian Unfolded Protein Response, Annual Review of Cell and Developmental Biology, vol.18, issue.1, pp.575-99, 2002.
DOI : 10.1146/annurev.cellbio.18.011402.160624

P. Tsaytler, H. Harding, R. D. Bertolotti, and A. , Selective Inhibition of a Regulatory Subunit of Protein Phosphatase 1 Restores Proteostasis, Science, vol.332, issue.6025, pp.91-95, 2011.
DOI : 10.1126/science.1201396

M. Calfon, H. Zeng, F. Urano, J. Till, S. Hubbard et al., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA, Nature, vol.415, issue.6867, pp.92-98, 2002.
DOI : 10.1038/415092a

T. Hosoi, K. Ogawa, and K. Ozawa, Homocysteine induces X-box-binding protein 1 splicing in the mice brain, Neurochemistry International, vol.56, issue.2, pp.216-236, 2010.
DOI : 10.1016/j.neuint.2009.12.005

B. Meusser, C. Hirsch, E. Jarosch, T. Sommer, C. Haynes et al., ERAD: the long road to destruction Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death, Nat Cell Biol. Mol Cell, vol.7, issue.155, pp.766-72, 2004.

H. Yoshida, T. Matsui, N. Hosokawa, R. Kaufman, K. Nagata et al., A Time-Dependent Phase Shift in the Mammalian Unfolded Protein Response, Developmental Cell, vol.4, issue.2, pp.265-71, 2003.
DOI : 10.1016/S1534-5807(03)00022-4

K. Szydlowska and M. Tymianski, Calcium, ischemia and excitotoxicity, Cell Calcium, vol.47, issue.2, pp.122-131, 2010.
DOI : 10.1016/j.ceca.2010.01.003

H. Coe and M. Michalak, Calcium binding chaperones of the endoplasmic reticulum, Spec No Focus, pp.96-103, 2009.

H. Nguyen, C. Wang, and D. Perry, Depletion of intracellular calcium stores is toxic to SH-SY5Y neuronal cells, Brain Research, vol.924, issue.2, pp.159-66, 2002.
DOI : 10.1016/S0006-8993(01)03229-2

F. Zhang, C. Liu, and B. Hu, Irreversible aggregation of protein synthesis machinery after focal brain ischemia, Journal of Neurochemistry, vol.939, issue.1, pp.102-114, 2006.
DOI : 10.1016/j.brainres.2004.07.034

X. Qi, Y. Okuma, T. Hosoi, and Y. Nomura, Edaravone Protects against Hypoxia/Ischemia-Induced Endoplasmic Reticulum Dysfunction, Journal of Pharmacology and Experimental Therapeutics, vol.311, issue.1, pp.388-93, 2004.
DOI : 10.1124/jpet.104.069088

Y. Zhu, P. Fenik, G. Zhan, B. Sanfillipo-cohn, N. Naidoo et al., Eif-2a Protects Brainstem Motoneurons in a Murine Model of Sleep Apnea, Journal of Neuroscience, vol.28, issue.9, pp.2168-78, 2008.
DOI : 10.1523/JNEUROSCI.5232-07.2008

Y. Xue, A. Daly, B. Yngvadottir, M. Liu, G. Coop et al., Spread of an Inactive Form of Caspase-12 in Humans Is Due to Recent Positive Selection, The American Journal of Human Genetics, vol.78, issue.4, pp.659-70, 2006.
DOI : 10.1086/503116

R. Kumar, G. Krause, H. Yoshida, K. Mori, and D. Degracia, Dysfunction of the Unfolded Protein Response during Global Brain Ischemia and Reperfusion, Journal of Cerebral Blood Flow & Metabolism, vol.23, issue.4, pp.462-71, 2003.
DOI : 10.1097/01.WCB.0000056064.25434.CA

N. Osada, Y. Kosuge, T. Kihara, K. Ishige, and Y. Ito, Apolipoprotein E-deficient mice are more vulnerable to ER stress after transient forebrain ischemia, Neurochemistry International, vol.54, issue.7
DOI : 10.1016/j.neuint.2009.01.010

Y. Oida, M. Shimazawa, K. Imaizumi, and H. Hara, Involvement of endoplasmic reticulum stress in the neuronal death induced by transient forebrain ischemia in gerbil, Neuroscience, vol.151, issue.1, pp.111-120, 2008.
DOI : 10.1016/j.neuroscience.2007.10.047

W. Paschen, T. Hayashi, A. Saito, and P. Chan, GADD34 protein levels increase after transient ischemia in the cortex but not in the CA1 subfield: implications for post-ischemic recovery of protein synthesis in ischemia-resistant cells, Journal of Neurochemistry, vol.90, issue.3, pp.694-701, 2004.
DOI : 10.1111/j.1471-4159.2004.02555.x

D. Mccaig, H. Imai, L. Gallagher, D. Graham, H. J. et al., Evolution of GADD34 expression after focal cerebral ischaemia, Brain Research, vol.1034, issue.1-2, pp.51-61, 2005.
DOI : 10.1016/j.brainres.2004.11.058

A. Sokka, N. Putkonen, G. Mudo, E. Pryazhnikov, S. Reijonen et al., Endoplasmic Reticulum Stress Inhibition Protects against Excitotoxic Neuronal Injury in the Rat Brain, Journal of Neuroscience, vol.27, issue.4, pp.901-909, 2007.
DOI : 10.1523/JNEUROSCI.4289-06.2007

N. Osada, Y. Kosuge, K. Ishige, and Y. Ito, Characterization of neuronal and astroglial responses to ER stress in the hippocampal CA1 area in mice following transient forebrain ischemia, Neurochemistry International, vol.57, issue.1, pp.1-7, 2010.
DOI : 10.1016/j.neuint.2010.03.017

Z. Yu, H. Luo, W. Fu, and M. Mattson, The Endoplasmic Reticulum Stress-Responsive Protein GRP78 Protects Neurons Against Excitotoxicity and Apoptosis: Suppression of Oxidative Stress and Stabilization of Calcium Homeostasis, Experimental Neurology, vol.155, issue.2, pp.302-316, 1999.
DOI : 10.1006/exnr.1998.7002

Y. Ouyang, L. Xu, J. Emery, A. Lee, and R. Giffard, Overexpressing GRP78 influences Ca2+ handling and function of mitochondria in astrocytes after ischemia-like stress, Mitochondrion, vol.11, issue.2, pp.279-86, 2011.
DOI : 10.1016/j.mito.2010.10.007

T. Kudo, S. Kanemoto, H. Hara, N. Morimoto, T. Morihara et al., A molecular chaperone inducer protects neurons from ER stress, Cell Death and Differentiation, vol.53, issue.2, pp.364-75, 2008.
DOI : 10.1016/S0169-328X(99)00102-3

M. Taniguchi, ORP150 protects against hypoxia/ischemia-induced neuronal death, Nature medicine, vol.7, issue.3, pp.317-340, 2001.

L. Zhao, C. Longo-guess, B. Harris, J. Lee, and S. Ackerman, Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP, Nature Genetics, vol.20, issue.9, pp.974-983, 2005.
DOI : 10.1038/386838a0

L. Zhao, C. Rosales, K. Seburn, R. D. Ackerman, and S. , Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjogren syndrome, Human Molecular Genetics, vol.19, issue.1, pp.25-35, 2010.
DOI : 10.1093/hmg/ddp464

L. Luheshi, G. Tartaglia, A. Brorsson, A. Pawar, I. Watson et al., Systematic in vivo analysis of the intrinsic determinants of amyloid Beta pathogenicity, PLoS Biol, vol.5, issue.11, 2007.

P. Eikelenboom, The unfolded protein response is activated in Alzheimer's disease, Acta Neuropathol, vol.110, issue.2, pp.165-72, 2005.

F. Baas, The unfolded protein response affects neuronal cell cycle protein expression: implications for Alzheimer's disease pathogenesis, Exp Gerontol, vol.41, issue.4, pp.380-386, 2006.

P. Scheper and W. , The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus, Am J Pathol, vol.174, issue.4, pp.1241-51, 2009.

G. Abeta-induced, K. Lee, H. Lee, H. Kim-do, Y. Noh et al., Activation of PERK signaling attenuates Abeta-mediated ER stress beta-Amyloid and endoplasmic reticulum stress responses in primary neurons: effects of drugs that interact with the cytoskeleton, J Neurosci Res. PLoS ONE. J Mol Neurosci, vol.86, issue.2822, pp.2091-2100, 2006.

O. Ghribi, M. Herman, D. Dewitt, M. Forbes, and J. Savory, A??(1-42) and aluminum induce stress in the endoplasmic reticulum in rabbit hippocampus, involving nuclear translocation of gadd 153 and NF-??B, Molecular Brain Research, vol.96, issue.1-2, pp.30-38, 2001.
DOI : 10.1016/S0169-328X(01)00256-X

J. Schapansky, K. Olson, R. Van-der-ploeg, and G. Glazner, NF-??B activated by ER calcium release inhibits A??-mediated expression of CHOP protein: Enhancement by AD-linked mutant presenilin 1, Experimental Neurology, vol.208, issue.2, pp.169-76, 2007.
DOI : 10.1016/j.expneurol.2007.04.009

D. Rincon-limas and P. Fernandez-funez, The ER stress factor XBP1s prevents amyloid-beta neurotoxicity, Hum Mol Genet, vol.20, issue.11, pp.2144-60, 2011.

O. Milhavet, J. Martindale, S. Camandola, S. Chan, D. Gary et al., Involvement of Gadd153 in the pathogenic action of presenilin-1 mutations, Journal of Neurochemistry, vol.12, issue.3, pp.673-81, 2002.
DOI : 10.1046/j.1471-4159.2002.01165.x

H. Jin, N. Sanjo, T. Uchihara, K. Watabe, S. George-hyslop et al., Presenilin-1 holoprotein is an interacting partner of sarco endoplasmic reticulum calcium-ATPase and confers resistance to endoplasmic reticulum stress, J Alzheimers Dis, vol.20, issue.1, pp.261-73, 2010.

G. Stutzmann, M. Mattson, I. Bezprozvanny, and M. Mattson, Endoplasmic reticulum Ca(2+) handling in 82 Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease, Trends Neurosci, vol.31, issue.83, pp.454-63, 2008.

G. Saltini, R. Dominici, C. Lovati, M. Cattaneo, S. Michelini et al., A novel polymorphism in SEL1L confers susceptibility to Alzheimer's disease, Neuroscience Letters, vol.398, issue.1-2
DOI : 10.1016/j.neulet.2005.12.038

B. Bauereis, W. Haskins, R. Lebaron, and R. Renthal, Proteomic insights into the protective mechanisms of an in vitro oxidative stress model of early stage Parkinson's disease, Neuroscience Letters, vol.488, issue.1, pp.11-17, 2011.
DOI : 10.1016/j.neulet.2010.10.071

N. Egawa, K. Yamamoto, H. Inoue, R. Hikawa, K. Nishi et al., The Endoplasmic Reticulum Stress Sensor, ATF6??, Protects against Neurotoxin-induced Dopaminergic Neuronal Death, Journal of Biological Chemistry, vol.286, issue.10, pp.7947-57, 2011.
DOI : 10.1074/jbc.M110.156430

S. Chigurupati, Z. Wei, C. Belal, M. Vandermey, G. Kyriazis et al., The Homocysteine-inducible Endoplasmic Reticulum Stress Protein Counteracts Calcium Store Depletion and Induction of CCAAT Enhancer-binding Protein Homologous Protein in a Neurotoxin Model of Parkinson Disease, Journal of Biological Chemistry, vol.284, issue.27, pp.18323-18356, 2009.
DOI : 10.1074/jbc.M109.020891

J. Scheper and W. , Activation of the unfolded protein response in Parkinson's disease, Biochem Biophys Res Commun, vol.354, issue.3, pp.707-718, 2007.

T. Kitada, S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura et al., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature, vol.392, issue.6676, pp.605-613, 1998.

L. Bouman, A. Schlierf, A. Lutz, J. Shan, A. Deinlein et al., Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress, Cell Death and Differentiation, vol.21, issue.5, pp.769-82, 2008.
DOI : 10.1038/cdd.2010.142

URL : https://hal.archives-ouvertes.fr/hal-00595932

R. Schneider, Ubiquitination of a New Form of a-Synuclein by Parkin from Human Brain: Implications for Parkinson's Disease, Science, vol.28, pp.28-99, 2001.

M. Inden, Y. Kitamura, H. Takeuchi, T. Yanagida, K. Takata et al., Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone, Journal of Neurochemistry, vol.20, issue.6, pp.1491-504, 2007.
DOI : 10.1002/cne.20305

H. Hara, T. Kamiya, and T. Adachi, Endoplasmic reticulum stress inducers provide protection against 6-hydroxydopamine-induced cytotoxicity, Neurochemistry International, vol.58, issue.1, pp.35-43, 2011.
DOI : 10.1016/j.neuint.2010.10.006

A. Carnemolla, E. Fossale, E. Agostoni, S. Michelazzi, R. Calligaris et al., Rrs1 Is Involved in Endoplasmic Reticulum Stress Response in Huntington Disease, Journal of Biological Chemistry, vol.284, issue.27, pp.18167-73, 2009.
DOI : 10.1074/jbc.M109.018325

P. Lajoie and E. Snapp, Changes in BiP availability reveal hypersensitivity to acute endoplasmic reticulum stress in cells expressing mutant huntingtin, Journal of Cell Science, vol.124, issue.19, pp.3332-3375, 2011.
DOI : 10.1242/jcs.087510

E. Bennett, T. Shaler, B. Woodman, K. Ryu, T. Zaitseva et al., Global changes to the ubiquitin system in Huntington's disease, Nature, vol.353, issue.7154, pp.704-712, 2007.
DOI : 10.1038/nature06022

S. Sasaki, Endoplasmic Reticulum Stress in Motor Neurons of the Spinal Cord in Sporadic Amyotrophic Lateral Sclerosis, Journal of Neuropathology & Experimental Neurology, vol.69, issue.4, 2010.
DOI : 10.1097/NEN.0b013e3181d44992

H. Kikuchi, G. Almer, S. Yamashita, C. Guegan, M. Nagai et al., Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model, Proceedings of the National Academy of Sciences, vol.103, issue.15, pp.6025-6055, 2006.
DOI : 10.1073/pnas.0509227103

D. Kieran, I. Woods, A. Villunger, A. Strasser, and J. Prehn, Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice, Proceedings of the National Academy of Sciences, vol.104, issue.51, pp.20606-20617, 2007.
DOI : 10.1073/pnas.0707906105

A. Walker, M. Farg, C. Bye, C. Mclean, M. Horne et al., Protein disulphide isomerase protects against protein aggregation and is S-nitrosylated in amyotrophic lateral sclerosis, Brain, vol.133, issue.1, pp.105-121, 2010.
DOI : 10.1093/brain/awp267

S. Saxena, E. Cabuy, and P. Caroni, A role for motoneuron subtype???selective ER stress in disease manifestations of FALS mice, Nature Neuroscience, vol.293, issue.5, pp.627-663, 2009.
DOI : 10.1016/j.neuron.2007.01.010

L. Wang, B. Popko, and R. Roos, The unfolded protein response in familial amyotrophic lateral sclerosis, Human Molecular Genetics, vol.20, issue.5, pp.1008-1023, 2011.
DOI : 10.1093/hmg/ddq546

H. Nishitoh, H. Kadowaki, A. Nagai, T. Maruyama, T. Yokota et al., ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1, Genes & Development, vol.22, issue.11, pp.1451-64, 2008.
DOI : 10.1101/gad.1640108

W. Lin, S. Bailey, H. Ho, H. Harding, R. D. Miller et al., The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage, Journal of Clinical Investigation, vol.117, issue.2, pp.448-56, 2007.
DOI : 10.1172/JCI29571DS1

W. Lin, A. Kemper, J. Dupree, H. Harding, R. D. Popko et al., Interferon-?? inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress, Brain, vol.129, issue.5, pp.1306-1324, 2006.
DOI : 10.1093/brain/awl044

R. Davis, A. Shrimpton, P. Holohan, C. Bradshaw, D. Feiglin et al., Familial dementia caused by polymerization of mutant neuroserpin, Nature, vol.3, issue.6751, pp.376-385, 1999.
DOI : 10.1038/43894

E. Miranda, I. Macleod, M. Davies, J. Perez, K. Romisch et al., The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB, Human Molecular Genetics, vol.17, issue.11, pp.1527-1566, 2008.
DOI : 10.1093/hmg/ddn041

H. Kroeger, E. Miranda, I. Macleod, J. Perez, D. Crowther et al., Endoplasmic Reticulum-associated Degradation (ERAD) and Autophagy Cooperate to Degrade Polymerogenic Mutant Serpins, Journal of Biological Chemistry, vol.284, issue.34, pp.22793-802, 2009.
DOI : 10.1074/jbc.M109.027102

H. Pahl and P. Baeuerle, The ER-overload response: activation of NF-??B, Trends in Biochemical Sciences, vol.22, issue.2, pp.63-70, 1997.
DOI : 10.1016/S0968-0004(96)10073-6

T. Hidvegi, M. Ewing, P. Hale, C. Dippold, C. Beckett et al., An Autophagy-Enhancing Drug Promotes Degradation of Mutant ??1-Antitrypsin Z and Reduces Hepatic Fibrosis, Science, vol.329, issue.5988, pp.229-261, 2010.
DOI : 10.1126/science.1190354

F. Li, T. Hayashi, J. G. Deguchi, K. Nagotani, S. Nagano et al., The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers, Brain Research, vol.1048, issue.1-2, pp.59-68, 2005.
DOI : 10.1016/j.brainres.2005.04.058

P. Jiang, M. Gan, A. Ebrahim, W. Lin, H. Melrose et al., ER stress response plays an important role in aggregation of ??-synuclein, Molecular Neurodegeneration, vol.5, issue.1, p.56, 2010.
DOI : 10.1186/1750-1326-5-56

S. Reijonen, N. Putkonen, A. Norremolle, D. Lindholm, and L. Korhonen, Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins, Experimental Cell Research, vol.314, issue.5, pp.950-60, 2008.
DOI : 10.1016/j.yexcr.2007.12.025

K. Yamamoto, E. Tashiro, and M. Imoto, Quinotrierixin Inhibited ER Stress-Induced XBP1 mRNA Splicing through Inhibition of Protein Synthesis, Bioscience, Biotechnology, and Biochemistry, vol.25, issue.2, pp.284-292, 2011.
DOI : 10.1074/jbc.270.43.25949

Y. Kang, M. Lu, and K. Guan, The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis, Cell Death and Differentiation, vol.170, issue.1, pp.133-177, 2011.
DOI : 10.1038/cdd.2010.82

G. Liu, H. Guo, C. Guo, S. Zhao, D. Gong et al., Involvement of IRE1alpha signaling in the hippocampus in patients with mesial temporal lobe epilepsy

P. Chen, A. Burdette, J. Porter, J. Ricketts, S. Fox et al., The early-onset torsion dystonia-associated protein, torsinA, is a homeostatic